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The random field Ising model is studied numerically at both zero and positive temperature. Ground 
states are mapped out in a region of random field and external field strength. Thermal states and 
thermodynamic properties are obtained for all temperatures using the Wang-Landau algorithm. The 
specific heat and susceptibility typically display sharp peaks in the critical region for large systems and 
strong disorder. These sharp peaks result from large domains flipping. For a given realization of disorder, 
ground states and thermal states near the critical line are found to be strongly correlated—a concrete 
manifestation of the zero temperature fixed point scenario.
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The random field Ising model (RFIM) is one of the 
simplest nontrivial spin models with quenched disorder. 
Despite 30 years of study it is still not well understood. It 
has been proved that an ordered phase exists for suffi­
ciently low temperature and dimension d >  2 [1-4]. The 
phase transition between the ordered and disordered phases 
for d  >  2 is believed to bc continuous and controlled by a 
zero temperature fixed point [5-7]. Currently, there is no 
controlled renormalization group analysis of the RFIM 
phase transition, and Monte Carlo simulations [8-11] arc 
restricted to small systems and have been inconclusive. As 
the strength of the random field increases, the transition 
moves to lower temperature and the critical line intersects 
the zero temperature line at a zero temperature phase 
transition. Numerical studies of the zero temperature tran­
sition [12-15] play an important role in understanding the 
model. Ground states arc much easier to simulate than 
thermal states and, according to the zero temperature fixed 
point hypothesis, the T =  0 and T >  0 transitions arc in the 
same universality class. Critical exponents have been ob­
tained from zero temperature studies that arc mostly con­
sistent with the scaling theories [5-7], series methods [16], 
and real space renormalization group approaches [17-19].

In this Letter wc present numerical results at both T =  0 
and T >  0 for the same realizations of random fields. For 
T >  0 wc use the Wang-Landau [20] and Metropolis algo­
rithms. For T =  0 wc find ground states using the push- 
rclabcl algorithm [12,21]. A major conclusion of the Letter 
is that spin configurations found near the critical line arc 
strongly correlated with ground states near the zero tem­
perature critical point. This observation is consistent with 
the original Imry-Ma analysis, incorporated in the zero 
temperature fixed point scenario, that the large scalc prop­
erties of the critical point depend on the competition 
between random fields and couplings with thermal fluctu­
ations serving only to renormalize the strength of these 
couplings. However, the correlation found here for single 
realizations of disorder along the critical line is not implied 
by the existence of a zero temperature fixed point, which

implies only the similarity of zero temperature and positive 
temperature critical ensembles.

The Hamiltonian of the RFIM studied in this Letter is

(U)
AY^hjSj -  /y]T.y,, (1)

The summation {i, j ) is over all nearest neighbors / and /' on 
a simple cubic lattice with periodic boundary conditions, 
spins Sj take the value ±  1, A is the strength of disorder, /i, 
is the random field chosen from a Gaussian distribution 
with mean zero and variance one, and H  is the external 
field. Two important quantities arc the magnetization (or­
der parameter) m =  (1 /L 3)^,.?,- and the bond energy e =  

j. Wc define the disorder strength separately 
from the normalized random fields bccausc one of our 
primary concerns is to examine single realizations of ran­
dom fields as disorder strength, temperature and external 
field arc varied. Previous analytic [22] and real space 
renormalization group studies [17] also considered single 
realizations of disorder at the phase transition but do not

FIG. 1. Ground states of the RFIM in the H-A plane, (a) All 
the ground states of a single 323 realization of disorder. Along 
each line two ground states coexist that differ by flipping a single 
connected domain. The thickness of a line is proportional to the 
magnetization jump across the line, (b) The same realization as 
in (a), but only lines with the bond energy jump Se >  0.03 are 
shown. Along the H =  0 axis there are two major jumps, which 
are labeled as 1 and 2 in the graph.
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compare realizations at different disorder strengths as is 
done here.

Consider the set of ground states of a single realization 
of disorder. We obtain these using a method first introduced 
by Ogielski [12]. To determine the ground state at a given 
value of H and A, the RFIM problem is mapped onto the 
maxflow problem, which is then solved using the push- 
relabel algorithm [12,21,23,24]. The set of all ground 
states in a region in the H -A plane is mapped out using a 
method described in [25] and similar to the techniques 
discussed in [15,26]. Figure 1(a) is a portrait of all the 
ground states of a single realization of random fields in a 
323 system in a small region of the H -A plane near the 
finite-size critical point, discussed below. Each line repre­
sents values of the parameters for which two ground states 
are degenerate and across each line a single connected 
domain is flipped. Within each polygon bounded by these 
lilies, a single spin configuration is the ground state. At 
points where two lines cross, four ground states are degen­
erate and the four configurations differ by the orientation of 
two separate domains. More interesting are “ triple points" 
where a line bifurcates into two lilies in a Y shape. At triple 
points three ground states are degenerate, but the three 
domains corresponding to the three lilies are not indepen­
dent. The spin configuration at the top of the Y results from 
the breakup of the large domain that flips across the vertical 
line of the Y as shown schematically in Fig. 2. The triple 
point has some characteristics of a thermal first-order 
transition where two ordered states coexist with a disor­
dered state.

When a coexistence line is crossed and a domain is 
flipped, physical quantities except for the total energy are 
discontinuous. To visualize the size of the discontinuity, 
lilies are drawn with a thickness that is proportional to the 
jump in the magnetization. The picture is simplified by 
removing the large number of lilies with small bond energy 
jump {Se <  0.3), as shown in Fig. 1(b). The simplified 
picture reveals a treelike structure built from triple points.

FIG. 2 (color online). Schematic picture of a triple point. The 
shaded ovals show the orientation of spins within a single 
domain that flips crossing the vertical line and is broken into 
two pieces crossing the diagonal lines.

The triple point with the largest bond energy discontinuity 
is located at the center of the picture. In the region above 
this triple point the magnetization is small while the line 
extending below the triple point is the coexistence line 
separating the plus and minus ordered states. In Ref. [15] 
this triple point was identified as the finite-size critical 
point and its scaling properties were studied. The size of 
the discontinuity in the bond energy is governed by the 
specific heat exponent. We have also examined the large 
discontinuities in bond energy and magnetization along the 
H =  0 line and have shown [25] that these scale with the 
specific heat exponent and magnetic exponents, respec­
tively. Within a region that shrinks as i } a~P~2h v and 

in the H and A directions, respectively, the treelike 
structure is statistically self-similar but not self­
averaging— each realization has a unique treelike 
structure.

We study the RFIM as a function of temperature using 
the Wang-Landau [20] and the Metropolis algorithms. The 
Wang-Landau algorithm is a flat histogram Monte Carlo 
method that automatically determines the density of states.

T

T

FIG. 3. The specific heat (a) and the susceptibility (b) of the 
same 323 realization as in Fig. 1 with A =  2.0 and H =  0. Two 
sharp peaks, labeled 1 and 2, are observed, which correspond to 
the two large jumps 1 and 2 in Fig. 1, respectively.
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Thermodynamic quantities at all temperatures are then 
derived from the density of states and the statistics of the 
magnetization as a function of energy. The algorithm 
smooths the energy landscape and is much more efficient 
than the conventional Metropolis algorithm for sweeping a 
range of temperatures. Once a temperature is chosen for 
detailed study, the Metropolis algorithm is used to find the 
thermally averaged spin configuration. We determined the 
specific heat and susceptibility for systems up to size 323. 
We find that for large enough systems (>  163) and strong 
enough disorder, the specific heat and the susceptibility 
typically display one or more sharp peaks. In Fig. 3 we 
show the specific heat and the susceptibility as a function 
of temperature for the same realization of normalized 
random fields whose ground states are shown in Fig. 1. 
The random field strength is A0 =  2.0 and the external 
field is set to zero. Two sharp peaks appear in both quan­
tities at the same temperatures. We have simulated 100 163 
realizations with A0 =  1.5 and find that about 1/3 of them 
have sharp peaks. The number increases to 1/2 if the 
random field is strengthened to A0 =  2.0. For size 323

FIG. 4. Spin configurations near the critical points at zero 
temperature and finite temperatures for a single realization of 
normalized random fields. Each panel is the same plane of a 323 
realization with black representing spin down; white, spin up; 
and shades of gray, the thermally averaged spin state. From left 
to right in the top two rows, panels arc at A (T) before, between, 
and after jumps (peaks) 1 and 2 in Fig. 1 (Fig. 3). Specifically, 
panels (a), (b), and (c) arc ground states at A =  2.36, 2.41, and 
2.54, respectively. Panels (d), (e), and (f) arc at A =  2.0 and T =  
2.2, 2.5, and 2.8, respectively. Panels (g), (h), and (i) arc at A =  
0.5 and temperatures 4.0, 4.3, and 4.45, near the peak in the 
specific heat at T  =  4.375.

and A0 =  2.0 we have simulated 9 realizations, and sharp 
peaks are observed for all of them. We tentatively conclude 
that the probability of sharp peaks appearing increases with 
the system size and the strength of random field.

The sharp peaks in the specific heat and susceptibility 
can be understood within the zero temperature fixed point 
picture of the RFIM phase transition. This picture predicts 
that the behavior in the critical region at finite temperature 
is determined by the competition between couplings and 
random fields with thermal fluctuations serving only to 
renormalize the strength of these quantities. One conclu­
sion of this Letter is that this scenario appears to be true for 
individual realizations of normalized random fields. The 
sharp peaks in the thermodynamic quantities can be 
matched one to one with the large jumps at zero tempera­
ture. Furthermore, the spin configurations oil either side of 
the sharp peaks can be mapped onto the ground states on 
either side of the corresponding large jumps.

For a single realization of random fields, we obtain the 
thermally averaged spin configuration near the peaks at 
finite temperature, and compare these thermal states to the 
ground states near the two largest jumps at zero tempera­
ture. Figures 4(d)—4(f) show one plane through the system 
with A0 =  2.0 and at temperatures just before peak 1 (T =  
2.2), just after peak 1 (T =  2.5), and just after peak 2 (T =  
2.8), respectively. The difference among the states shows 
that the sharp peak corresponds to flipping a relatively 
large domain. It is evident that these three states are 
strongly correlated with the ground state spin configuration 
before jump 1 (A =  2.36), just after jump 1 (A =  2.41), 
and just after jump 2 (A =  2.54), as shown in Figs. 4 (a)- 
4(c), respectively. [The labels of jumps and peaks are given

FIG. 5. Disorder averaged correlation q of a thermal state just 
above the transition temperature at A0 =  1.5 to ground states at 
disorder strength A for the same realization of random fields. 
Solid squares for size 163 and open circles for size 323. Only a 
few error bars arc drawn to make the figure easy to read. The 
inset shows the correlation of thermal states with ground states 
of a different random field realization.
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iii Figs. Kb) and 3.1 Similar correlations between ground 
states and thermal states were found in one dimension [271.

Some correlation between ground states and thermal 
states persists to much smaller values of A0 in a regime 
where the thermodynamic properties no longer display 
sharp peaks. Figures 4(g)—4(i) show the same realization 
of disorder and the same plane through the system but with 
A0 =  0.5. Here the specific heat has a rounded peak at T =  
4.375. Figures 4(g)-4(i) correspond to temperatures 4.0, 
4.3, and 4.45, respectively. Although there is considerable 
thermal “ blurring" in these pictures, evidence of the 
ground state is unmistakable.

A quantitative characterization of the correlation be­
tween ground states and thermal states for the same real­
ization can be obtained from the correlation measure,

1
¥ A )  =  j j  X  &Sn((s i)A.o(s i)At, . r l  (2)

where the overbar is an average over realizations of dis­
order and (sj)A j- is the thermal average of the spin at the /th 
site at disorder A and temperature T or, if T =  0, it is the 
ground state spin value. For each realization, the tempera­
ture T* =  r niax + 0.1 where r niax is the temperature of the 
maximum of the specific heat or one of the sharp peaks in 
C if sharp peaks exist. Thus, for each realization, we pick a 
thermal state just above the transition temperature. 
Figure 5 shows q vs A for sizes 163 and 323 and A0 =  
1.5, with 96 realizations for size 163 and 9 for size 323. A 
peak in the correlation occurs at A ~  2.65 where q  ~  0.75. 
The value, A ~  2.65, is about 0.15 larger than the average 
A at the largest discontinuity in the bond energy for system 
size 323. The inset of Fig. 5 shows the average correlation 
between thermal states of one realization and ground states 
of another for size 16*\ which is nearly zero as expected. A 
second measure q* is obtained by choosing the value A* for 
each ground state realization to give the largest correlation 
to the thermal state at T and then averaging over realiza­
tions. We find that, for size 323, q" =  0.80 ±  0.06 for 
A0 =  1.5 and q* =  0.85 ±  0.05 for A0 =  2.0. Together, 
these results provide quantitative confirmation that the 
thermal states at temperatures slightly above the thermal 
critical point are strongly correlated with the ground states 
at disorder strength slightly higher than the zero tempera­
ture critical point.

The strong correlations between states at different tem­
peratures are ostensibly in conflict with the idea of 
“ chaos" in the RFIM. Chaos in systems with quenched 
disorder, such as spin glasses and the RFIM, refers to the 
sensitivity of spin configurations to small perturbations 
either in temperature or in quenched disorder [14,28,291. 
The existence of chaos in the RFIM is controversial and is 
not definitively established. This work suggests that chaos 
is not present along trajectories in the A-T  plane following 
the critical line.

In summary, we find that sharp peaks in thermodynamic 
functions resulting from the flipping large domains are

typical near the critical point. In addition, spin configura­
tions near the transition are similar to the ground states 
near some corresponding large jump at zero temperature. If 
this connection between critical ground states and thermal 
states persists to large system size, it supports a strong 
version of the zero temperature fixed point scenario: the 
sequence of states near the zero temperature critical point 
obtained by varying A for T =  0 can be mapped onto the 
sequence of thermal states near the critical point obtained 
by varying T for fixed values of A0, A0 <  A c.
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