746,885 research outputs found

    Potts Flux Tube Model at Nonzero Chemical Potential

    Get PDF
    We model the deconfinement phase transition in quantum chromodynamics at nonzero baryon number density and large quark mass by extending the flux tube model (three-state, three-dimensional Potts model) to nonzero chemical potential. In a direct numerical simulation we confirm mean-field-theory predictions that the deconfinement transition does not occur in a baryon-rich environment.Comment: 14 pp RevTeX, 10 Postscript figures, submitted to Phys. Rev D. (Corrected some typographical errors.

    Ground states and thermal states of the random field Ising model

    Get PDF
    The random field Ising model is studied numerically at both zero and positive temperature. Ground states are mapped out in a region of random and external field strength. Thermal states and thermodynamic properties are obtained for all temperatures using the the Wang-Landau algorithm. The specific heat and susceptibility typically display sharp peaks in the critical region for large systems and strong disorder. These sharp peaks result from large domains flipping. For a given realization of disorder, ground states and thermal states near the critical line are found to be strongly correlated--a concrete manifestation of the zero temperature fixed point scenario.Comment: 5 pages, 5 figures; new material added in this versio

    Algebraic and geometric aspects of generalized quantum dynamics

    Get PDF
    \noindent We briefly discuss some algebraic and geometric aspects of the generalized Poisson bracket and non--commutative phase space for generalized quantum dynamics, which are analogous to properties of the classical Poisson bracket and ordinary symplectic structure.Comment: 10pages,revtex, IASSNSHEP-93/5

    Quiver Mechanics for Deconstructed Matrix String

    Get PDF
    In this paper we propose a quiver model of matrix quantum mechanics with 8 supercharges which, on a Higgs branch, deconstructs the worldsheet of Matrix String Theory. This discrete model evades the fermion doubling problem and, in the continuum limit, enhances the number of supersymmetries to sixteen. Our model is motivated by orbifolding the Matrix Model, and the deconstruction {\it ansatz} exhibits a duality between target space compactification and worldsheet deconstruction.Comment: LaTex2e, 16 pages, no figure; v2: More details on fermions added in Appendix. References added; v3: more references added, submitted version; v4: reference adde

    Polarized Electric Current in Semiclassical Transport with Spin-Orbit Interaction

    Get PDF
    Semiclassical solutions of two-dimensional Schrodinger equation with spin-orbit interaction and smooth potential are considered. In the leading order, spin polarization is in-plane and follows the evolution of the electron momentum for a given subband. Out-of-plane spin polarization appears as a quantum correction, for which an explicit expression is obtained. We demonstrate how spin-polarized currents can be achieved with the help of a barrier or quantum point contact open for transmission only in the lower subband.Comment: 6 pages, 2 figure

    Wormwholes: A Commentary On K.F. Schaffer\u27s Genes, Behavior, And Developmental Emergentism

    Get PDF
    Although Caenorhabditis elegans was chosen and modified to be an organism that would facilitate a reductionist program for neurogenetics, recent research has provided evidence for properties that are emergent from the neurons. While neurogenetic advances have been made using C. elegans which may be useful in explaining human neurobiology, there are severe limitations on C. elegans to explain any significant human behavior

    Renormalization Group Equations and the Lifshitz Point In Noncommutative Landau-Ginsburg Theory

    Get PDF
    A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ\Theta-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm\nu_m and βk\beta_k, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.Comment: 37 pages, 4 figure

    Twisted SUSY Invariant Formulation of Chern-Simons Gauge Theory on a Lattice

    Get PDF
    We propose a twisted SUSY invariant formulation of Chern-Simons theory on a Euclidean three dimensional lattice. The SUSY algebra to be realized on the lattice is the N=4 D=3 twisted algebra that was recently proposed by D'Adda et al.. In order to keep the manifest anti-hermiticity of the action, we introduce oppositely oriented supercharges. Accordingly, the naive continuum limit of the action formally corresponds to the Landau gauge fixed version of Chern-Simons theory with complex gauge group which was originally proposed by Witten. We also show that the resulting action consists of parity even and odd parts with different coefficients.Comment: 22 pages, 5 figures; v2,v3 added references, v4 added two paragraphs and one figure in the summar

    Zero-bias anomaly in two-dimensional electron layers and multiwall nanotubes

    Get PDF
    The zero-bias anomaly in the dependence of the tunneling density of states ν(ϵ)\nu (\epsilon) on the energy ϵ\epsilon of the tunneling particle for two- and one-dimensional multilayered structures is studied. We show that for a ballistic two-dimensional (2D) system the first order interaction correction to DOS due to the plasmon excitations studied by Khveshchenko and Reizer is partly compensated by the contribution of electron-hole pairs which is twice as small and has the opposite sign. For multilayered systems the total correction to the density of states near the Fermi energy has the form δν/ν0=max(∣ϵ∣,ϵ∗)/4ϵF\delta \nu/\nu_0 = {max} (| \epsilon |, \epsilon^*)/4\epsilon_F, where ϵ∗\epsilon^* is the plasmon energy gap of the multilayered 2D system. In the case of one-dimensional conductors we study multiwall nanotubes with the elastic mean free path exceeding the radius of the nanotube. The dependence of the tunneling density of states energy, temperature and on the number of shells is found.Comment: 8 pages, 3 figure

    A Wave Function Describing Superfluidity in a Perfect Crystal

    Get PDF
    We propose a many-body wave function that exhibits both diagonal and off-diagonal long-range order. Incorporating short-range correlations due to interatomic repulsion, this wave function is shown to allow condensation of zero-point lattice vibrations and phase rigidity. In the presence of an external velocity field, such a perfect crystal will develop non-classical rotational inertia, exhibiting the supersolid behavior. In a sample calculation we show that the superfluid fraction in this state can be as large as of order 0.01 in a reasonable range of microscopic parameters. The relevance to the recent experimental evidence of a supersolid state by Chan and Kim is discussed.Comment: final version to be published in Journal of Statistical Mechanics: Theory and Experimen
    • …
    corecore