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We investigate the use of Gallager’s low-density parity-check (LDPC) codes in a degraded broad-
cast channel, one of the fundamental models in network information theory. Combining linear codes
is a standard technique in practical network communication schemes and is known to provide bet-
ter performance than simple time sharing methods when algebraic codes are used. The statistical
physics based analysis shows that the practical performance of the suggested method, achieved by
employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes
while the best performance, when received transmissions are optimally decoded, is bounded by the
time sharing limit.
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I. INTRODUCTION

Progress in digital communication technologies has
dramatically increased the information flow in both wired
and wireless channels. This makes the role of generic cod-
ing techniques, such as error-correcting codes and data
compression, more important. As most existing codes
are constructed for simple point-to-point communication,
they do not necessarily provide optimal performance in
multi-terminal communication such as the inter-net, mo-
bile phones and satellite communication. Therefore, de-
signing improved codes that utilize characteristic proper-
ties of these media is a promising direction for enhancing
the performance of multi-terminal communication.

The broadcast channel is a standard multi-terminal
communication channel composed of a single sender and
multiple receivers, and is characteristic of TV and radio
broadcasting. Unlike point-to-point communication, the
sender (TV station) simultaneously broadcasts multiple
messages (TV programs) to many receivers (TV sets) si-
multaneously via noisy channels. This implies that con-
structing a jointly optimal code with respect to the mul-
tiple channels may provide improved performance (i.e.,
higher capacity) than that of the time sharing scheme,
whereby separate optimally designed code are used for
each channel. Actually, Cover showed that jointly op-
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timized codes can have a larger capacity region, where
error free communication becomes possible, than that of
time sharing codes, in degraded channels which are one of
representative models of broadcast communication [1–4].
However, his proof is non-constructive and the search for
better practical codes for broadcast channels is still an
important topic in information theory (IT).

The purpose of this paper is to devise and analyze
an improved practical code for a degraded broadcast
channel by linearly combining Low-Density Parity-Check
(LDPC) codes, which have been shown to provide nearly
optimal performance for single channels [5–7]. For Reed-
Solomon and BCH codes, which are standard suboptimal
codes, it has been reported that combining codes linearly
results in superior performance with respect to a time
shared transmission [8, 9]. This provides the motivation
for the current study, investigating the performance of
linearly combined LDPC codes.

Generally, one can define two different performance
measures for evaluating LDPC codes. The first is the
practical performance achievable in feasible time scales
that grow polynomially with the systems size; while the
other is the optimal theoretically achievable performance,
for which the required computation typicallly increases
exponentially with respect to the message length. Uti-
lizing the similarity between LDPC codes and Ising spin
systems, statistical physics provides a scheme for evalu-
ating both performance measures within the same frame-
work [10–12]; the current standard method used in the
information theory community [13] can only provide an
estimate of the practical performance, and practically re-
duces to the one used within the statistical physics frame-
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work. In this paper, we show that the statistical physics
based analysis points to a superior practical performance
of the suggested method with respect to LDPC based
time sharing codes (achieved by employing the belief
propagation algorithm); while its optimal performance
is bounded by the timesharing limit, which cannot be
saturated by known practical methods.

This paper is organized as follows. In the next sec-
tion, we introduce the general framework for broadcast
channels. Unlike simple communication channels, the op-
timal communication performance is still unknown for
most broadcast channels, which would make it difficult to
evaluate the performance of the proposed scheme. There-
fore, we focus here on the degraded channel, for which
the capacity region has already been obtained. In sec-
tion III, an LDPC code based construction for degraded
channels is introduced, and is subsequently analyzed in
section IV using methods of statistical physics. In section
V, the performance of the proposed scheme is evaluated
by solving numerically equations that emerge from the
analysis. The final section is devoted to a summary and
conclusion.

II. DEGRADED BROADCAST CHANNEL

In the general framework of broadcast channels, a sin-
gle sender (station) broadcasts a codeword composed of
different messages to multiple receivers. For simplicity,
we here restrict our attention to the case of two receivers
(Fig. 1), where one codeword X (N bits), comprising two
messages W1(R1N bits) and W2(R2N bits), is sent to
two receivers. As each channel is noisy, receivers 1 and 2
obtain two corrupted codewords Y1 and Y2, respectively;
this is modeled by a conditional probability P (Y1,Y2|X ).
The received corrupted codewords Y1 and Y2 are decoded
by the respective receivers to retrieve only the message
addressed to each of them.

Analogously to the case of single channels, error free
communication becomes possible if the corresponding
code rate vector (R1, R2) lies within a certain convex re-
gion, termed the capacity region, determined for a given
broadcast channel P (Y1,Y2|X ) using an infinite code
length N [3]. Evaluation of the capacity region is one
of the fundamental problems in information theory; the
problem is generally difficult and has not yet been solved
in general except for a few special cases.

A broadcast channel P (Y1,Y2|X ) is termed degraded if
there exists a distribution P ′(Y2|Y1) such that

P (Y2|X ) =
∑

{Y1}

P ′(Y2|Y1) P (Y1|X ) . (1)

This channel model can be used for representing a situa-
tion that the rate of noise corruption becomes higher as
a receiver is located in a farther distance from a broad-
cast station (sender), which is a natural assumption for
both of wired and wireless communication. Assuming

that the corruption rate only depends on the communi-
cation distance, which is also natural at least as a first
approximation, the channel model in the farther distance
(P (Y2|X )) can be formally expressed as if the message
were conveyed via the receiver in the closer distance in
a relay scheme (eq. (1)) although the two receivers does
not communicate with each other acctually (Fig. 1. (c)).

The degraded channel is exceptional in the sense that
its capacity region can be analytically obtained as the
convex hull of the closure of all points (R1, R2) that sat-
isfy

{

R2 < I(U ;Y2)
R1 < I(X ;Y1|U)

(2)

for a certain joint distribution P (U)P (X|U)P (Y1 ,Y2|X );
where the auxiliary random variable U has a cardinality
bounded by |U| ≤ min{|X |, |Y1|, |Y2|}. This region is of-
ten called Cover’s capacity [1] region. Unfortunately, the
derivation of Cover’s capacity is non-constructive and of-
fers little clue to design efficient practical codes. Thus,
practical codes for the degraded broadcast channel has
been actively investigated in the network information
theory [4].

In the case of binary symmetric channels characterized
by flip probabilities p1 and p2, condition (1) reduces to
an inequality p2 > p1. Then, the expression of Cover’s
capacity is simplified to

{

R2 < 1 − H2(δ ∗ p2)
R1 < H2(δ ∗ p1) − H2(p1)

(3)

where a parameter 0 < δ < 1 specifies the optimal ratio
between R1 and R2; δ∗p = δ(1−p)+(1−δ)p and H2(p) is
Shannon’s entropy H2(p) = −p log2 p−(1−p) log2(1−p).

The solid convex curve in Fig.1(b) shows Cover’s limit,
i.e., the boundary of Cover’s capacity for the binary sym-
metric channels. The straight broken line corresponds
to the timesharing capacity, i.e., the achievable capacity
by concatenating two independent codeswords optimized
for each channel separately. This is realized by using
N(1 − α) and Nα bits of codeword X for encoding mes-
sages W1 and W2, respectively. Here, 0 < α < 1 is the
code length ratio between the two messages. This simple
concatenation and the limit achievable by this scheme are
often termed the timesharing and the timesharing limit,
respectively. The difference between Cover’s and the
timesharing limits indicates the capacity gain obtained
by optimizing a code for the complete broadcasting sys-
tem in comparison with respect to optimizing each of the
channels separately.

We have to emphasize that achieving the timesharing
limit in practice is never trivial as there is no known
practical code that saturates Shannon’s limit even for a
single channel. Therefore, the design of improved practi-
cal codes for broadcasting, by combining existing codes,
devised for single channels, is an important research topic
in coding theory [4].
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FIG. 1: (a): A single sender and two receivers broadcast
channel. (b): The capacity region in the case of binary sym-
metric channels. The solid curve and the dotted line denote
Cover’s and timesharing limits, respectively. (c): When the
corruption rate increases proportional to the distance from a
broadcast station (sender), the functional form of the con-
ditional probability P (Y|X ) becomes identical on a circu-
lar arc of a fixed radius centred at the station. This im-
plies that the conditional probability for the second receiver
can be expressed as P (Y2|X ) =

∑

Y′ P (Y2|Y
′)P (Y ′|X ) =

∑

Y1
P (Y2|Y1)P (Y1|X ), where Y ′ is the received codeword

at the closest point to the second receiver on the circular arc,
as if the codeword were conveyed to the second receiver in a
relay scheme via the first receiver.

III. LINEARLY COMBINED CODES

Linearly combined codes is a well-known strategy
for designing high performance communication schemes

for broadcast channels using multiple linear Error-
Correcting Codes (ECC) [8, 9]. In this scheme, the first
N(1 − α) bits of a codeword are obtained by linearly
mixing two messages W1 and W2 while the other Nα
bits are generated only from W2 by some linear transfor-
mation. In both coding and decoding, all operations are
typically carried out in modulo 2. This method has been
developed for algebraic codes, such as Reed-Solomon and
BCH, which are standard codes designed for relatively
short code lengths. For these codes, it is reported that
the minimum distance between codewords is larger than
that achieved in the timesharing scheme, which implies
higher robustness against channel noise [8, 9].

However, it is unclear whether a similar construction
also offers better performance when different code types
are used. Furthermore, it is theoretically interesting and
important to examine whether a linearly combined code
can saturates Cover’s limit for infinite code length (N)
or not.

Motivated by these questions, we investigate here the
ability and limitations of linearly combined LDPC codes
in the limit N → ∞.

An LDPC code is characterized by a parity check ma-
trix. To devise a linearly combined coding scheme for
LDPC codes, we define a parity check matrix in an up-
per triangular form

A =

(

A1 A2

0 A3

)

(4)

where the sizes of the sub-matrices A1, A2, A3 are
[(1 − α)N − R1N ]× (1−α)N , [(1 − α)N − R1N ]×αN ,
[αN − R2N ]×αN , respectively. Further, we assume that
A1, A2, A3 have K1, K2, K3 and C1, C2, C3 non-zero ele-
ments per row and column, respectively. Based on the
parity check matrix, the generator matrix GT is con-
structed as

GT =

(

GT
1 GT

2

0 GT
3

)

(5)

where GT
i (i = 1, 3) are constructed systematically to

satisfy the constraints AiG
T
i = 0 (mod2) and GT

2 is de-
fined as −AT

1 [A1A
T
1 ]−1[A2G

T
3 ]. The sizes of these matri-

ces are (1 − α)N × R1N , αN × R2N and αN × R2N ,
respectively.

The sender produces a codeword X by taking a prod-
uct of the generator matrix GT and the original mes-
sages (W1,W2)

T . Receiving a possibly corrupted code-
word, each receiver evaluates the syndrome vectors J i =
AYi (i = 1, 2), which yield the parity-check equation
J i = Aξi. The message vector ξi can be thought of
as having two separate segments denoted by u (up) and
d (down) later on. The parameter α controls the error
correction ability for the second message; the transmitted
information redundancy increases with α. The decoding
problem for each receiver is to find the most probable
messages, si and σi, such that the parity check equation

J i =

(

A1 A2

0 A3

)(

si

σi

)

(i = 1, 2) (6)
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is obeyed, and using prior knowledge about the two noise
vectors characterized by the two different channels.

The second receiver has to estimate only the lower part

of noise vector ξd, which can be carried out using only the
lower part of Eq.(6). However, we assume here that both
receivers independently solve Eq.(6) using prior knowl-
edge on their own channels since one can show that solv-
ing the whole equation provides the optimal estimation
performance for both receivers. As Eq.(6) has the same
form for receivers 1 and 2, we hereafter omit the subscript
i = 1, 2.

It might be emphasized here that the upper triangular
architecture in the parity check matrix A is suitable for
providing a higher error correction ability to the second
message W2 which is, probably, more degraded according

to Eq. (1) than the other message W1 as ξd can be es-
timated independently of ξu while estimation of ξu fails

unless ξ
d is correctly retrieved. Later, this property of

the current code, in conjunction with assignment of suf-
ficient resource to W2 in code construction, will show a
seemingly counter-intuitive feature in performance.

For bit-wise minimization of the error probability the
optimal estimation is given by maximizing the posterior
marginal (MPM)

ξ̂ui = argmax
si∈{0/1}

P (si|J), ξ̂dj = argmax
σi∈{0/1}

P (σj |J). (7)

An exact evaluation of Eq.(7) is generally hard; therefore,
the belief propagation (BP) approximation scheme is
widely used as a practical decoding algorithm. The latter
has been shown to be identical to the Thouless-Anderson-
Palmer (TAP) approach in the current case [14, 17, 18].

IV. STATISTICAL MECHANICS

A. Macroscopic analysis – performance evaluation

In order to evaluate the typical error-correction abil-
ity of these codes in the limit N → ∞, we investigate
the behavior of the MPM decoder using the established
methods of statistical mechanics. We first map the cur-
rent system to an Ising spin model with finite connectiv-
ity, by employing the binary representation {+1,−1,×}
for the alphabet and operator instead of the Boolean
one {0, 1, +}. This implies that the posterior probability
P (s, σ|J) can be expressed as a Boltzmann distribution
at the inverse temperature β = 1 using a Hamiltonian

H(s, σ|J) = lim
γ→∞







γ
∑

{I(K1),J (K2)}

D1,2
I(K1),J (K2)

δ(−JuI(K1),J (K2)
;
∏

i∈I(K1)

si

∏

j∈J (K2)

σj)

+γ
∑

{J (K3)}

D3
J (K3)

δ(−JdJ (K3)
;
∏

j∈J (K3)

σj)







− F

(1−α)N
∑

i=1

si − F
αN
∑

j=1

σj , (8)

where I(K) = 〈i1, i2 · · · , iK〉 denotes the combination
of the K subscripts chosen from the i = 1, 2, · · · , (1 −
α)N possibilities without duplication (the order is ig-
nored), and J (K) = 〈j1, j2 · · · , jK〉 is the K combina-
tion from j = 1, 2, · · · , αN chosen similarly. The tensor
D1,2

I(K1),J (K2)
becomes 1 when its subscripts agree with

the positions of non-zero elements in the parity-check ma-
trices A1 and A2, and 0 otherwise. The tensor D3

J (K3)

similarly corresponds to A3. The first and second terms
in Hamiltonian (8) correspond to Eq.(6) while the third
and fourth terms are provided by the prior distribution
of the noise. The field F represents the channel noise
level; it is set to 1

2 ln(1 − p1)/p1 and 1
2 ln(1 − p2)/p2 for

the first and the second receivers, respectively.

