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We briefly discuss some algebraic and geometric aspects of the generalized Poisson bracket and 
noncommutative phase space for generalized quantum dynamics, which are analogous to properties 
of the classical Poisson bracket and ordinary symplectic structure. 
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Recently, one of us (S.L.A.) proposed a generalization 
of Heisenberg picture quantum mechanics, termed gen­
erolized quantum dynamics, which gives a Hamiltonian 
dynamics for general noncommutative degrees of free­
dom [1,2]. The formalism permits the direct derivation of 
equations of motion for field operators, without first pro­
ceeding through the intermediate step of "quantizing" a 
classical theory. In a complex Hilbert space, generalized 
quantum dynamics gives results compatible with stan­
dard canonical quantization. It is also applicable to the 
construction of quantum field theories in quaternionic 
Hilbert spaces, where canonical methods fail, basically 
because the matrix elements of operators are themselves 
elements of the noncommutative quaternion algebra. It 
is hoped that the methods of generalized quantum dy­
namics will facilitate answering the question of whether 
quantum field theories in quaternionic Hilbert space are 
relevant to the unification of the standard model forces 
with gravitation at energies above the grand unified the­
ory (GUT) scale. 

As applied to quantum theory, generalized quantum 
dynamics is formulated by defining a Hilbert space V H 

(based either on complex number or quaternionic scalars) 
which is the direct sum of a bosonic space vjj and a 
fermionic space VIi. Next, following Witten [3]' one de­
fines an operator (_l)F with eigenvalue +1 for states in 
vjj and -1 for states in VIi. Finally, one needs a trace 
operation Tr 0 for a general operator 0, defined by 

n 

It is easy to show that the trace Tr vanishes for operators 
o which anticommute with (_l)F, and so Tr 0 acts 
nontrivially only on the part of 0 which commutes with 
(_l)F. 

Let {qr (t)} be a finite set of time-dependent quan­
tum variables, which act as operators on the underlying 
Hilbert space, with each individual qr of either bosonic or 
fermionic type, defined respectively as commuting or an­
ticommuting with (_l)F. No other a priori assumptions 
about commutativity of the qr are made. The Lagrangian 
L [{ qr }, {qr }] is then defined as the trace of a polyno­
mial function of {qr(t)} and its time derivative {qr(t)}, 
or as a suitable limit of such functions. The action S 
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is defined as the time integral of L, and generalizations 
of the Euler-Lagrange equations follow from the require­
ment that dS = 0 for arbitrary (same-type) variations of 
the operators. Derivatives of L with respect to qr and qr 
are defined by writing the variation of L, for infinitesimal 
variations in the {qr}, in the form 

(2) 

where cyclic permutations of operators inside Tr have 
been used to order dqr and dqr to the right. The momen­
tum Pr conjugate to qr is defined by 

(3) 

and the Hamiltonian H is given by 

H = Tr L Prqr - L. (4) 
r 

In complete analogy with the Lagrangian derivatives 
defined in Eq. (2), for a general trace functional A, con­
structed as the trace Tr of a (bosonic) polynomial func­
tion of operator arguments, one can define unique deriva­
tive dA/dqr with respect to the operator qr (and of the 
same bosonic or fermionic type as qr) by the relation 

(5) 

Again, cyclic invariance of the trace has been used to re­
order all dqr factors to the right in the respective terms 
in which they occur. Using this derivative, one can 
then define generalized Poisson brackets, as follows. Let 
{qr}, {Pr} be the set of operator phase space variables in­
troduced above, which for each r are either both bosonic 
or both fermionic, in the sense that they commute or 
anticommute with (-1) F. Again, no further a priori as­
sumptions are made about their commutativity. If we 
now let A[{qr}, {Pr}] and B[{qr}, {Pr}] be two trace 
functionals of their arguments, then the generalized Pois­
son bracket {A, B} is defined by 

{A, B} = Tr [L: Cr (dA 8B _ 8B dA)], (6) 
r 8qr dPr 8qr dPr 
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with Er = +1(-1) according to whether qr and Pr 
are bosonic (fermionic). Using the generalized bracket, 
the time development of a general trace functional 
A[{qr}, {Pr}, t] takes the form [1,2] 

dA = aA {A H} 
dt at + , , (7) 

with H the total trace Hamiltonian. It was conjectured 
in Refs. [1] and [2] that the generalized bracket obeys 
the Jacobi identity, 

0= {A, {B, C}} + {C, {A, B}} + {B, {C, A}}, (8) 

and this conjecture has recently been proved by Adler, 
Bhanot, and Weckel [4]. The key observation is that de­
spite the absence of both commutativity and the product 
rule and the lack of a definition for the double derivative, 
pair~ise cancellations still occur in the right-hand side of 
Eq. (8) because of cyclic permutability inside the trace 
Tr. The proof of Eq. (8) is, in fact, independent of the 
Hilbert space arena on which the operators {qr} act. All 
that is used are the definition of derivative ofEq. (5), and 
the assumptions that operator multiplication is associa­
tive, and that there exists a graded trace Tr permitting 
cyclic permutation of noncommuting operator variables, 
according to the formula 

(9) 

with the + (-) sign holding when 0(1) and 0(2) are both 
bosonic (fermionic). 

Evidently the generalized bracket of Eq. (6) can be 
viewed as an extension of the classical Poisson bracket, 
which permits the introduction of noncommuting phase 
space variables {qr}, {Pr}. Our aim in this note is to 
document a number of further algebraic and geometric 
properties of noncommutative phase space, which closely 
relate to the existence of the generalized Poisson bracket 
that satisfies the Jacobi identity of Eq. (8), but which 
do not enter into the proof given in Ref. [4]. 

The first of these involves the algebraic structure of the 
trace functionals, under the product operation used to 
construct the antisymmetric bracket of Eq. (6). Letting 
A and B be any two trace functionals defined on phase 
space, a product A 0 B that remains a trace functional 
can be defined by 

[ JA JB] 
A 0 B == Tr ~ Er Jqr JPr ' (10) 

in terms of which the generalized Poisson bracket takes 
the form of a commutator: 

{A,B}=AoB-BoA. (11) 

The algebra Ao of trace functionals under the product 0 

can now be characterized in terms of the standard clas­
sification [5] of nonassociative algebras. It is associative 
if the associator (A, B, C) defined by 

(A, B, C) == (A 0 B) 0 C - A 0 (B 0 C) (12) 

vanishes. It is flexible if the associator obeys 

(A,B,C) = -(C,B,A), (13) 

and it is Lie admissible if the associator obeys 

0= (A,B,C) - (A,C,B) + (B,C,A) 
-(B,A,C) + (C,A,B) - (C,B,A). (14) 

Evidently, any associative algebra is Lie admissible, but 
the converse is of course not true. Now by substituting 
Eq. (12) into Eq. (14) and rearranging using Eq. (11), 
we find that Eq. (14) is equivalent to 

0= {A,{B,C}} + {C,{A,B}} + {B,{C,A}}, (15) 

which is true by virtue of the Jacobi identity for the gen­
eralized Poisson bracket. To see that Eq. (12) does not 
vanish and that Eq. (13) does not hold, it suffices to 
consider the special case in which the variables {qr} and 
{Pr} are commuting (bosonic) c numbers. This is just the 
classical case in which {A, B} is proportional to the stan­
dard Poisson bracket, and a simple calculation of multiple 
derivatives (see, e.g., Ref. [5], Sec. 7.3) shows that both 
the vanishing of Eq. (12) and the identity of Eq. (13) 
are false for the product defined by Eq. (10). Hence the 
algebra Ao is neither associative nor flexible, and there­
fore is only of secondary interest. But as in the case of 
its classical analog, Ao is Lie admissible by virtue of the 
Jacobi identity, and hence the resulting Lie structure de­
fined by Eq. (11) is of primary importance. Thus, the 
trace functionals form a Lie algebra under the general­
ized Poisson bracket of Eq. (11) and, in particular, the 
total trace conserved symmetry generators that commute 
with the total trace Hamiltonian form a Lie subalgebra 
[4]. 

The second aspect to be discussed relates to the tan­
gent vector fields associated with the generalized dynam­
ics. Let X A be the tangent vector field associated with a 
trace functional A, defined as a formal derivative opera­
tor by 

(16) 

and defined operationally by its action on any trace func­
tional B, 

(17) 

with (XAB) given by 

In terms of this operator, the time development of a gen­
eral trace functional B [{ qr}, {Pr}], under the dynamics 
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governed by A as total trace Hamiltonian, can be rewrit­
ten as [ef. Eq. (7)] 

dB 
dt = -(XAB). (19) 

Thus the tangent vector field XA can be viewed as (mi­
nus) the directional derivative along the time evolution 
orbit (called the phase flow in Ref. [6]) of the point 
( {qr }, {Pr }) in phase space, which is determined by the 
Hamiltonian equations of motion [1] 

dqr 8A 
dt = lOr 8Pr ' (20) 

with A acting as the total trace Hamiltonian. Following 
Ref. [6], we call a tangent vector field of the form of Eq. 
(16) a Hamiltonian vector field, the same name as for its 
classical counterpart. 

We note that with respect to the product defined by 
Eq. (10), the directional derivative XA does not obey 
the Leibniz product rule: 

(It is easy to verify that the same is true in the classical 
case.) However, it does obey the Leibniz product rule 
for the generalized Poisson bracket or the commutator 
defined by Eq. ( 11 ) , 

because, in view of Eq. (14), this equation is equivalent 
to the Jacobi identity of Eq. (8). 

