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Wc propose a twisted supersymmetric (SUSY) invariant formulation of the Chern-Simons theory on a 
Euclidean three-dimensional lattice. The SUSY algebra to be realized on the lattice is the N  = 4 D =  3 
twisted algebra that was recently proposed by D’Adda et al. In order to keep the manifest anti-Hermiticity 
of the action, wc introduce oppositely oriented supercharges. Accordingly, the naive continuum limit of 
the action formally corresponds to the Landau-gaugc fixed version of the Chern-Simons theory with 
complex gauge group which was originally proposed by Witten. Wc also show that the resulting action 
consists of parity even and odd parts with different coefficients.
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I. INTRODUCTION

Chern-Simons gauge theory is a fundamentally impor
tant field theory in both physics and mathematics. The 
Lagrangian density [1,2] is just the famous Chern- 
Simons secondary characteristic class [3] for a principal 
bundle. As a topological field theory, its action can be 
defined in an odd dimensional spacctimc without involving 
its metric. So mathematically the metric independent 
physical observables of the theory arc topological invari
ants independent of a spacctimc metric [4]. In particular, 
the partition function of the theory on a compact manifold 
gives rise to a three-manifold invariant, while the expecta
tion value of Wilson loops gives rise to knot-link invari
ants, say Jones polynomials [5] in the case with the non- 
Abclian gauge group SU {2). On the physics side, by now it 
is well known that Chern-Simons gauge theory can be used 
as a low energy effective theory to describe a new type of 
matter, the so-called topological phases, in planar con
densed matter systems (or in 2  + 1 spacctimc dimensions), 
such as the fractional quantum Hall effect [6 ]. Also, quan
tum gravity in ( 2  + l)-dimcnsional spacctimc, which is 
known to be diffcomorphism invariant, can be formulated 
as a Chern-Simons theory with the Poincare group as the 
gauge group [7]. In recent years, the close relationship 
between Chern-Simons gauge theory, topological invari
ants, and topological phases has attracted a lot of attention 
for developing topological quantum computation [8,9]. 
The above is just a few examples of the ubiquitousncss 
of the Chern-Simons theory in physical applications. For a 
recent survey sec, e.g.. Ref. [10].

Because of the primary importance of the Chern-Simons 
theory, it is much desirable to put the theory on a lattice for 
the convenience of computer simulations. However, up to 
now this task has been achieved with limited success. 
Previously, lattice formulations of the Chern-Simons thc-
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ory have been addressed in the context of bosonization or 
anyonization [11-13] or of topological excitations [14] in a 
regularized framework . 1 Two major difficulties in formu
lating the lattice Chern-Simons theory have been identi
fied. One is the problem of an extra zero eigenvalue in the 
gauge field kernel, which arises from the fact that the gauge 
kinctic terms involve only first order derivatives. This 
feature resembles the “ doubling problem” for lattice fcr- 
mions, which is also tightly connected with the Hcrmiticity 
issue of the lattice action [17,18]. The other difficulty, in 
formulating a non-Abclian Chern-Simons theory on a lat
tice, is related to gauge noninvariancc of the action for a 
non-Abclian theory under large gauge transformations.

In this paper wc attack the problem of the lattice for
mulation of the Chern-Simons theory with a new method. 
Instead of attempting to directly put the Chern-Simons 
action on a lattice, wc propose to put the gauge-fixed 
Chern-Simons theory on a Euclidean lattice. Wc also in
troduce oppositely oriented component fields in order to 
ensure the manifest anti-Hermiticity of the lattice action. 
Wc arc motivated by two observations in the literature. The 
first observation is an old one [19,20] that there exists a 
very rich symmetry structure in the Landau-gaugc fixed 
Chern-Simons action; namely, apart from the ordinary 
BRST symmetry which is the remnant of the original 
gauge symmetry, there exist more fcrmionic symmetries 
of a vcctor type. In Ref. [21], the set of symmetries together 
with the anti-BRST-typc symmetries arc identified as a 
certain type of twisted supcrsymmctry (SUSY), which was 
originally proposed in the context of topological quantum 
field theory [22]. Sincc then, the twisted SUSY invariant 
properties of the Chern-Simons theory in Landau gauge 
have been studied in more detail concerning its quantum 
aspects [23] as well as its rich symmetry structure [24]. The

