

Abstract
An obvious assumption underpinning the immense interest
in service-oriented computing is that it is an inherently
Good Thing, by which we mean that robust processes and
tools for developing service-based systems will bring
benefits for service providers and service consumers. The
arguments, in terms of consumer choice and flexibility, are
certainly quite convincing. However, in this position
paper, we question the nature of the underlying
assumption, in a world where requirements are as many
and varied as potential users and ask if safeguards are
needed to ensure that diversity of provision is maintained.

Keywords: Services, SOC, market, provision.

1. Introduction
Service-centric computing (SOC) is the focus of a great
deal of interest. Service technologies offer an excellent
abstraction of software systems in business domains,
allowing business terminology and processes to drive
system modelling and design. In other words, businesses
provide services to their customers, and service-based
systems help them achieve that. However, adoption of the
service ethos, particularly the notions of the service
marketplace and the consumption of 3rd party service,
require a major change in expectations from those that
have pervaded software engineering thus far. The
consumption of externally provided services assumes that
consumers will be able to satisfy their requirements using
available services, rather than by specifying their
requirements and having systems built to satisfy them. As
SOC is relatively immature and a good deal of attention is
paid to the development of services themselves, this
assumption is easy to overlook, but many of the proposed
benefits of SOC assume the 3rd party provision model, and
therefore inherently make this assumption. This paper asks
if this assumption is valid, given that individual users, or
consumers, have an infinite variety of requirements and
that “taking what is on offer” is merely a pragmatic
compromise when no alternative exists.

The paper is organised as follows: section 2 considers
the nature of and benefits of off-the-shelf (OTS) services;
section 3 considers the dual nature of standardization and

section 4 provides a few concluding remarks.

2. The Nature of and Benefits of OTS
Services

Whilst not wishing to get embroiled in a service definition
loop, it is important to recognise that SOC is dependent on
services being of a certain type. Certainly there are
technological standards, but services assume a likelihood
that certain types of features will be present [9]. However,
Szyperski [6] makes an interesting observation that
services are not software at all, and explains: “What
delivers the service is the software executed by some
abstract machine (platform, operating system, virtual
machine, …) that, in the end, is grounded in a physical
machine. … The entire tower of abstractions, right down
to the physical machine, still doesn't deliver a service. It
needs to be paired with some operating agent (in the end, a
person) to embed the machine into an infrastructure
(power and Internet grid, physical enclosure in some
building, physical security and so on) and run it.” He
summarises, “A software service is the pairing of an
operating agent and infrastructure with the software itself,
implementing the service functionality and offering it
through some interface.”

So, in establishing three enabling components necessary
to deliver some service functionality via some interface,
which is itself a working definition of a service (i.e.
operating agent, infrastructure, and software), Szyperski
reminds us that services are dependent upon system
elements against which potential service consumers cannot
express their requirements. In essence, this should be the
very thing that makes the service abstraction so attractive
to businesses, a complete avoidance of concern about how
a service is delivered, so long as it is the right service.
Consider the main benefits of successful component-based
development that Clements [2] describes:
• Reduced development time – the time to buy a ready-

built component is less than that required to design,
code, test and document it – “assuming that the
search for a suitable component does not consume
inordinate time” [2] (emphasis added);

• Increased reliability of systems – a component used

Is a Dominant Service-Centric Sector Good for Diversity of
Provision?

John Hutchinson, Pete Sawyer, James Walkerdine
Computing Department, Lancaster University, Lancaster LA1 4YR, UK

{hutchinj, sawyer, walks}@comp.lancs.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by many people should be subject to considerably
more user-testing than one that is custom developed;

• Increased flexibility – if approached properly, the use
of bought-in components should bring with it software
designed to exploit any suitable component, meaning
that users can change component supplier to take
advantage of better or better priced products.

Although Clements is overtly concerned with
components, it is obvious that these benefits should also
be associated with OTS services. This excellent summary
highlights the business and technical nature of the
benefits: systems should be delivered faster, work better
and be more flexible than custom-built software.

However, to achieve these benefits requires that the
services should be standardized: a high degree of
variability in what is offered threatens to make the
selection process too time consuming; if the range or
services available is large, then the user base for each will
correspondingly shrink and finally, if services are to be
truly interchangeable, they must be almost identical in the
way they are delivered.

Do these assumptions really promise to deliver the rich
diversity of functionality required by end users?

Clements also considers the risks associated with a shift
to using software components. (Here, we define risk as
exposure to the possibility of delay, of economic or
financial loss or gain (or even of physical damage or
injury) as a consequence of the uncertainty associated with
using particular components (adapted from [3])). Again,
we can consider these relevant to SOC:
• Supplier risk – Purchasing and using a third party

component entails “buying into” the company
supplying it. Carney [1] stresses that vendor concerns
should play as important a role in component
selection as component functionality; thus, issues such
as the “business obligations” and “financial
condition” of the vendor must be considered as a way
of addressing supplier risk;

• Obsolescence risk – Components are supported
according to the business strategy of the developer
and/or supplier. A selected component that is integral
to a working system may therefore become obsolete
because of, ostensibly, unrelated shifts in the
supplier’s business. Again, Carney [1] suggests that
the risk of obsolescence can only be addressed by
assuming and preparing for continuous upgrade;

• Performance risk – The function of a third party
component may not be fully testable until after a
decision to use it is taken and then may not perform as
expected in unintended contexts of use.

The first two of these risks apply further pressure on
consumers’ requirements to coalesce around a smaller set

of standardized offerings because the business risks
associated with failure are too great. Innovative offerings
from new providers are immediately disadvantaged
because they cannot provide the necessary assurances of
the provider’s “business concerns”. (This is something
akin to the old phrase “nobody ever got fired buying
IBM…”.) The third risk is expressed in a way that makes
is inapplicable to SOC, but there is a similar risk with
using 3rd party services. In a service market place, the
“provider of choice” may choose not to offer the
performance or other quality of service (QoS) required by
a potential consumer, which again forces users to accept
what is on offer rather than necessarily leading to an
abundance of choice.

3. Standardization: Creative Constraint or
Lowest Common Denominator?

If we accept that the benefits of service consumption
within SOC are likely to lead to a standardization of the
services on offer, is this a Good Thing? There are good
examples of standardization, whilst naturally resulting in
the demise of alternative approaches, being generally
beneficial. A potentially controversial example was the
emergence of the standard PC architecture on the back of
IBM’s dominance. Other PC architectures quickly became
specialist niche products whilst the IBM model became
the architecture of choice. This is a little controversial
because there are no doubt many who would argue that the
loss of diversity had a negative impact on computer
development. However, this argument is immaterial to the
majority of PC users who have no interest in the technical
merits of alternative approaches. Thus, this standardization
could be considered a “creative constraint” (for a lyrical
discussion of the creative force of constraint, see
Hofstadter [5]) leaving competing component
manufacturers to develop products that would give them
business advantage, and leading to an evolution of the
standards resulting in an increase in capability.

Taking this as a metaphor for the development of SOC,
the future is very optimistic. After an initial “survival of
the fittest” scramble, we can expect domains to establish
their standardized architectures, which will act as a
framework for providers to compete to offer the
functionality required by users. In this model, the pain and
risk associated with evolutionary change should go hand-
in-hand with readily perceivable benefits to consumers.

There is, though, an alternative scenario. The UK high
street illustrates just such an alternative with concerns over
the dominance of the major supermarkets [7] forcing
smaller retailers out of business. Another, more subtle
example comes from the plight of rural Post Offices [4]. In
these examples, the range of “user requirements” is

reduced to the right of an agile majority to have access to
the lowest price for the most commonly required services.
Those with requirements for alternative, perhaps niche,
services – and here we are particularly concerned with
accessibility - are forced to consider their needs “premium
rate” or simply of no interest to the large suppliers.

