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Nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise

Amit Kr. Chattopadhyay*
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~Received 10 February 1999!

The effects of spatially correlated noise on a phenomenological equation equivalent to a nonlocal version of
the Kardar-Parisi-Zhang~KPZ! equation are studied via the dynamic renormalization group~DRG! techniques.
The correlated noise coupled with the long ranged nature of interactions prove the existence of different phases
in different regimes, giving rise to a range of roughness exponents defined by their corresponding critical
dimensions. Finally self-consistent mode analysis is employed to compare the non-KPZ exponents obtained as
a result of the long-range interactions with the DRG results.@S1063-651X~99!11507-1#

PACS number~s!: 05.40.2a, 05.70.Ln, 64.60.Ht, 68.35.Fx
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Interest in nonequilibrium growth mechanisms in the fo
mation of surfaces and interfaces, the description of direc
polymers, bacterial growth, etc., and, recently, the prot
folding problems, although they are apparently the repres
tations of different physical processes, have all been en
sulated in one single nonlinear continuum equation,
much celebrated Kardar-Parisi-Zhang~KPZ! equation @1#.
The notion of universality classes, defined by this stand
KPZ equation@1#, suggests the existence of a phase tran
tion from the Edwards-Wilkinson~EW! class@2# to the non-
linear KPZ class above a particular critical dimensiond
.2). However, although this stochastic equation has,
now, become a model of dynamic critical phenomena fo
vast range of growth problems, the fact remains that the
sic nonlinearity studied here is of a local nature; that is
say, the growth occurs along a continuously varying lo
normal.

Incorporating the long-ranged nature of interactio
which is necessary for a wide class of problems, eg.,
long-ranged hydrodynamic interactions, proteins, colloi
etc., Mukherji and Bhattacharjee@3# developed a Langevin
type equation studying the effects of the long-rangedCLR
feature of an evolving surface, going beyond the local
scription of the KPZ nonlinearity for the case of white nois
There the approach essentially consisted of introducin
term in the basic Langevin equation capable of correlat
each site of the growing surface with all other sites. T
objective was the transformation of the local nonlinear te
representing the lateral growth beyond the strict local
scription, such that the correlation length now becomes
least the system size. Still, the effects of the interaction
correlated colored noise with the KPZ or KPZ-type nonl
earity remain to be seen.

The results of nonwhite noise for the growth of rou
interface has been generalized by Medinaet al. @4#. In two
remarkable papers, Chekhlov and Yakhot@5,6#, and Hayot
and Jayaprakash@7# have observed the effects of correlat
noise for the one-dimensional Burgers equation. They
plored the occurence of shocks as well as the large dista
long time statistics of the fluctuations. Working along th
line Frey, Tauber, and Janssen@8# have also resorted to th
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long-ranged description of noise in their treatment of t
scaling regimes and critical dimensions in the standard K
problem, as well as in the conserved case@9#. Actually, in all
of these cases, the nature of the noise is determined from
fact that to maintain turbulence in the flow, energy has to
supplied at large length scales near the boundaries, and
consequent Kolmogorov-type dimensional argument bri
about a spatial dependence in the noise correlation.

Starting with the nonlocal equation proposed in@3#, we
have gone one step further in putting forth the effects o
nonwhite spatially correlated noise akin to that used in@4#,
the objective being the analysis of special features of
interaction of the long-ranged nature of KPZ-type nonline
ity with the long-ranged spatial correlation in noise. This, w
hope, will be a justified step in explaining the effects arisi
from the nonlocal nature of the flow field, which has be
observed in certain growth models with quenched no
@10,11#, where convincing evidence has been found t
shows that the power-law noise goes along naturally wit
certain class of quenched noise models@12#. Somewhat simi-
lar explanations have been put forward by Xin-Ya Lei,et al.
@13# in explaining the crossover phenomenon occuring in
fluid flow experiments of Rubioet al. @14#.

In the following analysis, use is made of dynamic reno
malization group~DRG! techniques in arriving at the dy
namic exponents, etc. We see that, even ford,dc , both
weak and strong noise interacting with both the local a
nonlocal natures of the nonlinearity give a range of critic
exponents spanning a four-dimensional space in terms o
dimensionless interaction strengths. Finally, we reconfi
our DRG results from the self-consistent mode power cou
ing arguments in the line developed in@15,16#.