'There arc works on simplicial lattices addressing Abelian 
Chern-Simons theory in terms of a geometric discretization 
schcmc [15] and also Chern-Simons gravity via the Ponzano- 
Rcggc model [16],
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second observation that inspires us is a recent one, in which 
the twisted SUSY plays a particularly important role in 
realizing SUSY on a lattice [25-29]. This is essentially due 
to the intrinsic relation between twisted fermions and 
Dirac-Kahler fermions [30]. It is observed that among 
other recent developments of lattice SUSY [31], the so- 
called deconstruction formulation of lattice SUSY [32] can 
also be related to the twisted SUSY framework [33]. 
Motivated by these recent developments, we naturally 
anticipate that a lattice formulation of Chern-Simons the
ory can be given through the lattice realization of the 
twisted SUSY associated with the Landau-gauge fixed 
action.

This article is devoted to constructing a Landau-gauge 
fixed Chern-Simons multiplet directly on a three
dimensional lattice and to proposing a manifestly anti- 
Hermitian Euclidean lattice action. This paper is organized 
as follows. In Sec. II, we review the symmetries of the 
Landau-gauge fixed Chern-Simons action in continuum 
spacetime. In Sec. Ill, after giving an overview of the 
twisted SUSY formulation on a lattice developed in [25] 
and introducing the twisted N  =  4 D =  3 lattice algebra
[27], we proceed to construct a lattice counterpart of the 
Chern-Simons multiplet. We also introduce oppositely 
oriented supercharges and component fields in order to 
realize the manifest (anti-)Hermiticity of the lattice multi
plet. In Sec. IV, we construct a lattice version of Landau- 
gauge fixed Chern-Simons action and show how the 
twisted SUSY invariance is realized. We further show 
that the zero-eigenvalue problem does not occur in our 
formulation owing to manifest anti-Hermiticity of the lat
tice action. We also discuss about the naive continuum 
limit and its relation to the Chern-Simons theory with 
complex gauge group [34]. Section V addresses the parity 
transformation properties of our lattice action, and Sec. VI 
summarizes our formulation with some discussions.

II. CHERN-SIM ONS IN LANDAU GAUGE

In this section, we review the symmetry aspects of the 
Chern-Simons action with Landau gauge fixing in the 
continuum spacetime. Although the original Chern- 
Simons action is given in a metric independent form, it 
becomes metric dependent after the gauge-fixing terms are 
introduced. In this paper, we only consider the Euclidean 
three-dimensional fiat spacetime. The gauge-fixed action is 
given by

-  f2 t t  J
d i x  Tr

b d ^ A ^  c d  p T ) (2.1)

where A /x, b , c, and c denote the gauge field, an auxiliary 
field, the ghost, and the antighost fields, respectively. The 
coefficient k should be a multiple of integer required by

invariance under large gauge transformations. Note the 
overall purely imaginary factor i in the Euclidean action, 
because the path integral measure of the topological field 
theory has to be a pure phase factor. All of the component 
fields belong to the adjoint representation of the gauge 
group with the following anti-Hermiticity conditions [21],

4  =  - a m, ~c, =  C.

(2.2)

The gauge-fixed action (2.1) is invariant under the BRST 
transformations which are remnants of the original gauge 
symmetry.

c, sc  =  c~

sc  = sb  =  0,

(2.3)

(2.4)

where the covariant derivative D M is defined by D ^ c  =  
djjC + {Ap, c]. Furthermore, it was pointed out in [19-21] 
that the action (2 . 1 ) is also invariant under additional 
fermionic transformations including vector-type transfor
mations, S p , S p , and s, where the index ^  runs from 1 to 3. 
We list their transformation laws for the component fields
in Table I. The whole set of eight generators (s, s^ ,  
shown to satisfy the following algebra [2 1 ]:

{s „ ,« „}= € dfi vp u p>

{others} =  0 .

is

(2.5)

(2.6)

Here the dotted equality means that the algebra closes only 
on shell, namely, up to equations of motion. The anti- 
Hermiticity conditions for the twisted supercharges can 
be imposed consistently with those for the component 
fields (2 .2 ):

c+ = ~S,

4  =  v

ct =
(2.7)

Since the BRST generator s is supposed to transform as a 
scalar under the Lorentz transformation, we immediately 
read off from the algebra (2.5) and (2 .6 ) that the remaining 
fermionic generators s ^ ,  s ^ ,  and s transform as a vector, 
another vector, and a scalar, respectively. These transfor
mation properties are identical to the ones in a certain type 
of twisted SUSY, where the new Lorentz group, which is 
called the twisted Lorentz group, is defined as the diagonal

TABLE I. Fcrmionic transformation laws in continuum spacc- 
timc.

s s p s

c O
C " ~ A p 0 —b + {c, (•}

c b 0 -OC“

A ,x ^  i t  ^ ~ e pMt,dt,c ,.c c
b 0 d p c D pc [c ,b \
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subgroup of the original Lorentz group and a certain type 
of internal symmetry group. In the present case with eight 
supercharges (s, s M, s M, s), the twisted Lorentz group is 
understood as the diagonal subgroup of S(9(3) Lorem7 X 
5,0 (3 ) jntemai whose covering group is (SU{2) X 
5'f/(2))diag. The twisted structure can be explicitly seen 
from the following combinations of {s, s M, s M, s) into the 
generators Q„k and Q k„ with spin index a  and internal 
index k:

Q„k =  (Is + (2.8)

Q kn =  (1 s + y ^  {is^ ))kl„ (2.9)

where 1 represents the unit matrix while y M (/x = \ ,2 ,  3) 
represent three-dimensional gamma matrices which can be 
taken to be Pauli matrices. One can easily see that s M and 
Sp transform as vectors if the spin and internal indices are 
rotated simultaneously. Furthermore, in terms of Q„k and 
Q k„, the algebra (2.5) and (2.6) can be reexpressed as

{Qnb Qif}) =  2 i 8ki(yM)nf}dM- (2-10)

This clearly shows that the internal symmetry indices k  and
1 can be viewed as the suffices labeling extended SUSY, 
while a  and (3 remain the ordinary spinor indices. From the 
above observations it becomes clear that the fermionic 
symmetries associated with the Landau-gauge fixed 
Chern-Simons action are essentially connected with a cer
tain type of extended SUSY through the twisting proce
dure. Following the standard nomenclature in topological 
field theory [35,36], we refer to the algebra (2.5) and (2.6) 
as the N  =  4 D  =  3 twisted SUSY algebra.' A superfield 
formulation based on the twisted N  =  4 D  =  3 SUSY 
algebra is recently elaborated on in Ref. [28] with a direct 
application to continuum super Yang-Mills theories in the 
off-shell regime.

It is important to mention here about parity transforma
tions of the component fields and the supercharges of the 
Chern-Simons multiple!. Since we are working on a 
Euclidean three-dimensional spacetime, a parity operation 
on the spacetime coordinates may be defined by the simul
taneous inversion of all the directions,

P ( x h x 2, x 3) p - ] =  ( - a , ,  - x 2, - x 3). (2.11)

The gauge fields and the derivative operators are supposed 
to transform as vectors, obeying

P A m(x ) P ~ '  =  - A ^ - x ) ,  P d MP - '  =  - d M, (2 . 1 2 )

where —x  denotes —x  =  (—A], —a 2, —*3 )- The parity na
ture of the supercharges could be determined consistently 
with the SUSY transformations of the component fields, 
provided parity is compatible with the SUSY algebra (2.5) 
and (2.6). Here we assume that the ghost field c{x) trans-

TWISTED SUPERSYMMETRIC INVARIANT FORMULATION

In the early literatures it was referred to as N  =  2 algebra.

forms as a scalar, namely, Pc { x )P ^ x =  c{—x). We then 
immediately read off the parity of the supercharges as

P s P =  S, P s uP =  — 5 „ ,
V V (2.13)

P s ^ P  1 =  Sp, PsP  1 =  —s.

The parities of c and b are accordingly given by 
P c { x )P ^ ] =  - c { - x )  and Pb{x )P~} =  - b { - x ) .  Notice 
that the entire action (2 . 1 ) is parity odd under these 
assumptions.

III. TWISTED SUSY AND CHERN-SIMONS 
MULTIPLET ON LATTICE

A. Lattice SUSY algebra

It was recently recognized [27] that the N  =  4 D  =  3 
twisted SUSY algebra could be realized on a lattice con
sistently with the lattice Leibniz rule; then it was immedi
ately applied to a twisted super Yang-Mills formulation on 
a three-dimensional lattice. We first briefly review the 
lattice formulation of the twisted SUSY proposed in 
Ref. [25] and then proceed to construct the Chern- 
Simons multiplet based on the N  =  4 D  =  3 twisted 
SUSY structure on the lattice. Since the lattice spacing is 
always finite, on a lattice all the derivative operators should 
be replaced by difference operators:

PHYSICAL REVIEW D 78, 065002 (2008)

where ± denotes forward and backward differences, re
spectively. The operation of difference on a function $(.v) 
is defined by the following type of "shifted” commutators,

(A ^O H x)) =  A + $(.v) -  0>(.v ±  n /i)A+/i, (3.2)

where (/x =  , r) denote the unit vectors in r 
dimensions, whose component is given by (n/I)p =  S Mp. 
We take the lattice spacing to be unity. The difference 
operators A+/I are most naturally located on links from x 
to x  ±  n M for a generic value of x,  and they take unit values 
such that the definition (3.2) actually gives the forward and 
backward differences:

A +/1 =  (A+^.v+h^.v =  +1. (3.3)

Starting from the definition (3.2), one finds that the opera
tion of A+/I on a product of functions gives

( A ^ O mIa^ U ) )  =  ( A ^ ^ I a) ) ^ - )

+ 0>,(a ±  n M){A+ M$>2 (x)), (3.4)

which we refer to as the Leibniz rule on the lattice. The 
importance of the Leibniz rule has also been recognized in 
the context of noncommutative differential geometry on a 
lattice [37]. Since in continuum, SUSY is essentially noth
ing but the fermionic decomposition of the differential 
operators d M, we may then naturally expect that the fermi
onic decomposition of the difference operators A + fI will
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accordingly serve as the starting point of a lattice formu
lation of SUSY. In order to be compatible with the link 
nature of difference operators, we introduce a generic 
lattice supercharge QA oil a link from x  to x  + a A:

KAZUHIRO NAGATA AND YONG-SHI WU

Qa — (Qa).X+a^X’ (3.5)

where the a A denotes a generic vector whose expression is 
to be determined in the following. The operation of Q A is 
again defined as a shifted (anti-Commutator, 3

(<2/t$(-0) =  (C>.A-„.,<(Kv> -  ( - l ) |4,|0 (.v + a A)

x  ) c - c- (3.6)

Accordingly, the operation oil a product of functions gives 

(Q a 0 i(.v)0 2 (x)) =

+ (-l)l*'l01(* + a4)(<2,40 2(*)X
(3.7)

where |<I>| stands for 0  or 1 for bosonic or fermionic <I>, 
respectively. The anticommutator of these supercharges 
may naturally be defined as the successive connections of 
link operators:

i f iv  Qn\\  ■ nx ■ n \  (Qa )\ ■ <ix ■ ■ n.MQi’,)\ ■

 ̂  ̂Q li) \ ■ I I ,  ■ 11/■:, I ' /I - (Qa\\ '^11A,X'
(3.8)

In terms of the above link operators, we can express the 
generic form of lattice SUSY algebra as

{Q a - Qb ) =  (3.9)

provided the following lattice Leibniz rule conditions hold:

(3.10)a A + aB =  + n M for

a ,4 + aB for A. (3.11)

Figures 1 and 2 depict the possible configurations of the 
general lattice SUSY algebra (3.9) subject to the conditions 
(3.10) and (3.11), respectively. It is a nontrivial question to 
ask what type of SUSY algebras satisfy these conditions. 
As described in [25,26], one can show that the Dirac- 
Kahler twisted N  =  D  =  2 and N  =  D  =  4 satisfy the 
above conditions. Furthermore, it is recently shown in 
[27] that the twisted N  =  4 D  =  3 algebra also satisfies 
the conditions. We actually find the lattice realization of 
the algebra (2.5) and (2.6) as

{s, s A =A „ h j - S r ^ e ^ . p A - p , (3.12)

‘Wc thank Jourjinc for his commcnt on the shifted (anti-) 
commutator from the ccll-complcx cohomological point of view 
and for letting us know his works [38]. For recent works on 
algebraic topology in connection with the Dirac-Kahler fcrmion 
on a lattice, one may also refer to Ref. [39].

PHYSICAL REVIEW D 78, 065002 (2008)
x +  a a

Q a j '' \ Q b

x  «-
L +  /v

Q b \  / * Q a

-u x  + n,

FIG.

-v + aB

1. Lattice SUSY algebra subject to the condition (3.10).

{others} =  0 , (3.13)

where /a, v , p  =  1, 2, 3 and the link anticommutators in 
the left-hand side are understood. The corresponding 
Leibniz rule conditions on the choice of a A can be ex
pressed as

a + =  + « /i, +  a,, =  - U ^ . p l u p ,

a +  a lx =  + n lx.
(3.14)

which are satisfied by the following general solutions:

a =  (arbitrary), a jX =  + « /i — a, (3.15)

3

=  -  £  n A + a, a =  + £  n A -  a. (3.16)
A#/X A=1

Note that there is a one-vector arbitrariness in the choice of 
a A, which eventually governs the resulting lattice configu
ration of the model. We will come back to this point when 
we construct the lattice Chern-Simons action. Notice also 
that the total sum of all the shift parameters vanishes 
despite the one-vector arbitrariness:

£  a A =  a + 5] + a 2 + a 3 + a\ + a 2 + a 3 + 5  =  0 .

(3.17)

x  + aA

Q b /  \ Q a

/  A „ \
a- -  n u i- " •  A'

Q aY \  / * Q b

X  +  CtB

FIG. 2. Lattice SUSY algebra subject to the condition (3.11).
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TABLE II. Link assignment of the fields and supercharges for a generic value of x. Note that 
the shift parameters (a, a /iL, a /iL, a) are subject to (3.15) and (3.16).

c C A tl b s V V  *
Link (c).,+a.x i^^x+d.x . ...<1 (i *.<i. \ x .

TABLE III. Twisted SUSY transformation laws on the lattice. The link attributes of the
products and (anti-)commutators are understood.

s ~sp s p
,s

c r>C" ~ Ap 0 ~ b  + {c,c}
c b 0 A p

-Oc~
A /i ~ [ D +Il,c]  - e i,iA A - v, c] — in  ^] f]
b 0 [A+,„ c] \D +P, f] [c,b]

B. Twisted SUSY Chern-Simons multiplet on the lattice
The lattice implementation of the twisted SUSY trans

formation laws is possible only with an appropriate link 
assignment for each component field. For example, the 
transformation law sc  =  c1 requires that the ghost field c 
should be located on a generic link from x  to x  + a in order 
to be consistent with the link assignment of s which is also 
from.r to x  + a. With this link assignment, the correspond
ing lattice transformation law can be expressed as

( s c \ x ^ 2 a . x  ■ I n .x  ■ ■ n .x -  (3.18)

By studying all the twisted SUSY transformation laws in a 
similar way, one finds that the link attributes can be con
sistently assigned for all the component fields. Tables II 
and III summarize the link attributes of the component 
fields and their twisted SUSY transformation laws. In 
Table II and in the following, the symbol X  n represents 
the abbreviation Xa=i °a- hi Table III, all the field products 
and (anti-)commutators should be understood as link prod
ucts and link (anti-Commutators, with the link indices 
suppressed for simplicity. denotes the covariant de
rivative with forward difference, + A ^ .