In order to simplify the calculation, we first employ the

gauge transformation si → siξ
u
i , σj → σjξ

d
j , Ju

··· → 1

and Jd
··· → 1, which reduces complicated couplings ex-

pressed in the first and second terms in Hamiltonian (8)

to simple ferromagnetic interactions.

As the parity check matrices and noise vectors are
generated randomly, we have to perform averages over
these variables for extracting typical properties of the
code. This can be carried out by the replica method
−βF = 〈lnZ〉A,ξu,ξd = limn→0(1/n) ln〈Zn − 1〉A,ξu,ξd ,

where Z is the partition function and 〈· · · 〉A,ξu,ξd rep-
resents an average over the parity check matrix A and
the noise vectors ξu and ξd (i.e., the quenched variables).
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This gives rise to three sets of order parameters

q{a1,a2,··· ,am} =
1

N

(1−α)N
∑

i=1

Xis
a1

i . . . sam

i ,

r{a1,a2,··· ,am} =
1

N

αN
∑

j=1

Yjσ
a1

j . . . σam

j ,

t{a1,a2,··· ,am} =
1

N

αN
∑

j=1

Zjσ
a1

j . . . σam

j (9)

where a1, a2, · · · , am denote the replica indices run-
ning from 1 to n, and their conjugates q̂{a1,a2,··· ,am},

r̂{a1,a2,··· ,am}, t̂{a1,a2,··· ,am}. The variables Zj are intro-
duced to express the constraint of the parity-check matrix
A3 as

δ





∑

J (K3)\j

D3
J (K3)

− C3





=

∮

dZj

2π
Z

∑

J (K3)\j D3
J (K3)−(C3+1)

j . (10)

The variables Xi and Yj are similarly introduced for A2

and A3.

In order to proceed further, one has to make
an assumption about the symmetry of replica in-
dices. Here we employ the simplest replica sym-
metric (RS) ansatz, expressed in the current case
by q{a1,...,am} = q0

∫

dx π(x)xm, r{a1,...,am} =

r0

∫

dy ρ(y)ym, t{a1,...,am} = t0
∫

dz φ(z)zm, where q0,
r0 and r0 are the normalization constants to make π(x),
ρ(y) and φ(z) proper probability distributions over the
interval [−1, 1], respectively. Unspecified integrals are
performed over [−1, 1]. We also assume a similar ansatz
for the conjugate variables. A further complicated as-
sumption about the order parameter symmetry is gener-
ally required in most disordered systems [20, 21]. How-
ever, the validity of the RS ansatz in the current system
is strongly supported by a recent report on the absence of
the replica symmetry breaking in gauged systems where
Nishimori’s temperature is used [22]. The latter corre-
sponds to using the correct priors in decoding [23], as
performed in the current analysis.

Under these assumptions, one obtains the free-energy

F = (1 − R1 − R2) ln 2 − (1 − α − R1)

〈

ln

(

1 +

K1
∏

l=1

xl

K2
∏

l′=1

yl′

)〉

πK1 ,ρK2

− (α − R2)

〈

ln

(

1 +

K3
∏

l=1

zl

)〉

φK3

+ (1 − α)C1

〈

ln(1 + xx̂)
〉

π,π̂
+ αC2

〈

ln(1 + yŷ)
〉

ρ,ρ̂
+ αC3

〈

ln(1 + zẑ)
〉

φ,φ̂

+ (1 − α)

〈

ln

[

Tr
s

esξuF
C1
∏

l=1

(1 + sx̂l)

]〉

ξ,π̂C1

+ α

〈

ln

[

Tr
σ

eσξdF
C2
∏

l=1

(1 + σŷl)

C3
∏

l′=1

(1 + σẑl′)

]〉

ξ,ρ̂C2 ,φ̂C3

(11)

where 〈· · · 〉P K denotes an integral of the form
∫ ∏K

k=1 dxkP (xk)(· · · ) and 〈f(ξ)〉ξ = (1 − p)f(+1) +
pf(−1).

Varying Eq.(11), one obtains a set of saddle-point
equations,

π(x) =

〈

δ

(

x − tanh

[

C1−1
∑

l=1

tanh−1 x̂l + ξuF

])〉

ξ,π̂C1−1

,

ρ(y) =

〈

δ

(

y − tanh

[

C2−1
∑

l=1

tanh−1 ŷl

+

C3
∑

l′=1

tanh−1 ẑl′ + ξdF

])〉

ξ,ρ̂C2−1,φ̂C3

,

φ(z) =

〈

δ

(

z − tanh

[

C2
∑

l=1

tanh−1 ŷl

+

C3−1
∑

l′=1

tanh−1 ẑl′ + ξdF

])〉

ξ,ρ̂C2 ,φ̂C3−1

,
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π̂(x) =

〈

δ

(

x̂ −

K1−1
∏

l=1

xl

K2
∏

l′=1

yl′

)〉

πK1−1,ρK2

,

ρ̂(y) =

〈

δ

(

ŷ −

K1
∏

l=1

xl

K2−1
∏

l′=1

yl′

)〉

πK1 ,ρK2−1

,

φ̂(z) =

〈

δ

(

ẑ −

K3−1
∏

l=1

zl

)〉

φK3−1

(12)

The overlaps Mu = 1
(1−α)N

∑

i ŝiξ
u
i and Md =

1
αN

∑

j σ̂jξ
d
j serve as performance measures for the error-

correcting ability. After solving the saddle-point equa-
tions (12) these can be calculated as

Mu =

∫

dh hueff(h) sign(h), Md =

∫

dh hdeff(h) sign(h),

(13)
where distributions of effective fields heff(h) are evalu-
ated as

hueff(h) =

〈

δ

(

h − tanh

[

C1
∑

l=1

tanh−1 x̂l + ξF

])〉

ξ,π̂C1

hdeff(h) =

〈

δ

(

h − tanh

[

C2
∑

l=1

tanh−1 ŷl,

+

C3
∑

l′=1

tanh−1 ẑl′ + ξF

])〉

ξ,ρ̂C2 ,φ̂C3

. (14)

B. Microscopic analysis – practical decoding

As already mentioned, it is computationally hard to
perform MPM decoding (7) exactly. Instead, the be-
lief propagation (BP) algorithm [14] is widely used for
a practical decoding in LDPC codes. Belief propagation
has recently been shown to be equivalent to the Bethe
method [15, 16] in general and to provide the Thouless-
Anderson-Palmer (TAP) approach [17], in particular, for
spin glass models [18, 19]. Since the current system is
somewhat similar to spin glass models, we use a term
BP/TAP for referring to this scheme from now on.

The BP/TAP approach offers an iterative algorithm
to approximately evaluate marginal posterior distribu-
tions based on local dependencies between syndrome and
variables. These local dependencies can be uniquely
identified with conditional probabilities. In the current
system, these become: qn

µl = P (nl = n|{J\Jµ}) and

q̂n
µl ∝ P (Jµ|nl = n, {J\Jµ}) where nl and Jµ represent

components of spin variables s, σ and syndrome J , re-
spectively; {J\Jµ} denotes the set of syndrome bits ex-
cluding µ-th component. As most syndrome and spin
variables are not directly related, we assign the condi-
tional probabilities only to pairs µl that have non-zero
elements in the parity check matrix A.

Evaluating the two types of conditional probabilities
using directly connected components, the BP/TAP algo-
rithm can be generally expressed as

qn
µl = αµle

Fn
∏

ν∈M(l)\µ

q̂n
νl, (15)

q̂n
µl = α̂µl

∑

nj∈L(µ)\l

δ(Jµ; n
∏

j∈L(µ)\j

nj)
∏

j∈L(µ)\l

q
nj

µj , (16)

where M(l) and L(µ) denote the sets of syndrome and
spin variable indices that are directly linked to spin and
syndrome indices l and µ, respectively; M(l)\µ repre-
sents the set of indices ν ∈ M(l) excluding µ and simi-
larly for L(µ)\l and other sets. Normalization constants,
αµl and α̂µl, are introduced to make qn

µl and q̂n
µl proba-

bility distributions of spin variable n. A field F is intro-
duced to represent the prior probability.

Since spin variable n takes only two values ±1, it is
convenient to express the BP/TAP algorithm using spin
averages

∑

n=±1 nqn
µl and

∑

n=±1 nq̂n
µl rather than the

distributions qn
µl and q̂n

µl themselves. As the parity check
matrix A is structured, it may be useful to assign different
notation to the spin averages according to the submatrix
to which the pair of indices µl belongs to. We use xµl, yµl

and zµ to denote
∑

n=±1 nqn
µl when the pair of indices µl

belongs to A1, A2 and A3, respectively. Similar nota-
tions x̂µl,ŷµl and ẑµl are used for

∑

n=±1 nq̂n
µl. Then, the

BP/TAP algorithm (15) and (16), which is expressed as
a set of functional equations, is reduced to a couple of
nonlinear equations

xµl = tanh
[

∑

ν∈Acol
1 (l)\µ)

tanh−1 x̂νl + F
]

