14,171 research outputs found

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Extreme events in discrete nonlinear lattices

    Full text link
    We perform statistical analysis on discrete nonlinear waves generated though modulational instability in the context of the Salerno model that interpolates between the intergable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schrodinger (DNLS) equation. We focus on extreme events in the form of discrete rogue or freak waves that may arise as a result of rapid coalescence of discrete breathers or other nonlinear interaction processes. We find power law dependence in the wave amplitude distribution accompanied by an enhanced probability for freak events close to the integrable limit of the equation. A characteristic peak in the extreme event probability appears that is attributed to the onset of interaction of the discrete solitons of the AL equation and the accompanied transition from the local to the global stochasticity monitored through the positive Lyapunov exponent of a nonlinear map.Comment: 5 pages, 4 figures; reference added, figure 2 correcte

    Dynamic polarization of graphene by moving external charges: random phase approximation

    Full text link
    We evaluate the stopping and image forces on a charged particle moving parallel to a doped sheet of graphene by using the dielectric response formalism for graphene's π\pi-electron bands in the random phase approximation (RPA). The forces are presented as functions of the particle speed and the particle distance for a broad range of charge-carrier densities in graphene. A detailed comparison with the results from a kinetic equation model reveal the importance of inter-band single-particle excitations in the RPA model for high particle speeds. We also consider the effects of a finite gap between graphene and a supporting substrate, as well as the effects of a finite damping rate that is included through the use of Mermin's procedure. The damping rate is estimated from a tentative comparison of the Mermin loss function with a HREELS experiment. In the limit of low particle speeds, several analytical results are obtained for the friction coefficient that show an intricate relationship between the charge-carrier density, the damping rate, and the particle distance, which may be relevant to surface processes and electrochemistry involving graphene.Comment: 14 pages, 10 figures, accepted for publication in Phys. Rev.

    A New Method for Multi-Bit and Qudit Transfer Based on Commensurate Waveguide Arrays

    Get PDF
    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques

    Baryon Fields with U_L(3) \times U_R(3) Chiral Symmetry: Axial Currents of Nucleons and Hyperons

    Full text link
    We use the conventional F and D octet and decimet generator matrices to reformulate chiral properties of local (non-derivative) and one-derivative non-local fields of baryons consisting of three quarks with flavor SU(3) symmetry that were expressed in SU(3) tensor form in Ref. [12]. We show explicitly the chiral transformations of the [(6,3)\oplus(3,6)] chiral multiplet in the "SU(3) particle basis", for the first time to our knowledge, as well as those of the (3,\bar{3}) \oplus (\bar{3}, 3), (8,1) \oplus (1,8) multiplets, which have been recorded before in Refs. [4,5]. We derive the vector and axial-vector Noether currents, and show explicitly that their zeroth (charge-like) components close the SU_L(3) \times SU_R(3) chiral algebra. We use these results to study the effects of mixing of (three-quark) chiral multiplets on the axial current matrix elements of hyperons and nucleons. We show, in particular, that there is a strong correlation, indeed a definite relation between the flavor-singlet (i.e. the zeroth), the isovector (the third) and the eighth flavor component of the axial current, which is in decent agreement with the measured ones.Comment: one typo correction, and accepted by PR

    Observation of a two-dimensional electron gas at CaTiO3_3 film surfaces

    Get PDF
    The two-dimensional electron gas at the surface of titanates gathered attention due to its potential to replace conventional silicon based semiconductors in the future. In this study, we investigated films of the parent perovskite CaTiO3_3, grown by pulsed laser deposition, by means of angular-resolved photoelectron spectroscopy. The films show a c(4x2) surface reconstruction after the growth that is reduced to a p(2x2) reconstruction under UV-light. At the CaTiO3_3 film surface, a two-dimensional electron gas (2DEG) is found with an occupied band width of 400 meV. With our findings CaTiO3_3 is added to the group of oxides with a 2DEG at their surface. Our study widens the phase space to investigate strontium and barium doped CaTiO3_3 and the interplay of ferroelectric properties with the 2DEG at oxide surfaces. This could open up new paths to tailor two-dimensional transport properties of these systems towards possible applications

    Hidden geometries in networks arising from cooperative self-assembly

    Get PDF
    Multilevel self-assembly involving small structured groups of nano-particles provides new routes to development of functional materials with a sophisticated architecture. Apart from the inter-particle forces, the geometrical shapes and compatibility of the building blocks are decisive factors in each phase of growth. Therefore, a comprehensive understanding of these processes is essential for the design of large assemblies of desired properties. Here, we introduce a computational model for cooperative self-assembly with simultaneous attachment of structured groups of particles, which can be described by simplexes (connected pairs, triangles, tetrahedrons and higher order cliques) to a growing network, starting from a small seed. The model incorporates geometric rules that provide suitable nesting spaces for the new group and the chemical affinity ν\nu of the system to accepting an excess number of particles. For varying chemical affinity, we grow different classes of assemblies by binding the cliques of distributed sizes. Furthermore, to characterise the emergent large-scale structures, we use the metrics of graph theory and algebraic topology of graphs, and 4-point test for the intrinsic hyperbolicity of the networks. Our results show that higher Q-connectedness of the appearing simplicial complexes can arise due to only geometrical factors, i.e., for ν=0\nu = 0, and that it can be effectively modulated by changing the chemical potential and the polydispersity of the size of binding simplexes. For certain parameters in the model we obtain networks of mono-dispersed clicks, triangles and tetrahedrons, which represent the geometrical descriptors that are relevant in quantum physics and frequently occurring chemical clusters.Comment: 9 pages, 8 figure

    Entropic nonextensivity as a measure of time series complexity

    Full text link
    Information entropy is applied to the analysis of time series generated by dynamical systems. Complexity of a temporal or spatio-temporal signal is defined as the difference between the sum of entropies of the local linear regions of the trajectory manifold and the entropy of the globally linearized manifold. When the entropies are Tsallis entropies the complexity is characterized by the value of q.Comment: 6 pages, 2 figures, to appear in Physica

    Nucleon axial couplings and [(1/2,0) + (0,1/2)]-[(1,1/2) + (1/2,1)] chiral multiplet mixing

    Full text link
    Three-quark nucleon interpolating fields in QCD have well-defined SU_L(2) x SU_R(2) and U_A(1) chiral transformation properties. Mixing of the [(1,1/2) + (1/2,1)] chiral multiplet with one of [(1/2,0) + (0,1/2)] or [(0,1/2) + (1/2,0)] representation can be used to fit the isovector axial coupling g_A(1) and thus predict the isoscalar axial coupling g_A(0) of the nucleon, in reasonable agreement with experiment. We also use a chiral meson-baryon interaction to calculate the masses and one-pion-interaction terms of J=1/2 baryons belonging to the [(0,1/2) + (1/2,0)] and [(1,1/2) + (1/2,1)] chiral multiplets and fit two of the diagonalized masses to the lowest-lying nucleon resonances thus predicting the third J=1/2 resonance at 2030 MeV, not far from the (one-star PDG) state Delta(2150).Comment: To appear in Modern Physics Letters

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore