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We model the deconfinement phase transition in quantum chromodynamics at nonzero baryon number

density and large quark mass by extending the flux tube model ⑦three-state, three-dimensional Potts model✦ to
nonzero chemical potential. In a direct numerical simulation we confirm mean-field-theory predictions that the

deconfinement transition does not occur in a baryon-rich environment.

PACS number⑦s✦: 12.38.Aw, 05.50.✶q, 64.30.✶t

I. INTRODUCTION

The prospects of creating a quark-gluon plasma in the

laboratory and interest in the role of such a plasma in the

early Universe and in dense stars have stimulated efforts to

understand the plasma–ordinary-matter phase transition

starting from first principles in quantum chromodynamics
�QCD✁. It is widely suspected that the phase transition occurs
at high density as well as at high temperature. While much
progress has been made in characterizing the phase transition
at high temperature at zero average baryon density in full
QCD, the same degree of success has not been achievable at
nonzero density, chiefly because the standard SU�3✁ lattice
action becomes complex, invalidating standard Monte Carlo
methods. Simulations must then be carried out with related
ensembles of real, positive weight. Studies on small volumes
offer intriguing hints about the phase structure at nonzero
density. But with the wrong ensemble, the thermodynamic
limit cannot be taken, so the phase structure cannot be ascer-
tained ❅1,2★. Thus we turn to simple statistical models for
insight.

The three-dimensional three-state Potts model is one of
the standard paradigms for lattice QCD in the strong-
coupling, high-temperature, large-quark-mass limit ❅3–5★. It
has been used to provide qualitative information about the
deconfinement phase transition. Past Potts model studies
have been limited to simulations at zero quark chemical po-
tential and to mean-field studies at nonzero chemical poten-
tial. In this work we show that the Potts model can be ex-
tended easily to nonzero baryon chemical potential,
permitting direct simulation using standard techniques.

The QCD phase transition changes character as the quark
masses and flavors are varied. At zero quark mass with two
or more flavors the transition restores the spontaneously bro-
ken chiral symmetry ❅6★. At infinite quark mass it leads to
‘‘deconfinement’’ in the pure Yang-Mills theory. Simula-
tions of full QCD with two flavors at zero chemical potential
show that these two regimes are separated at intermediate
quark mass by a region where no phase transition occurs—
only a strong crossover. In the corresponding Potts model we
find this obliteration of the deconfinement transition, not
only as the quark mass is lowered, but also as the chemical
potential is increased. The former is found from direct simu-
lation, but the latter has been known until now only in mean
field theory ❅5★. Here we confirm the mean field prediction
with a direct simulation.

Because the Potts model analogy works only in the large

quark mass limit, we learn only the fate of the deconfinement
transition and not the chiral transition. Nonetheless, to the
extent that a strong crossover in QCD, observed in the inter-
mediate quark-mass regime, is a vestige of deconfinement,
one may speculate that a weakening of the QCD crossover at
nonzero chemical potential is then indicated.

In the following section we describe the model. In Sec. III
we present results of a simulation. A summary and discus-
sion are offered in the final section.

II. MODEL

We use a variant of the flux tube model of Patel ❅4★ also
discussed in ❅7★. The model describes a classical statistical
system with no dynamics, consisting of a three-dimensional
cubic lattice with quarks and antiquarks occupying the sites
and color flux tubes occupying the nearest-neighbor links. A
configuration is characterized by the quark number distribu-
tion nrP✂✷3,✷2, . . . ,3✄ and the color flux lr ,iP✂✷1,0,1✄
for each lattice site r and associated links in the i✺1,2,3
directions. For convenience links entering a site from a nega-
tive direction are denoted alternatively by lr ,☎ i✺ lr☎ î ,i .
Gauss’s law is enforced in modulo 3 arithmetic:

✭
i✆1

3

✝ lr ,i✷ lr ,☎ i✞✺nr mod 3. �1✁

The Hamiltonian assigns a mass m to each quark and flux
link energy s to each link:

H✺✭
r ,i

s✉lr ,i✉✟✭
r

m✉nr✉ . �2✁

The grand canonical partition function at inverse temperature
❜ and quark chemical potential ♠ is then

Z f✝❜ ,♠✞✺ ✭
✩lr ,i ,nr✪✽

exp✂✷❜✝H✷♠N✞✄ �3✁

where N✺✠ rnr and the prime indicates that the sum is over
all configurations satisfying Gauss’s law.

The model is strictly static. The lowest vacuum excita-
tions consist of mesons built from a quark-antiquark pair
separated by one flux link and baryons consisting of three
quarks on a site. Further excitations lead to extended baryons
and mesons and more complex hadrons, always of zero tri-
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ality. ⑦We limited quark occupation to a maximum of three
per site, but do not expect qualitative changes in our results
if we increase this limit.✦

The flux tube model is equivalent to the three-state three-
dimensional Potts model with complex magnetic field. That
is, Z f⑥Zp , where the Potts model partition function is

Zp✺✭
zr

exp❙ ❜✽J✭
r ,i

Re�zrzr✶ i
* ✁

✂❜✽h✭
r

Re zr✂ i❜✽h✽✭
r

Im zr❉ . ⑦4✦

This is the form of the Potts model found from the high-
temperature, high-quark-mass, strong-coupling limit of lat-
tice QCD ❅3,5★. The equivalence is established by a change
of basis. The derivation starts by replacing the Gauss’s law
constraint at each site by a Kronecker delta in mod 3:

1

3 ✭
zPZ(3)

z l✺❞ l ,0 . ⑦5✦

When we introduce one such sum for each site in the lattice,
the sums over link and site occupation numbers decouple and
can be summed explicitly. The Z(3) constraint variables zr
become the ‘‘clock’’ spins of the Potts model. After rear-
ranging the sums we have

Z f�❜ ,♠✁✺✭
zr

✮
r ,i

❙ ✭
lr ,i

exp�✷❜s✉lr,i✉ ✁�zrzr✶ î
* ✁ lr,i❉

✸✮
r

❙ ✭
nr

exp✄✷❜�m✉nr✉✷♠nr✁☎zr✆nr❉ .

⑦6✦
The sums under the product symbols are explicitly

1✂2 Re�zrzr✶ î
* ✁exp�✷❜s✁ ⑦7✦

1✂u3✂✈3✂z�✈2✂u✁✂z*�u2✂✈✁ ⑦8✦
where

u✺exp✄✷❜�m✂♠✁☎ and ✈✺exp✄✷❜�m✷♠✁☎ . ⑦9✦
With the aid of an identity over Z(3) these factors can be
rewritten in exponential form. The identity we need is

1✂az✂bz*✺exp�c✂d Re z✂ ie Im Z✁ ⑦10✦
where

3c✺ ln�1✂a✂b✁✂ ln�1✷a✷b✂a2✂b2✷ab✁ ⑦11✦

3d✺2 ln�1✂a✂b✁✷ ln�1✷a✷b✂a2✂b2✷ab✁ ⑦12✦

❆3
2

e✺arctan✝
❆3�a✷b✁
2✷a✷b

✞ . ⑦13✦

Applying this identity to the first factor ⑦7✦ gives the relation
between the Potts spin coupling and the string energy ⑦in
units of the respective temperatures✦,

J❜✽✺ 2

3
ln✟

1✂2 exp�✷❜s✁
1✷exp�✷❜s✁ ✠ , ⑦14✦

and to the second factor ⑦8✦, gives the relation between the
Potts magnetic fields and the quark mass and chemical po-
tential

h❜✽✺ 2

3
ln�1✂a✂b✁✷ ln�1✷a✷b✂a2✂b2✷ab✁

⑦15✦

h✽❜✽✺ 2

❆3arctan✝
❆3�a✷b✁
2✷a✷b

✞ ⑦16✦

where

a✺ ✈2✂u

1✂u3✂✈3
⑦17✦

b✺ u2✂✈
1✂u3✂✈3

. ⑦18✦

Notice that h✽ is odd in ♠ and h is even. At zero chemical
potential the imaginary coupling vanishes (h✽✺0) and at
infinite quark mass the real field h also vanishes. In this limit
the Potts model exhibits the well-known first order transition

at a value ❜ t✽J✺0.36703(14), known from numerical simu-

lation ❅8★. Here we have the Potts–flux-tube parameter
equivalence

�❜ t✽J✺0.3670, ❜ t✽h✺❜ t✽h✽✺0✁
❬�❜s✺1.6265, ❜m✺❵ , ❜♠✺0✁ . ⑦19✦

Numerical simulation has indicated that the first order tran-
sition persists to a small real magnetic field ❅5★. The critical
endpoint is crudely known to be in the range ✄0.002,0.01☎ for
which

�❜✽J✺0.365, ❜✽h✺✄0.002,0.01☎ , ❜✽h✽✺0✁
❬�❜s✺1.632, ❜m✺✄3.2,4.2☎ , ❜♠✺0✁. ⑦20✦

Any mass m higher than this critical value should admit a
first order phase transition.

We chose to simulate the flux tube model at quark mass
m/s✺5. This value was selected to assure a first order phase
transition at zero chemical potential. Figure 1 shows the
mapping from flux tube ❜s to Potts parameters at zero
chemical potential. We then repeated the simulation at non-
zero chemical potential ♠ /s✺1.75. The corresponding map
is shown in Fig. 2. The Potts magnetic fields remain small.
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III. METHOD AND RESULTS

We carry out a simulation in the occupation number basis
⑦3✦, i.e. the flux tube formulation, in which the Boltzmann
weights are real and positive and the simulation can be done
easily using conventional Metropolis methods. We have cho-
sen an elementary set of Metropolis moves that preserve the
Gauss’s law constraint, and are capable of reaching any valid
configuration. The local moves consist of systematically
‘‘adding’’ or ‘‘subtracting’’ one of four elementary color-
singlet hadrons at all locations and orientations in the con-
figuration. A single sweep of the lattice consists of consider-
ing each of these moves for all orientations of the hadrons at
each lattice site in typewriter order.

The Metropolis-move hadrons are these: ⑦1✦ a quark and
antiquark separated by one flux link, ⑦2✦ a diquark and an-
tidiquark separated by one flux link, ⑦3✦ a quark and diquark
or antiquark and antidiquark, also separated by one flux link,

Eq. ⑦4✦, and ⑦4✦ a plaquette of flux links. The process of
adding ⑦or subtracting✦ a hadron consists of increasing or
decreasing the quark occupation number and flux link value
of the configuration in mod 3 arithmetic according to the
position and orientation of the hadron selected, respecting
our exclusion principle that limits the quark number to the
range ❅✷3,3★ . By always adding or subtracting a color sin-
glet state, Gauss’s law is always obeyed. While all configu-
rations satisfying Gauss’s law can be reached by a combina-
tion of these moves, this over-complete set was also chosen
in an effort to cover the phase space efficiently. Still, we
have only a local algorithm, presumably as effective as a
local algorithm in the spin basis. For the moment we have
not considered cluster algorithms analogous to those that
have been so successful in spin systems �9✁.

As we have mentioned we simulate at fixed quark mass
m/s✺5 and choose two values of the chemical potential,
namely ♠/s✺0 and 1.75. We then vary ❜s to locate the
phase transition or crossover. We expect to reproduce the
Potts first order phase transition at zero chemical potential
and small real field, but at nonzero chemical potential we
explore new territory. We simulate at a series of volumes L3

for L✺10,20,30,40 in each case. In the crossover region we
extend the simulations for, typically, 35000–60000 Metropo-
lis sweeps.

As expected at zero chemical potential, we find a sharp
rise in energy density at ❜s✬1.63 as shown in Fig. 3. To
characterize the phase transition we study the size depen-
dence of the peak in specific heat �10✁. The specific heat is
defined in the usual way in terms of the total energy E of the
configuration:

CV /❜
2✺✂❫E

2
✫✷❫E✫

2
✄/L3. ⑦21✦

Figure 4 shows a peak in the specific heat at zero chemi-
cal potential that sharpens and grows with increasing vol-
ume. Also shown in these figures are results of a fit to a
phenomenological form for a first order phase transition

FIG. 1. Mapping of flux tube parameters ☎✆ to real Potts mag-

netic field ☎✽h at fixed quark mass m/✆✝5 and zero chemical

potential. A first order phase transition is expected at ☎✆✞1.63.

FIG. 2. Mapping of flux tube parameters ☎✆ to Potts real and

imaginary magnetic fields ☎✽h and ☎✽h✽ at fixed quark mass m/✆

✝5 and nonzero chemical potential ✟ /✆✝1.75.

FIG. 3. Energy density vs ☎✆ in the critical region at zero

chemical potential for various lattice sizes: L✝10, crosses; 20, dia-

monds; 30, octagons; 40, squares.
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based on a simplification of the finite size analysis of Borgs
et al. ❅11★:

CV /❜
2✺

CV ,max⑦L ✦

cosh2�❣⑦L ✦❸❜✷❜c⑦L ✦❹✁
. ✂22✄

The simplification assumes that the probability distribution
for the energy density near the phase transition receives a
delta function contribution from the two phases with the
usual Boltzmann weights:

P⑦E ✦⑥❞⑦E✷Ed✦exp⑦✷❜Ed✶Sd✦

✶❞⑦E✷Eo✦exp⑦✷❜Eo✶So✦ ✂23✄

in terms of the energy and entropy in the ordered and disor-
dered phases. This model gives

❣✺L3Q/2 ✂24✄

CV ,max✺L3Q2/4 ✂25✄

for Q✺(Ed✷Eo)/L
3, the latent heat of the transition. In fact

the actual probability distribution resembles a sum of broad
peaks, but since we are concerned only with extracting
CV ,max , it suits our purpose. Although there are really only
two independent parameters, ❜c and Q, we have kept the
height, width, and center unconstrained and look for evi-
dence for scaling with L3.