,

yµl = tanh
[

∑

ν∈Acol
2 (l)\µ

tanh−1 ŷνl +
∑

ν∈Acol
3 (l)

tanh−1 ẑνl + F
]

,

zµl = tanh
[

∑

ν∈Acol
2 (l)

tanh−1 ŷνl +
∑

ν∈Acol
3 (l)\µ

tanh−1 ẑνl + F
]

,

x̂µl = sign(Jµ)
∏

i∈Arow
1 (µ)\l

xµi

∏

j∈A
row(µ)
2

yµj ,

ŷµl = sign(Jµ)
∏

i∈Arow
1 (µ)

xµi

∏

j∈A
row(µ)
2 \l

yµj ,

ẑµl = sign(Jµ)
∏

j∈Arow
3 (µ)\l

zµj (17)

where Arow(µ) and Acol(l) denote the sets of non-zero
elements in the µ-th row and i-th column of matrix A,
respectively.

Eqs.(17) can be solved iteratively from appropriate ini-
tial conditions (prior means are usually chosen as initial
states). Less then 50 iterations are typically sufficient
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for convergence. After obtaining the solutions, approxi-
mated posterior means can be calculated

〈si〉 = tanh
[

∑

ν∈Acol
1 (i)

tanh−1 x̂νi + F
]

,

〈σj〉 = tanh
[

∑

ν∈Acol
2 (j)

tanh−1 ŷνj +
∑

ν∈Acol
3 (j)

tanh−1 ẑνj + F
]

,

(18)

which provides the MPM estimators ŝi = sign(〈si〉) and
σ̂j = sign(〈σj〉).

It can be shown that the BP/TAP framework provides
an exact result when the global structure of the connec-
tivities is graphically expressed by a tree [14]. Unfortu-
nately, it is still unclear how good are the approximations
obtained when a given system does not admit a tree ar-
chitecture.

The graphical architecture of LDPC codes generally
has many loops, which implies the BP/TAP framework
does not necessarily offer a good approximation. How-
ever, it is conjectured, and partially confirmed, that a
nearly exact result can be obtained, as long as no other
locally stable solutions exists, when the parity check ma-
trix A is randomly constructed and in the limit N → ∞;
this is due to the fact that the typical loop length scales
as O(ln N) for randomly constructed matrices, which im-
plies that LDPC codes can be locally treated as trees
ignoring the effect of loops [24].

Neglecting the effect of loops naturally leads to a
macroscopic description of the BP/TAP algorithm (17)
utilizing density functions of messages xµl, yµl, zµl, x̂µl,
ŷµl and ẑµl, which becomes identical to the simple itera-
tion of the saddle point equation (12) [24]. Surprisingly,
the celebrated method known as the density evolution
(DE) [13], recently discovered independently in the infor-
mation theory community, reduces exactly to the same
equation (12). As both of DE and the current analysis
reduce to an identical equation (12), the estimates pro-
vided by the two frameworks generally coincide for the
practical performance. However, as the concept of free
energy is missing from the DE framework, it does not
provide a way for evaluating the optimal performance,
for a given code; this is naturally characterised, in the
statistical physics framework by thermodynamical tran-
sitions between decoding success and failure phases.

V. RESULTS

In order to theoretically examine the typical perfor-
mance that can be obtained by the linearly combined
coding scheme, we solved the saddle point equations (12).
Since solving the equations analytically is generally dif-
ficult, we mainly resorted to numerical methods. The
solutions were obtained by iterating the saddle point
equations (12), and approximating the distributions by

O(104) sample vectors. Less then 50 iterations were typ-
ically sufficient for obtaining a solution.

Solving the equations for several parameter sets, as-
suming α > R2/(R1 + R2), we found that the solu-
tions can be classified into three categories depending
on whether overlaps Mu and Md are 1 or not. The
first one is referred to the ferromagnetic (F) solution
(Mu = Md = 1) corresponding to perfect retrieval for
both messages W1 and W2. The half-ferromagnetic (HF)
solution which is characterized by Mu 6= 1 and Md = 1
implies that only the second message W2 is perfectly re-
trieved, while W1 is not. The last category, termed para-
magnetic (P) solution, describes a decoding failure for
both messages being characterized by Mu 6= 1, Md 6= 1.
The ferromagnetic solution always exists and is locally
stable for C1 ≥ 3 and C3 ≥ 3, while one can find other
solutions only for relatively higher noise levels. As the
noise level increases, HF and P solutions emerge in this
order.

The HF solution may look counter-intuitive because
the corruption process for the second receiver is expressed
as Eq. (1), which seems as if the codeword were transmit-
ted to the second receiver in a relay scheme via the first
receiver and, therefore, retrieval of W2 would fail unless
W1 were correctly decoded. However, we must emphasize
here the following two points. Firstly, HF does not imply
that the first receiver fails in knowing W1 while the sec-
ond receiver correctly retrieves W2 but means only W2

can be retrieved from the corrupted codeword by a sin-
gle receiver given a corruption rate p. Therefore, even if
the situation of the second receiver is provided by HF,
the first receiver can retrieve W1 if his/her corruption
rate is so low that the situation corresponds to F. Sec-
ondly, it should be noticed that the current code based
on an upper triangular parity check matrix is designed
to provide a higher error correction ability for W2 as it
has to be transmitted to a farther place and relatively
more resource is assigned for W2 in construction of a
codeword X for α > R2/(R1 + R2), which makes it pos-
sible to produce the non-trivial solution HF. Therefore,
for α < R2/(R1 +R2), on other hand, we found only two
solutions: F and P, and HF does not exist as the assign-
ment of the resource for W2 in X is not sufficient in this
parameter region (Fig. 2).

The solution that has the lowest free energy among
the three becomes thermodynamically dominant. As the
noise level p becomes higher (or the field F becomes
weaker), the dominant state changes from F to HF and P
in this order. Since receivers are required to retrieve only
their own messages, the transition point between HF and
P corresponds to the maximum noise level for error free
communication in the second channel while maximum
noise level for the first channel is given by the transition
point between F and HF.

However, this does not imply a successful decoding up
to the critical points in practical time scales. Practical
perfect decoding by the BP/TAP algorithm is possible
only when no suboptimal solutions exist, which means
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p2

p1

F

HF

P

p2

p1

F

P

P

FIG. 2: Areas expressed by F,HF and P for a wireless de-
graded channel assuming that the noise corruption rate grows
proportional to a distance from a sender (broadcast station).
For α > R2/(R1 + R2) (left) , the area where W2 can be per-
fectly retrieved becomes larger than for α < R2/(R1 + R2)
(right) because of the existence of the HF solution.

that the practically achievable limit is given by the spin-
odal points of the HF and P solutions for the first and
the second channels respectively; i.e., the point where
new suboptimal solutions emerge. A similar phenomena
has been reported before for similar systems [10, 11].

Fig.3 shows the maximum noise levels for perfect de-
coding of the linearly combined coding method obtained
for C2 = 4 and 0 fixing C1 = C3 = 3; C2 = 0 corre-
sponds to the sharing scheme for which A2 = 0. One can
find that both optimal and practical performances of the
MPM decoder are improved by the introduction of the
additional submatrix A2, as anticipated, in spite of the
fact that the parameter C2(= 4) is not optimally tuned.
This result may induce the hope that Cover’s limit can
be saturated by optimally tuning the submatrices.

However, our analysis contradicts this conjecture.
Solving Eq.(12) in the limit C3 → ∞ and C1 or C2 → ∞
is feasible; it is known that the MPM decoder provides
the optimal performance in this limit while practical
BP/TAP decoding becomes difficult. The three solutions
correspond to those already mentioned before, but can be
analytically expressed as:

• F solution: Both messages are decodable(Mu =
Md = 1). The corresponding solutions and free
energy are






π(x) = δ(x − 1)
ρ(y) = δ(y − 1),
φ(z) = δ(z − 1)







π̂(x̂) = δ(x̂ − 1)
ρ̂(ŷ) = δ(ŷ − 1),

φ̂(ẑ) = δ(ẑ − 1)
(19)

F = −(1 − 2p)F.

• HF solution: Message W2 is only decodable(Mu 6=
1, Md = 1).







π(x) = 〈δ(x − tanh ξF )〉ξ
ρ(y) = δ(y − 1),
φ(z) = δ(z − 1)







π̂(x̂) = δ(x̂)
ρ̂(ŷ) = δ(ŷ),

φ̂(ẑ) = δ(ẑ − 1)
(20)

F = (1 − α − R1) ln 2 − (1 − 2p)F − (1 − α) ln 2H2(p).

0

0.05

0.1

0.15

0.2

0 0.02 0.04 0.06 0.08 0.1 0.12

Cover’s limit
Timesharing limit

p1

p
2

FIG. 3: Optimal and practical performance of the MPM de-
coder calculated by methods of statistical mechanics for differ-
ent α values. For the first channel, the optimal performance
is given by the thermodynamical transition between F and
HF solutions while the transition between HF and P solu-
tions marks the optimal performance for the second channel.
On the other hand, the practical performance is given by the
spinodal points of the HF and P solutions for the first and the
second channels, respectively. Monte Carlo solutions based
on 104 sample vectors were employed for solving the saddle-
point equation (12). The standard deviation values resulting
from 10 trials are smaller than the symbol size. The black
squares and the black circles denote the optimal and the prac-
tical performances for the linearly combined coding scheme,
where code parameters are set to C1 = C3 = 3, C2 = 4,
R1 = R2 = 1/4. Diamond symbols denote the maximum
noise levels for decoding success by the BP/TAP algorithm,
determined from 50 experiments. The error bars are smaller
than the symbols. Broken lines denote the optimal and practi-
cal performances of the timesharing for corresponding LDPC
codes. The two lines in the upper right are Cover’s and time-
sharing capacities calculated in the information theory.