The starting point of our analysis is the equation

]h~rW,t !

]t
5n ¹2h~rW,t !1

1

2 E drW8v~rW8!¹W h~rW1rW8,t !,

¹W h~rW2rW8,t !1h~rW,t !, ~1!

where n is the diffusion constant andh(rW,t) is the noise
defined by

^h~kW ,v!h~kW8,v8!&52D~kW ! dd~kW1kW8!d~v1v8!. ~2!
293 ©1999 The American Physical Society
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Again, going by the prescription of@3#, the kernelv(rW)
has a short-ranged partl0dd(rW) and a long-ranged partr r2d.
In Fourier space,

v~kW !5l01lrk2r. ~3!

All standard KPZ results are expected forlr50. But the
nontrivial lrÞ0 is the part that we are interested in.

The two exponents of interest, the roughness exponea
and the dynamic exponentz, go along with the two-point

height correlation function in the hydrodynamic limit (kW ,v)
→0,

^h~kW ,v!h~kW8,v8!&;ukW uz2d22add~kW1kW8!d~v1v8!

3 f S v

ukW uzD . ~4!

All information regarding the dynamic universality cla
of the phase will be contained in thisa andz.

At d51, the values ofa(5 1
2 ) andz(5 3

2 ) can be exactly
determined. But atd52, there is a transition from the Gaus
ian fixed point~EW!, and the nonlinearity grows under re
scaling. Simple scaling fromxW→bxW , h→bah, and t→bzt
shows that both the shortCSR and long-rangedCLR contri-
butions in the interaction kernel are relevant ford,2 ~where
by CSR interaction we mean the standard KPZ-type nonl
earity, and theCLR interaction implies a non-KPZ typerW
dependent part!. Under this scale transformation the para
eters of the equation change byn→bz22n,l0

→ba1z22l0 ,lr→ba1z1r22lr . If the noise strengthD(kW )

in the hydrodynamic limit (kW ,v→0) is given byD(kW )5D0
1Dsk22s, then D0→b2d22a1zD0 and Ds

→b24s2d22a1zDs . For 2,d,dc5212r24s, lr is rel-
evant at the EW fixed point (z52) and, forr.0, a non-
KPZ fixed spectrum should be the outcome. The followi
DRG analysis gives a horizon of unfounded results t
shrink to the known results ind51 and 2 as in@3# for
s50 and, furthermore, the introduction of the nonloc
noise provides even more complexity in the interaction.

Due to the Galilean invariance of Eq.~1!, l0 is not renor-
malized. Since the RG transformation is analytic in natu
lr is also not renormalized; only the Galilean identity
modified in this case (22r instead of 2!,

a1z522r, ~5!

wherer50 for l0 flow. From the above considerations, w
get the following flow equations forn, D ’s, andl ’s,

dn

dl
5n Fz222Kd

D~1!v~2!v~1!

n3

d221 f ~1!13g~1!

4d G ,

~6!

dD~k!

dl
5D~k!@z22a2d2 f ~k!#1Kd

D2~1!

4n3
v2~2!,

~7!
-

-

t

l

,

dlx

dl
5lx @a1z221x#, ~8!

where x50 or r, respectively. Here f (q)
5@] lnD(k)#/] lnkuk5q and g(q)5@] lnv(k)#/] lnkuk5q ,
Kd5Sd /(2p)d, whereSd represents thed-dimensional sur-
face of a unitd11-dimensional sphere.

In terms of the dimensionless interaction strengthsU0,s
2

5Kd(l0
2Ds) /n3, where short-ranged interaction coupl

with long-ranged noise~the Medinaet al. zone!, and similar
other parametersUr,s

2 5Kd(lr
2Ds)/n3, U0,0

2 5Kd(l0
2D0)/

n3 ~ordinary KPZ case!, Ur,0
2 5Kd(lr

2D0)/n3 ~the SM and
SMB zone!, the flow equations can be combined to give

dU0,s

dl
5F22d12s

2 GU0,s13Fd2222s

8d GU0,s
3 1

U0,s

8d

3@3~d22!U0,0
2 13.22r~d2223r!Ur,0

2

13~1122r!~d22!U0,0Ur,013.22r

3~d2222s23r!Ur,s
2 13~1122r!

3~d2222s!U0,sUr,s#, ~9!

dUr,s

dl
5F22d12s12r

2 GUr,s13.22rFd2222s23r

8d G
3Ur,s

3 1
Ur,s

8d
@3~d22!U0,0

2 13.22r

3~d2223r!Ur,0
2 13~1122r!~d22!U0,0Ur,0

13~d2222s!U0,s
2 13~1122r!

3~d2222s!U0,sUr,s#, ~10!

dU0,0

dl
5F22d

2 GU0,01F2d23

4d GU0,0
3 1

U0,0

8d
@22r$~3122r!d

2629r%Ur,0
2 1$3~1122r!~d22!1d.22r11%

3U0,0Ur,013~d2222s!U0,s
2 13.22r

3~d2222s23r!Ur,s
2 13~1122r!

3~d2222s!U0,sUr,s#, ~11!

dUr,0

dl
5F22d12r

2 GUr,01F ~3122r!d2629r

8d GUr,0
3

1
Ur,0

8d
@~4d26!U0,0

2

1$3~1122r!~d22!1d.22r11%

3U0,0Ur,013~d2222s!U0,s
2

13.22r~d2222s23r!Ur,s
2 13~1122r!

3~d2222s!U0,sUr,s#. ~12!



n

ar

le

r

l to

is

r-

be
no

PRE 60 295NONLOCAL KARDAR-PARISI-ZHANG EQUATION WITH . . .
Now let us define two sets of parameters:R0
5U0,0/Ur,0 , Rs5U0,s /Ur,s and S05U0,0/U0,s , Sr

5Ur,0 /Ur,s .
We see thatdRy /dl52rRy , wherey50, s and conse-

quently, this rules out any off-axial fixed point in theR0 , Rs

parameter space~except for the trivials50 case!.
In the U0,0, Ur,0 plane, the axial fixed points are give

by

CSR2NSR[U* 2
r,050,

U* 2
0,05

2d~d22!

2d23
,

a1z52, ~13!

CLR2NSR[U0,0*
2
50,

Ur,0*
2
5

4~d2222r!

22r$~3122r!d2629r%
,

a1z522r, ~14!

whereNSR andNLR represent the short- and long-ranged p
in the noise spectrum, respectively. The first set (CSR
2NSR) gives the well-known KPZ fixed point withz
53/2, a51/2 for d51. But the second set (CLR2NSR)
gives the non-KPZ behavior and the results exactly match@3#
in this U0,0, Ur,0 plane:

zuU
0,0*

2
50521

~d2222r!~d2223r!

@~3122r!2629r#
,

~15!

auU
0,0*

2
5052r2

~d2222r!~d2223r!

@~3122r!2629r#
.

In diagramB of Fig. 1, the dotted line gives an unstab
zone betweend5(9r16)/(3122r) to d5212r. Above
the critical dimension, diagramC shows a smooth phase. Fo
r50, all of theCLR fixed points go over to theCSR ones.

In the U0,s , Ur,s plane defined byRs , there also are
only two sets of axial fixed points:

CSR2NLR[ Ur,s*
2

50, U0,s*
2
5

4d

3
, ~16!

CLR2NLR[ U0,s*
2
50,Ur,s*

2
5

4d~22d12s12r!

3.22r~212s13r2d!
.

~17!

FIG. 1. lr vs l0 phase diagram. The solid lines alongx axis
representCLR phases, while the dotted line inB shows a smooth
phase.
t

In this case, the phase diagrams are exactly identica
Fig. 1, only the critical dimension is now modified todc
5212r24s and the unstable zone now lies betweend
5212s12r andd5212s13r in this plane:

zuU
0,s*

2
505

1

3
~41d22s22r!,

~18!

auU
0,s*

2
5052r1

1

3
~22d12s12r!.

However, a completely different qualitative behavior
observed withS0 and Ss . The S0 flow equation reads
dS0 /dl5S0(2s1 1

8 U0,0
2 1222rUr,0

2 122r/4U0,0Ur,0 and, as
such, off-axial fixed points exist in this case for the fou
dimensional space ofU ’s. But in theU0,0, U0,s plane, we
get only axial fixed points where nowU0,0, Ur,05const.
Here the axial fixed points are

CSR2NSR[U0,s*
2
50, U0,0*

2
5

2d~d22!