This is a more complex metaphor to apply to SOC.
Internet delivered services are not restricted to
geographical locations in the way that high street shops or
rural Post Offices are. In this respect, this is a reason to
champion such provision. However, diversity is still an
issue, as is the effect of its provision: local grocery stores
are able to choose suppliers for whom it is not viable to
supply national chains. When it comes to attempting to
meet some of the more niche requirements (again, we are
talking about accessibility), the cost overheads of
supplying high street facilities in the UK do affect the
major providers [6]. But still, the effect is to limit
diversity, because even these increased costs, ultimately a
recognition of the overheads associated with minority
provision, are set within a context of much wider business
goals. In other words, limited provision in one context
might be reasonable for a major service provider, even if it
is done with limited business success and at increased cost
to the consumers, if it helps to limit the ability of other
providers more generally.

Questions about the business practices of companies
that achieve, or aspire to, global dominance are not new,
think for example IBM [10], Microsoft [11] and Wal-Mart
[12].

Further applying this model to SOC is less optimistic.
Here, the requirements of end users are of interest only to
the extent of the “lowest common denominator”. There is
no interest to satisfy the requirements of all users, or even
most users. Service suppliers will supply only those
services that deliver the greatest profit for the least effort.
Of course, there will exist a market for services that are
“premium”, but a huge gap will emerge between the
services that are available to all and those that are
available to only premium rate consumers.

4. Conclusions

Of course, the “conclusion” of this position paper is less a
conclusion and more a question: is the move to globally
accessible web-based services beneficial to the provision
of a wide range of services that are capable of meeting the
infinitely variable requirements of disparate secondary
service providers and end users? In some ways, this is like
asking if the “market economy” is a Good Thing.

We do not argue that services, 3rd party provision or a
service marketplace are inherently bad. Instead, we
suggest that the desire to attain the benefits that services so

enticingly offer and avoid, as far as possible, the risks
associated with OTS service consumption is likely to lead
to more and more standardization, and fewer, more
dominant, providers, who will dictate the types of services
offered, and the terms on which they are made available.
Ultimately, the resulting hegemony will leave the majority
of service consumers will little power to affect the services
available.

We further suggest that this issue should be of concern
to practitioners of SOC. Over-engineering solutions now
on the basis that they may be required in the future is, in
itself, not a solution. And it is unlikely that the answer lies
in the type of “religious war” that has pervaded topics in
technology in recent years. However, choices made now
will affect how SOC develops and will determine if
flexibility if considered as highly as cost. It just remains to
be asked: will the majority of service consumers care?

Acknowledgements

This work is funded by EU Integrated Project 511680 –
Service Centric System Engineering (SeCSE).

References

[1] Carney, DJ, (1998), Quotations from Chairman David. Pittsburgh:
Carnegie Mellon University, 1998.

[2] Clements, PC, (2001), “From Subroutines to Subsystems:
Component-Based Software Development.” In Councill, WT,
Heineman, GT, (eds.): Component-Based Software Engineering:
Putting the Pieces Together. Addison Wesley, 2001.

[3] Gregory, G, “Decision Analysis”, Pitman Publishing, 1988.
[4] Help the Aged: “Post Offices”: http://www.helptheaged.org.uk/en-

gb/Campaigns/OtherIssues/PostOffice/ (15/6/06).
[5] Hofstadter, D, (1997), “Le Ton Beau de Marot”, Basic Books.
[6] Szyperski, C.,(2001), “Components and Web Services”,

sdmagazine.com, August 2001: (A) Szyperski, C., “Components
and Web Services”, sdmagazine.com, August 2001:
http://www.sdmagazine.com/documents/s=7208/sdm0108c/

[7] Times Online: “Big supermarkets face competition probe”:
http://business.timesonline.co.uk/article/0,,9074-2077540,00.html
(9/3/06).

[8] ThisIsMoney: “Tesco's local rate mark-up”:
http://www.thisismoney.co.uk/money-
savers/article.html?in_article_id=403818&in_page_id=5

[9] Brown, A., Johnston, S., Kelly, K.,(2002), "Using Service-Oriented
Architecture and Component-Based Development to Build Web
Service Applications", October 2002:
http://www.rational.com/media/whitepapers/TP032.pdf.

[10] Wikipedia.org: IBM: http://en.wikipedia.org/wiki/IBM
[11] Wikipedia.org: Microsoft: http://en.wikipedia.org/wiki/Microsoft
[12] Wikipedia.org: Wal-Mart: http://en.wikipedia.org/wiki/Walmart