What is the algebraic structure of the Hamiltonian vec­
tor fields? Let us compute the action of the commutator 
of two tangent vector fields XA and XB on a third trace 
functional C: 

([XA' XB]C) = (XA(XBC» - (XB(XAC» 
= {A, {B,C}} - {B,{A,C}} 
= {A, {B, C}} + {B, {C, A}}. (23) 

Using Eq. (14) with A replaced by {A,B} and B re­
placed by C, we also get 

(X{A,B}C) = {{A,B},C}, (24) 

and subtracting Eq. (24) from Eq. (23) gives finally 

«[XA,XB]- X{A,B})C) 
= {A, {B, C}} + {B, {C,A}} + {C, {A, B}} 

= O. (25) 

Hence validity of the Jacobi identity for the general­
ized Poisson bracket implies that the Hamiltonian vector 
fields X A defined by Eqs. (16)-(18) obey the commuta­
tor algebra 

(26) 

and, therefore, form a Lie algebra that is isomorphic to 
the Lie algebra of trace functionals under the general-

ized Poisson bracket, which is the generalized quantum 
dynamics analogue of a standard result [6] in classical 
mechanics. 

Finally, we address the geometric structure underly­
ing generalized quantum dynamics. As is well known, 
there is a geometry which underlies classical Hamiltonian 
dynamics, namely the symplectic geometry of ordinary 
phase space. Can we generalize symplectic geometry to 
noncommutative phase space? If a generalized symplec­
tic structure exists, is it preserved by phase space flows 
(or Hamiltonian time evolutions) as in classical mechan­
ics [6]? In the following we present a discussion of these 
questions with affirmative answers, which is readable to 
physicists who are not familiar with differential forms [7]. 

Ordinary symplectic geometry is defined by a stan­
dard (constant) antisymmetric metric in the tangent or 
cotangent spaces of a phase space. (By way of contrast, 
Riemannian geometry, which is perhaps more familiar to 
physicists, is defined by a symmetric metric in the tan­
gent or cotangent spaces of a manifold.) To avoid differ­
ential forms, let us consider the cotangent space, which 
is known to be spanned by covariant vectors whose com­
ponents form the gradient (or differential) of a function 
on phase space. The standard (antisymmetric) symplec­
tic metric, or the inner product, between two covariant 
vectors that are the gradients of two classical functions 
A(qr,Pr) and B(qr,Pr) on phase space, is provided by 
the classical Poisson brackets {A, B}. In a noncommu­
tative phase space, the analogues of functions are trace 
functionals, and the analogues of the differentials of func­
tions are the differentials of trace functionals, i.e., Eq. (5) 
adapted to phase space: 

With the generalized Poisson brackets of Eq. (6) avail­
able, we can use it to define a generalized symplectic 
structure rl on the noncommutative phase space, through 
defining the inner product between two cotangent vectors 
8A and 8B as follows: 

rl(8A,8B) = {A, B} 

[ (
8A 8B 8B 8A)] == Tr L lOr - - - - - • (28) 
8qr 8Pr 8qr 8Pr 

r 

To see that such a symplectic structure is preserved 
by any Hamiltonian phase flow of Eq. (20), we observe 
that the time derivative of the inner product along the 
phase-flow orbit is 

d d 
dt rl(8B,8C) = dt {B, C} = {{B, C}, A}, (29) 

while that of the differential 8B along the same flow is 

d . 
dt 8B == {jB (30) 

where the dot abbreviates the time derivative. Therefore, 
we have 



6708 STEPHEN L. ADLER AND YONG-SHI WU 49 

n(8S, 8C) + n(8B, 86) = {S, C} + {B, 6} 

= {{B, A}, C} + {B, {C, A}}. (31) 

Therefore the Jacobi identity of Eq. (8) implies 

d . . 
dt n(8B,8C) = n(8B, 8C) + n(8B, 8C); (32) 

that is, the symplectic structure is invariant under Hamil­
tonian phase flow. This statement can be viewed as a 
(dual) form of the generalized quantum dynamics ana­
logue of the Liouville theorem. 

Thus, generalized quantum dynamics, albeit with non­
commuting operator phase space variables, has an under­
lying generalized symplectic geometry which is preserved 
by the time evolution generated by any total trace Hamil­
tonian. Basically this is due to the existence of a (graded) 
trace Tr that permits cyclic permutation of noncommut­
ing operator variables, which implies the validity of the 
Jacobi identity for the generalized Poisson bracket. As 
in classical mechanics, we expect that the basic concepts 
and theorems of generalized quantum dynamics will be 
invariant under the group of symplectic transformations, 
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i.e., under transformations which preserve the general­
ized symplectic structure. 

To conclude, we have seen that in many algebraic and 
geometric aspects, the generalized quantum dynamics 
proposed in Refs. [1] and [2] is analogous to classical 
mechanics. It is really surprising that with the help of 
a cyclically permutable (graded) trace alone, so many 
features of classical mechanics can be generalized to a 
noncommutative phase space. (We remind readers once 
more that in Ref. [1] and in our present discussion, no 
phase space variable commutation relations such as com­
mutativity, anticommutativity, or q commutators are as­
sumed.) Further developments in generalized quantum 
dynamics, paralleling to some extent aspects of existing 
quantization schemes, are expected. 
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