In Fig. 5 we plot the specific heat maximum vs L3 and
show that a linear relationship is plausible for L❃20. Errors
are obtained using a bootstrap method, averaging simulation
results in blocks, and extrapolating to infinite block size.
Departures from linearity for smaller L are well known in
this model and arise from finite size effects. We take the
approximate scaling of the peak in specific heat as good evi-
dence for a first order phase transition.

The quark number susceptibility ✂three quarks ✺ one
baryon✄, defined as

①q✺
dB

d♠
✺9⑦❫B2

✫✷❫B✫
2
✦/L3 ✂26✄

with B✺❫✭rnr/3✫ , the total baryon number, rises as the tem-
perature is increased past the phase transition, as shown in
Fig. 6.

Having tested the method, we turn to nonzero chemical
potential. Shown in Fig. 7 is a plot of the energy density vs
❜s . We see evidence for a weak crossover. Notice that here
and in the remaining figures, we have enlarged the ❜s scale
compared with the corresponding zero chemical potential
figures. Thus the crossover is far less abrupt than at zero
chemical potential. The corresponding specific heat is shown
in Fig. 8. There is a diffuse peak in the specific heat, but we
see no evidence that the peak height is changing with in-
creasing volume. The peak height is considerably smaller
than at zero chemical potential, consistent with a broadening
of the crossover. Thus we find no evidence of a phase tran-
sition at this chemical potential and quark mass.

We turn to the quark number density and susceptibility.
Figure 9 shows the quark number density as a function of
❜s . We note that in the high temperature range, the quark
number density at our chosen mass is quite low—namely,

FIG. 4. Specific heat vs ☎✆ at zero chemical potential for vari-

ous lattice sizes. Symbols as in Fig. 3.
FIG. 5. Peak in specific heat vs lattice volume at zero chemical

potential.

FIG. 6. Quark number susceptibility vs ☎✆ at zero chemical

potential for various lattice sizes. Symbols as in Fig. 3.
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only a few per thousand sites. The density rises as tempera-
ture is increased past the crossover. As with the energy den-
sity, with the exception of the 103 volume, we see no evi-
dence for a sharpening of the crossover with increasing
volume. The quark number susceptibility also shows no ap-
parent trend with increasing volume, as shown in Fig. 10.

IV. SUMMARY AND DISCUSSION

We have extended the equivalence between the QCD-like
flux tube model and Potts model to nonzero chemical poten-
tial, making possible a direct numerical simulation using
standard Monte Carlo methods, where only mean field meth-
ods have previously succeeded. We have developed numeri-
cal evidence that confirms the predictions of mean field
theory, namely that the deconfining phase transition disap-
pears if the baryon density is slightly nonzero. While our
results are not applicable in the most interesting limit of
small quark mass, one may speculate, nonetheless, that they

indicate a weakening of the crossover at high baryon number
density.

A recent study by Blum, Hetrick and Toussaint analyzes
the static limit of QCD and arrives at a similar conclusion
concerning the fate of the deconfining phase transition at
high density ❅12★. Their resulting static action is quite similar
to the Potts model action with imaginary magnetic field, so
their method is also limited to small volumes in a direct
Monte Carlo simulation. To obtain the comparable limit in
the flux tube model, one takes m✦❵ with m✷♠ fixed. With
only two variables, namely ❜s and ❜(m✷♠), one obtains a
two-dimensional subspace of the Potts parameter space
(J❜✽,h❜✽,h✽❜✽). For large m✷♠ one has h✺h✽✬0, where
the first order deconfining transition occurs, whereas at small
m✷♠ one explores the region of large h❜✽ and large h✽❜✽.
In this way the results can be compared.

In the corresponding canonical-ensemble study in the
static limit of QCD, a weakening of the crossover signal is
also found at nonzero baryon number ❅13★. However, the
authors interpret their results as suggesting the coexistence
of two phases in the transition region.

Could a similar change of basis also render full QCD

FIG. 7. Energy density vs �✁ at chemical potential �✂✄1.75

for various lattice sizes. Symbols as in Fig. 3.

FIG. 8. Specific heat vs �✁ at chemical potential �✂✄1.75 for

various lattice sizes. Symbols as in Fig. 3.

FIG. 9. Quark number density vs �✁ at chemical potential

�✂✄1.75 for various lattice sizes. Symbols as in Fig. 3.

FIG. 10. Quark number susceptibility vs �✁ at chemical poten-

tial �✂✄1.75 for various lattice sizes. Symbols as in Fig. 3.
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simulations tractable at nonzero chemical potential? Nor-

mally the QCD path integral is formulated on a basis in
which the vector potential is diagonal and the fermion inte-
gration is completed explicitly. The analogous change of ba-
sis diagonalizes the color electric flux and treats fermions in
the Fock space basis, summing over states that are color
singlets in quark and gluon content. At finite Nc it appears

that the complexities of enforcing color neutrality in such a
basis are prohibitive.
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