Notice that the gauge fields are associated only with the 
forward difference and not with the backward difference. 
The absence of the backward covariant derivative implies 
that the (anti-)Hermiticity cannot be maintained if only one 
lattice multiplet (AM, b , c , c )  is considered. One obvious 
way to maintain the (anti-)Hermiticity on the lattice is to 
introduce the oppositely oriented multiplet associated with

TABLE IV. Link properties of oppositely oriented supercharges and component fields.

.y+ 5+ S+ S Sp s

Link )x+a,x fiXx+a^x i^fi^x+a^x )jr+a,jr (s )jr,jr4-a Ĉ(a)x,x+â  0̂  )jr,jr+a

c+ c+ A +ft b+ C C b

Link (c )x+a,x ~)x+a,x (A-+fx)xJrnfl,x \x+y' n,x \x,x+a \x,x+a (A—̂x^v+n^ \x,x+^ ri

a set of oppositely oriented supercharges. From now on, we 
slightly change the notations and denote the set of super
charges introduced in the above as s j  =  (.?*. s ^ ,  s .?*). 
Then we introduce an additional set of oppositely oriented 
supercharges and denote them by =  { s ^ , s~ , s~ ,  s ^ ) .  
The SUSY algebra is assumed to be

{ s~. .?;}=A ^ ,  s ^ e ^ r p A - p .

{ r \ s £ } =  -  A ^ ,

{ s - ,  s - } = A ^ ,  {s~. s - } = e M,.pA^p,  

{ r , s - } =  -  A _/i.

(3.19)

(3.20)

with other anticommutators of the supercharges vanishing: 
{others} =  0. We anticipate the on-shell closure of the 
algebra and express them with dotted equalities. We have 
assumed that the mixing sector of the algebra is just zero: 
{s2,s/j} =  0. The Hermitian conjugation of the lattice 
supercharges and difference operators are defined as

(s -*-)t =  _ s - f ( , r ) t  =  (3.2i)

(s p t  =  _ s - t ( j p t  =  (3.22)

( A ^ ) t  =  - a . , .  (A_/1)t =  - A +/1. (3.23)

We assign the supercharges s j  and s j  to be located on the 
same links but with mutually opposite orientation, namely, 

and ( ^ ) r.r^ M, respectively, as summarized in

065002-5
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TABLE V. Twisted SUSY transformation laws on the lattice. The upper and lower signs show 
the transformation laws of (e+, c +, A +/t, b +) under (s+, ,s+, s+/t, s) and (e+, c+, A +/t, b +) under 
(s+, s+/t, .$), respectively. The link attributes of the products and (anti-)commutators are 
understood.

s ± sf 'V s±

C± (c± ) 2 —A ±ft 0 —I r  + i^}
c~ I f t 0 A±p •r )2

A±fi - W ±lt, t* ]
I r 0 [A±t„ t - ] [o ± p, ( - ] I r  ]

Table IV. Correspondingly, we introduce oppositely ori
ented lattice Chern-Simons multiplets ( c ~ , c ~ , A ^ ^ l r )  
and {c~, c~, A-p,  b~),  together with the 
Hermitian conjugation conditions.

following

( c * ) t  =  - c ~

( 4  ) t  =

(c * ) f =  c ~

( I r )  t =  — b~

(3.24)

(3.25)

The link attributes of the multiplets and their SUSY trans
formation laws are given in Tables IV and V, respectively. 
The covariant differences in Table V, and are 
defined as D+, A +/x + A +/x, which obey the obvious

t /) . p.  We againHermitian conjugation relations, D+  =  
assume that the SUSY transformation between the differ
ent sectors be trivial, namely.

b l ’ <p } =  IsA> *p~ ) =  °> (3.26)

where 
( c V

and
I r )

<P
and

denote any
(c~, c~, A-„,  b

component of 
'), respectively.