• P solution: Both messages are not decodable(Mu 6=
1, Md 6= 1).







π(x) = 〈δ(x − tanh ξF )〉ξ
ρ(y) = 〈δ(y − tanh ξF )〉ξ,
φ(z) = 〈δ(z − tanh ξF )〉ξ







π̂(x̂) = δ(x̂)
ρ̂(ŷ) = δ(ŷ),

φ̂(ẑ) = δ(ẑ)
(21)

F = (1 − R1 − R2) ln 2 − (1 − 2p)F − ln 2H2(p).

Examining the critical condition for decoding success
in each channel, and comparing the free energy of the
solutions, one obtains the capacity region of the linearly
combined coding scheme

{

R2 < α[1 − H(p2)]
R1 < (1 − α)[1 − H(p1)].

(22)

This is, unfortunately, identical to the timesharing ca-
pacity which can be achieved by a simple concatenation
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of two independent codes. This result implies that the
advantage of the linearly combined coding scheme van-
ishes as the submatrices become dense and this method
cannot saturate Cover’s limit.

VI. SUMMARY AND CONCLUSION

In this paper, we have examined the performance of
linearly combined LDPC codes, for information trans-
mission in a broadcast channel. Our analysis shows that
the capacity of the suggested coding scheme is upper-
bounded by the timesharing capacity, in spite of the ap-
parent improvement in both optimal and practical per-
formance with respect to LDPC based timesharing codes
characterized by finite connectivity values.

The reason for the failure of linearly combined LDPC
codes to saturate Cover’s limit may be explained by the
codeword structure produced by this scheme. In his
proof, Cover optimized the code performance by intro-
ducing a specific structure termed the cloud coding, em-
ploying an auxiliary random variable U as in Eq.(2). In
cloud coding, a codeword X is randomly generated ac-
cording to P (X|U) around a cloud center U sampled from
P (U). Knowing this structure, one can use the cloud cen-
ter U and the coset Xc = X − U for encoding W2 and
W1, respectively.

In the case of binary symmetric channels, the optimal
cloud center U can be obtained by sampling N bit unbi-
ased vectors for which the entropy per bit can be max-
imized to 1. On the other hand, one can produce the
optimal coset Xc by independently and randomly gener-
ating each bit using a uniform bias 0 < δ < 1, which
provides an entropy H2(δ) per bit.

In an ideal situation, a noise vector ξ1 which is biased
with a flip probability p1 is added to the coset Xc in the
first channel. This implies that the entropy of the re-
ceived coset becomes H2(δ ∗p1) per bit while the entropy
of the noise vector is H2(p1) per bit. Since one can use
the difference between the entropies to convey the infor-
mation of W1, the capacity of the first channel becomes
R1 < H2(δ ∗ p1) − H2(p1), which is the second inequal-
ity of Eq.(2). On the other hand, for the second channel,
characterized by a flip rate p2, the coset Xc together with

a channel noise ξ2 serves as a single noise vector for which
the entropy becomes H2(δ ∗ p2) per bit. As the entropy
of the received cloud center can be maximized to 1 per
bit, this means that the capacity of the second channel is
given by R2 < 1−H2(δ ∗p2), which is the first inequality
of Eq.(2).

In linearly combined coding scheme (
GT

2

GT
3

)W2 +

(GT
1
0 )W1, (

GT
2

GT
3
)W2 becomes almost random, which may

serve as the optimal cloud center. However, the second

part (GT
1
0 )W1, that corresponds to the coset, is somewhat

structured, differing from the optimal choice of uniformly
biased random vectors.

In order to compare the structured coset with the op-
timal one, let us fix the maximum entropy per bit of

(GT
1
0 )W1, which equals 1 − α, to that of the optimal

coset H2(δ). Then, one can show that the entropy of
the corrupted coset with flip probability p per bit al-
ways increases from H2(p ∗ δ) to (1 − α) + αH2(p) =
H2(δ) + H2(p) ≥ H2(p ∗ δ). This means that the critical
rate of the first channel increases from H2(δ∗p1)−H2(p1)
to (1 − α) [1 − H2(p1)] while that of the second channel
reduces from 1 − H2(p2) to α [1 − H2(p2)]. This trade-
off between the capacities of the two channels limits the
performance of linearly combined coding scheme to the
timesharing limit, that is always within Cover’s capacity
region.

In conclusion, while the suggested linearly combined
LDPC coding scheme provides an improved performance
over LDPC based timesharing codes for finite connectiv-
ity constructions, in both theoretical and practical limits,
it cannot go beyond the theoretical timesharing limit; for
that to happen, different coding schemes should be ex-
amined.
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