2d23
, ~19!

CSR2NLR[U0,0*
2
50, U0,s*

2
5

4d

3
. ~20!

This gives

zuU
0,0*

2
505

1

3
~d1422s!,

~21!

auU
0,0*

2
505

1

3
~22d22s!.

The results exactly match the Medinaet al. predictions,
and the phase diagram is given by Fig. 2,X and Y are the
axial and off-axial fixed points, respectively. The point to
noted here is that, unlike the previous two cases, there is
unstable excluded region in the non-KPZ case.

Although similar arguments as above apply for theSr
flow, the most spectacular results are seen in theUr,0 , Ur,s
plane where the fixed points are given by

CLR2NSR[Ur,s*
2

50,

Ur,0*
2
5

4d~22d12r!

22r@619r2~3122r!#
, ~22!

CLR2NLR[Ur,0*
2
50,

Ur,s*
2

5
4d~22d12s12r!

3.22r~212s13r2d!
. ~23!

FIG. 2. D0 vs Ds flow in theU0,0 vs U0,s plane.X andY are the
axial and off-axial fixed points, respectively.
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Here for both the sets we have unstable regions boun
by 212r.d.(619r)/(3122r) (CLR2NSR) and 212s
12r,d,212s13r for r,s.0 (CLR2NLR). Also, both
of these fixed points give non-KPZ results:

zuU
r,0*

2
505

1

3
~d1422s22r! ~24!

and

zuU
r,s*

2
50521

~d2222r!~d2223r!

~3122r!d2629r
~25!

and, as such, the phase diagram inl0 , lr , D0 , Ds is ac-
tually on a four-dimensional space with both axial and no
axial fixed points.

Now use is made of self-consistent mode analysis~exact
in the spherical limit! to generate the non-KPZ exponents
this complex space, where both of theNSR2NLR noises are
interacting with theCSR2CLR nonlinearity.

Starting with the Dyson equation, given byG21(kW ,v)5

2 iv1nk21S(kW ,v), whereS(kW ,v) is the self-energy term
and following exactly the scheme adapted in@15# ~with the

same scaling ansatz forS(kW ,v) and D(kW ,v)!, in the limit

v→0, takingD(kW ,0)5Ds k22s andv(kW )5lr k2r, simple
power counting gives

z5
1

3
~d1422s22r!,

a52r1
1

3
~22d12s12r!. ~26!

These values ofz anda are seen to tally very well with
our DRG derivations in theU0,0, Ur,0 , U0,s , Ur,s space
e

in
ed

-

where, in either of the two planes, the non-KPZ values
incide with Eq.~24!. However, theUr,0 , Ur,s plane is spe-
cial in that it provides two axial non-KPZ values, only one
which appears in the self-consistent results. The other va
is actually an offshoot of@3# where the relevantCLR nonlin-
earity is interacting with theNSR part of the noise, where
both the non-KPZ values ofz ~and a) exist, although no
rough-rough phase transition apparently takes place.

In summary, we have started with a simple phenome
logical equation, which incorporates a nonlocal term in
interaction spectrum and, while coupling with spatially co
related noise, develops a set of dynamic and growth ex
nents, which contain a non-KPZ part. As theCSR part in the
spectrum becomes unstable, these non-KPZ domains sur
and a completely different critical behavior comes into ex
tence. With negative values for the long- and short-rang
nonlinearities, the phase diagrams are modified, with theCLR
roughness now giving way toCSR roughness without the
appearance of any excluded instability in the phases.
only exception appears in the case of the special plane
ready discussed. Also, it would be worthwhile to menti
that although the nonlocal contribution in the nonlinear
never generates its short-ranged counterpart, the nonl
part in the noise spectrum develops a white noise. We rec
firm all of these DRG observations from a self-consiste
technique and arrive at the same set of non-KPZ expon
when the noise strength remains nonrenormalized. Fina
comparisons with established results@3,4#, which constitute
only parts of our whole domain, provide expected results
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