Note that although the number of total supercharges is 
doubled in the present (anti-)Hermitiaii formulation, the 
lattice Leibniz rule requirements associated with the alge
bra (3.19) and (3.20) remain unchanged and are expressed 
as (3.14). The generic solutions are still given by (3.15) and 
(3.16).

IV. LATTICE CHERN-SIMONS ACTION

In terms of the two oppositely oriented multiplets, the 
anti-Hermitian, Landau-gauge fixed Chern-Simons action 
on a three-dimensional lattice is given by

5 tot =  +  k - s - (4.1)

S*  =  —  
477jj. € ^ ^ n , x ^ n , , ^ n p

X [A*,„

vA *p) nx

(4.2)

S ~ = T -  4 v 2 €v-vp'

X [A — v, A — p]v — np,.V 

1
+ ^ f / l f p W - / - ^ - p ) t - ^ u  

"  C_]L- (4.3)

with

where k~  and k~~ denote complex parameters related to 
each other by complex conjugation, ( k +)* =  k*~. The sum
mation over x  in (4.2) and (4.3) covers all the integer sites 
of a three-dimensional regular lattice, anticipating the fact 
that the a needs to be integer vectors. The anti-Hermiticity 
of the total action is manifest.

A. Twisted SUSY invariance

Before showing the SUSY invariance of the lattice ac
tion (4.1), (4.2), and (4.3), we would like to make the 
following remarks. First, in order to ensure the SUSY 
invariance of the action, one needs to take care of the 
ordering of the link fields. The notion of proper ordering 
in lattice SUSY formulations has been addressed in 
Ref. [271. Here in the lattice Chern-Simons action, the 
proper ordering is nothing but the geometrically connected 
ordering; namely, each term of or consists of factors 
on connected links. Furthermore, all the terms in and 

connect x  to x  + X  n  aild x  to x  — X  respectively, 
through a sequence of links. The homogeneous connecting 
property is a direct consequence of the link component 
fields consistently allocated with the N  =  4 D  =  3 twisted
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SUSY transformation laws on the lattice. Figure 3 depicts 
the configuration of the component fields per unit cell in 
the case of a =  — X  n. The second remark is that the N  =
4 D =  3 twisted SUSY invariance of the action (4.1) is 
intrinsically related to the one-vector arbitrariness (3.15) 
and (3.16) in the solutions for the lattice Leibniz rule 
conditions. Since the twisted SUSY variations satisfy 
Eq. (3.26), the only nontrivial variations come from either

5 + or j 'JS ” , whose link attributes are given by (jr +
X n + aA, x)  and (jr — X n — aA, jr), respectively. One ob
serves here that if one takes a A =  — X  then the twisted 
SUSY variation of the action is reduced to that for closed 
loops.

The twisted SUSY invariance of the action can be ex
plicitly verified by exploiting the above remarks. For ex
ample, the s + variation of the second term in (4.2) gives 

1

TWISTED SUPERSYMMETRIC INVARIANT FORMULATION

12nd term ’ 3  i'P

2 €fi7'P^  + ,i Ŝ ^  + P ^  + p).v+^ll+fl.T 
1
3 € nvp(A + pA + j f s  ^+p)).v+X«+o.v

(4.4)

whose link attribute is given by (jr + + a, x). If we 
take a =  — X  n - then each term above is reduced to con
nected links forming a closed loop. After using the cyclic 
property of trace under the summation over x  and the .v" 
transformation law of A+/i, s +A +jJ =  —[D +/I, c + ], one 
obtains

e+C+| _
3 u  12nd term

+  € ( i v p ( l A  + „,  Ci +/i- 4- p /x,x

477
^^Tr€^Pp ( [ A , c ]A+„A+p)v v.

