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Superfluidity (including superconductivity) has remained at the center of attention of 
low temperature physics since it was discovered at the beginning of last century. By 

now it is well known that both superfluidity in liquids and gases and superconductivity 
in electron systems can all be characterized by the appearance of off-diagonal long-range 

order (ODLRO)[l]. In contrast to the diagonal long-range order (DLRO) , ODLRO is 

a quantum phenomenon with long-range phase coherence, not describable in classical 

mechanical terms. On the other hand, Yang has pointed out the possibility that ODLRO 

may occur in a solid, coexisting with DLRO [1]. The possibility for such a supersolid has 
been explored theoretically or numerically in 1970's by a number of authors [2 , 3, 4, 6, 5]. 

In particular, Leggett [4] has suggested to study superfluidity in a quantum solid in terms 
of non-classical rotational inertia (NCRI). These have stimulated efforts to search for 

superfluidity in solid helium in the following decades [7]. Recent experiments of Chan 

and Kim have shown evidence of NCRI in solid 4He, either confined in porous medium 

[8] or in a bulk [9], with the observed values of the superfluid fraction (SFF) of the order 

0.01. The experimental progress recently drew much attention to revisiting the theory 
of supersolids [10, 11 , 12]. 

In contrast to the efforts concentrated on defects or vacancies, in this paper we shall 
consider a perfect crystal of 4He, where the number, N , of atoms precisely equals that of 

the sites, and the single-particle density profile has a discrete translation symmetry. We 

shall show that (i) a many-body wave function can be constructed which indeed exhibits 

both DLRO and ODLRO, (ii) in this state short-range correlations due to interatomic 
hard-core repulsion lead to a condensation of zero-point lattice vibrations with long

range phase rigidity, (iii) in the presence of an external velocity field, this state shows 

NCRI, and the associated SFF is estimated to be of order 0.01 in a reasonable range 
of parameters. Finally we point out our wave function has features consistent with the 

experiments [8 , 9]. 

2. Many-body wave function for a perfect supersolid 

We start with the construction of a wave function that describes a perfect supersolid. 

In a normal crystal individual atoms are localized and oscillate around their equilibrium 

positions, which form a lattice, so that the density profile is periodic, resulting in 

DLRO. For helium atoms, their small mass makes the zero-point oscillations significant. 
Normally the zero-point motion of individual atoms is incoherent, as in the Einstein 

picture of lattice dynamics. This is what happens in normal solid helium (under 

pressure). We propose that at sufficiently low temperature, due to Bose statistics of 
4He atoms and short-range correlations arising from interatomic hard-core repulsion, 

the zero-point motion of individual atoms may become phase-locked and, therefore , 

an ODLRO and phase rigidity will be developed across the whole system. We shall 

not address the question of under precisely what conditions this will happen, but be 
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concentrated on constructing a wave function that demonstrates that the coexistence of 

DLRO and ODLRO is possible in principle. 

We use a localized wave function , ¢(r - R i ) , to describe the zero-point motion of 
the atom around a lattice point R i . Then the coherent zero-point motion of the atoms 

in the crystal can be described by the following symmetrized product of single particle 

wave functions: 

(1) 
i=1 

with S the symmetrization operator with respect to rio The symmetrization S in Eq. (1) , 

which is absent for an Einstein crystal, incorporates the fact that all atoms are identical 
bosons. The superposition involved in S of permuted products of ¢(ri - R j ) takes 

for granted that the zero-point lattice vibrations of individual atoms must be coherent; 

otherwise it would not make sense to superpose the permuted terms. Moreover, as in the 

description of helium superfluid, we should also include a Jastrow factor to incorporate 
short-range pair correlations. Normally the J astrow factor is taken to be 

II J(rij) - II exp{ -/,v(rij)} , (2) 
i<j i<j 

with /' > 0 and the exponents proportional to the interatomic potential v (rij ) of the 
Lennard-Jones type, with a hard-core repulsion plus a weak attractive part. Usually 
the product of wave function (1) and (2) is used to describe a perfect quantum solid, 

namely 
N 

W = S II ¢(r - R i ) II J(rij). (3) 
i=1 i<j 

Provided that the characteristic width, a, of the localized wave packet ¢ is much smaller 

than the hard-core size A, the wave function (3) can be approximated by 

1 N (N ) Wo = 1i\T, II L ¢(ri - R j ) II J(rkl), 
v N. 2=1 J=1 k<l 

(4) 

since the Jastrow factor almost annihilates the cross terms in which two atoms are in the 

same localized wave packet at one site. However, when a becomes comparable to A, the 

wave function (4) incorporates some new features and may exhibit qualitatively different 

behavior than the wave function (3). The above arguments motivate us to propose Wo 
as our model wave function to describe , at least approximately, a perfect supersolid, 
and we will proceed to show that this wave function allows appreciable Bose-Einstein 

condensation in a density periodic state. 

3. Proof of Bose-Einstein condensation 

From previous experience with 4He superfluid it is known that the Jastrow factor can 

have a Bose-Einstein condensation into the zero-momentum state [15, 13, 14, 3, 16]. 
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Similarly by expanding the J astrow factor in Eq. (4): 

Wo = IT (_1 t ¢(ri - R j )) (foO + ... ) , 
i=l VN j=l 

(5) 

a non-vanishing zero-mode part (no =I- 0) would give rise to macroscopic occupation 

in a single particle state, which has a periodic density modulation. (The value of the 

condensate fraction no depends on the microscopic details, and in the superfluid case it 

was estimated to be of the order 0.01 [16].) Now let us proceed to prove that the wave 

function (4), which is of the general form: (u(rij) = ryv(rij)) 
N N 

Wo rv II f(rk) II J(rij) = II f(rk) II exp{ -u(rij)}, (6) 
k=l i<j k=l i<j 

has a Bose-Einstein condensation on the single-particle state f (r), provided that If (r ) I 
nowhere vanishes and has an upper bound. Assume the same conditions used in 

Ref.[13, 14]: There exists a positive constant ¢ such that the function u(rij) satisfies 

2::;=1 u(ris) ~ -¢, for all t, s , r1,r2,··· satisfying 2::i<jgu(rij) < 00. The proposition is 
the resulting one-particle density matrix possesses ODLRO: 

lim (rlp1Ir/) = nof*(r)f(r/) , 
Ir-r'l-+oo 

(7) 

with no finite and positive, where 

(rlpllr') = ~ J fi dri w~(r, r2, ... )wo(r', r2, ... ) (8) 

with QN the normalization constant of w. Eq. (7) implies that the wave function (6) 

has a Bose condensation (macroscopic occupation) in the single particle state f(r). 
To prove Eq.(7) , we notice in the infinite volume limit, 

. 1 J I (rlp1Ir/) N (N+1 
no = hm 2 drdr f ( )f( ) = -2 -Q ' v -+00 V * r r' V N 

where (N+1 is defined as 

J drdr' N 
(N+1 = f*(r)f(r /) !! driw~(r, r2,·· ·)wo(r/, r2 , · .. ). 

Note that the Jastrow functions in (N+1 are given by 
N 

J(rab) II J(rak)J(rbk) II J 2(rij) 
k=2 2-::;i<j 

(9) 

(10) 

(11 ) 

where ra = r, rb = r'o The use of the inequality 2::;=1 u(ris) ~ -¢ allows us to give a 

lower bound for (N+1: 

(12) 

where ~ = minu(r) and K, = maxlf(r)1 4
. Therefore the condensate fraction (9) has a 

lower bound: 
n 2 e-¢-iJ. 

no ~ ---
z K, 

(13) 
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where the density n = N /V is fixed in the thermodynamic limit, and z denotes the limit 

z = lim (N + I)QN. (14) 
V,N-+= QN+l 

Note Q N can be interpreted as the partition function 

J g dri exp { - t; U(lri - rjl) + 2 Y In If(ri)l} (15) 

of a system of classical particles interacting through the two-body potential k B TeJ JU (r ) 
and in an external potential 2kBTeJJ In If(r)1 with fugacity z. For our wave function (4) , 
f(r) == Lj ¢(r - R j ) is periodic, positive and everywhere nonvanishing, so the external 
potential is also finite everywhere. Hence, the thermodynamic limit of this classical 

system exists, and fugacity z is finite if n < n c, where nc is the close-packing density. 

In this way we have proved that at T = 0 our many-body wave function (4) has a finite 

condensate fraction no, leading to ODLRO, Eq.(7), a periodic density profile. 

4. Non-Classical Rotational Inertia 

N ext we study the response of our perfect supersolid to an external velocity field. 
Suppose that there are N bosonic atoms enclosed in a cylindrical annulus with internal 

radius R and thickness h «R. When the cylinder is rotated at a constant angular 

velocity w about its axis, the free energy F(w) measured in the rest frame is of the form 

[4] 
1 

F(w) = F(O) + 210w2 - b.F(w), (16) 

where F(O) is the free energy for w = 0, and 10 NmR2 is the classical rotational 
inertia. The last term is the NCRI, which is related to the SFF 0: via 

1 
b.F(w) = 210W20:. (17) 

In the rotating frame (with the azimuthal angles <Pi ---+ <Pi + wt), after the gauge 

transformation 

<I> ---+ exp (-i t mWR
2
<pi) <I> , 

i=l 1i 
(18) 

the Schrodinger equation reads [4] 

i1i~<I> = [L (-~ V; + V + mw
2 
R2) + L Uij ] <I>. at i 2m 2 ij 

(19) 

Apart from an additive term, N mw2 R/2, in energy, <I> satisfies the same equation as <I>o 
in the absence of rotation, however the boundary conditions are changed to 

( 
mWR2) <I> (<Pi = 0) = exp -i27r 1i <I> (<Pi = 27r). (20) 

One can therefore conclude that the energy levels are periodic functions of w. However 
the free-energy is insensitive to the twisted boundary conditions, either when it is in the 
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normal state [17] or the wave function of all the particles are localized. Only when (at 

least) one extended single-particle state is macroscopically occupied by No atoms, the 

SFF is finite and given by 

a = 1 8
2
flF(w) (21) 

10 8w2 . 

This idea is similar to that explaining flux quantization in superconductors [18]. 

For the superfluid component, we have 

L 17,2 

flF(w) = Nominjdx-lveI2p, 
2m 

o 
(22) 

where foeie is the order parameter \XIPllx), and L is the length of the sample. Here as 
a sample calculation, we only consider a one dimensional lattice along the circumference 

x-direction. The one-particle density P has a periodic structure: 

1 N 
p(x) = N 2:A(x - Ri ) , 

i=l 

where IRi - Ri-11 = d, and the function A, for simplicity, 
Gaussian packet: 

A(x) = _1 exp (_ X2) . 
V7ra2 a2 

The phase e(x) is non-uniform, but satisfies 

mwRL 
e(L) = e(O) + h . 

(23) 

is taken to be a localized 

(24) 

(25) 

Write e = eo + be, where eo = cox with Co = mwR/h. It is natural to assume that be 
has a periodic dependence on x with period d. To minimize flF(w), the phase gradient 

becomes large only in regions with low density. Therefore the SFF is expected to be 

less than the condensate fraction and to increase with decreasing density modulation. 
We apply a simple variational method to prove this. By fixing a global phase we set 

80(~) =80(-~) =80C2k~1)d) =0, (26) 

For be in the interval [-d/2, d/2], we take 

80 = Cod [C1J + C3 (J)3 + C5 (;I) 5] (27) 

as a trial function, in which the parameters should satisfy the constraint that C5 

-16cl- 4C3. Noting that Noh2c6/m = n010w2, the SFF a can be expressed as 

~ = N 11,,,~~ ? dx 1(1 + cd + 3C3 (;I) 2 + 5C5 (;I) 412 p. (28) 
-d/2 

The right-hand side of Eq.(28) is quadratic in Cl and C3 and can be easily minimized. 

The resulting SFF is a function of the Lindermann radio a/d. We plot it in Fig. l. The 
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phase e as a function of x is shown in Fig. 2 for three typical values of ald. Our results 

show that the SFF is vanishingly small when aid < 0.1. When aid> 0.1 , the SFF 
experiences a rapid increase and reaches the condensate fraction no when aid is around 

0.35. Our result, obtained analytically by a simple variational calculation, is consistent 

with the previous numerical result obtained for three dimensional fcc lattice [6 , 11]. 
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Figure 1. The ratio of SFF a to condensate fraction no as a function of Lindermann's 
ratio a/d. 
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Figure 2. The phase 8( in units of co) as a function of x/d in one period for three 
values of Lindermann's ratio a/d. 

5. Summary 

In summary, we have suggested that in a perfect quantum bosonic solid, under favorable 

conditions, a conspiracy of Bose statistics, significant zero-point fluctuations and short
range correlation due to interatomic hard-core repulsion may lead to ODLRO and 
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macroscopic phase coherence, coexisting with crystalline DLRO and leading to the 

supersolid behavior, e.g. the appearance of NCRI under vessel rotation. We have 

proposed a many-body wave function and proved that indeed both D LRO and 0 D LRO 
coexist in such a state. The interatomic potential of the Lennard-Jones type, having 

a large hard core and being mostly attractive outside, with favorable parameters is 
arguably credential to choose our state before other non-supersolid states. We note that 

with this mechanism for supersolid the more closely packed the lattice is, the larger 
the SFF 0: is. Also the presence of a small number of vacancies or impurities (e.g. 

3He) is harmful to condensation of zero-point vibrations, and thus reduces the SFF. 

Observationally, these two features may be exploited as qualitative indication of the 
underlying mechanism suggested here for supersolid behavior. 

The mechanism for supersolid proposed in this note (section 2) can be understood 
intuitively in the language of path integral. Consider, say, a one dimensional lattice 

of spacing d. If d - 2a < A, where a is the amplitude of zero-point vibration, then 
the probability amplitude for two nearby atoms oscillating completely out of phase will 

become negligible due to huge potential energy of the hard-core repulsion. Therefore, it 

is the phase-locked trajectories of oscillating atoms that have lower potential energy and 
dominate the path integral, namely only nearly in-phase zero-point motion of all atoms 

in the crystal are favorable. It should be noticed that these phase-locked trajectories 
are quantum fluctuating pathes describing the ground state in the framework of path 

integral, which should be distinguished from the acoustic phonon excitation. It is these 
phase-locked trajectories that give rise to long-range phase coherence or phase rigidity 

as described by the first factor in Eq.(4). We call this phenomenon as condensation of 

zero-point lattice vibrations. 

In recent experiments of Chan and Kim [8, 9] that show NCRI of solid 4He, their 

sample is claimed to be ultrahighly pure (with a stated 3He impurity of 0.3 parts of 
per million). Also parameterwise we note [19] that in solid 4He the hard core radius is 

a big fraction (> 0.65) of the lattice spacing; and the ratio aid can be as big as 0.22 
in a variety of situations. As mentioned above, all these features are favorable to our 

suggested mechanism and to get an appreciable SFF. It is arguable that the condensation 

fraction no is of the order 0.01 as estimated in Ref. [16]; then in accordance with our 
estimation, Fig. 1, the SFF of our state is appreciable and may reach the order of 

0.01 if aid is not less than 0.25. (A likely explanation of why Ref. [4] found the SFF 
0: :::; 10-4 is that the estimate used an analogy of the exchange effect for 3He in a normal 

rather than supersolid phase.) Since the SFF depends sensitively on the microscopic 
parameters, to measure the lattice constant and the N CRI at the same time would be 

very desirable. 
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