(4.5)

where from the first to the second line, we just inserted the 
expression of forward covariant differences, D +fl =  
A +/i + A+/i, while from the second to the third equality, 
we used the trace property and antisymmetric property of 
e jjvp to cancel out the second term. Figure 4 depicts the 
typical configuration of component fields in the .v" trans
formed action with the particular choice of a =  — X « .  
The operation of s+ plays the role to close the loop. 
Performing the same procedure for the other terms in
(4.2), one can explicitly show that s + variations of S + 
give the total difference terms which are vanishing under
the summation over jr. Furthermore, .v S.. =  0 can also be
shown explicitly with the choice of a =  — X  «• In a simi-

PHYSICAL REVIEW D 78, 065002 (2008)

FIG. 3. Configurations of the component fields (<4+jU, c, c, b) in 
the action S+ for a =  — X n- All the edges of each unit cell arc 
occupied by A +/a.

lar manner, we may verify the invariance of the total action
(4.1) with respect to each supercharge of (s^, s*, s ^ ,  s ^ )  
under an appropriate choice of a A:

s " S m  =  0, for a =  -  £  «• (4.6)

s ;s * 0* =  0 . for =

^ S * *  =  0.

( f i  =  1,2,3), (4.7) 

( / a =  1,2,3), (4.8) 

s ^ S lM =  0, for a =  — £  n. (4.9)

Notice again that the one-vector arbitrariness associated 
with the lattice algebra (3.19) and (3.20) has played a 
fundamental role in the natural realization of the invariance 
under the full lattice SUSY algebra.

Keeping in accordance with the above invariance of the 
lattice Chern-Simons action, one may define the twisted 
SUSY variations 8 A for the component fields as follows:

=  T tur}A(sAip)_"x+a.r, +a.A,x (no sum),

(4.10)

where {<p).Y+rt Y denotes any of the component fields 

(c^, c^,  A+/I, b" ) .  T„a represents a shift operator acting

FIG. 4. A typical configuration in the transformed action
s+S +.
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on the functions from the right, f ( x ) T [U =  f i x  + aA), 
while r)A represents a constant Grassmann parameter. 
One can verify the invariance of the total action (4.1) under 
the above componentwise twisted SUSY variations.

Stot[<p +  8A<p] -  S,0,[ d  =  0 , for aA

(4.11)

where represents collectively the set of all component 
fields that appear in the total action. The existence of the

shift operator T cu in the componentwise SUSY variations 
(4.10) and the notion of the proper ordering in the lattice 
action seems to imply that the entire lattice SUSY formu
lation could be embedded in a certain noncommutative 
(super)space framework, which will be addressed in the 
future development.

B. Kernels

Another important feature of the lattice Chern-Simons 
action (4.1), (4.2), and (4.3) is that the kinetic terms of the 
lattice gauge fields can be expressed in terms of the one
sided difference version of the Frohlich-Marchetti kernels 
[111.

(4.12)

^  11 st term
xv

(4.13)

where the kernels K{x -  y) and K ( x  -  v) are given by [171 

^ n  I■ A) ( j ! - .(j ̂  ■ (4.14)

-  y) (4.15)

with d + u f  U) =  / U  + n j -  f  (x).
f i x )  -  f ( x  -  T nJ i x )  =  f i x  + n Mf  and T . nJ (x) =  
f i x  -  rip). Since the gauge fields are located on links, the 
analysis in the momentum space superficially depends on 
where to pick up their representatives in the configuration 
space. Fourier transformation of the link gauge fields is 
given by

+ fiJx+n x

( A - Jli/XyX+n^

L

L

d 3 p  

(2v j 3 '

d3 p
(2 ĵ3

e - i P-ix-ranp)A _ (4.17)

where the constant a  parametrizes the representative 
points of the gauge fields. Namely, a  =  0, and 1 corre
spond to the initial point, midpoint, and ending point 
prescriptions, respectively. B  denotes the Brillouin zone: 

{Pu I -  77- <  /? <  7T-, /A =  1, 2, 3}. A ^  ip )  and

tion, A
jugation relation of the gauge fields in the configuration 
space. Momentum space representation of the kernels 
(4.14) and (4.15) is accordingly given by

+  f l \

p i p )  are related to each other by the complex conjuga- 
((p)t =  _ ( — p)^ jn or(ier [0  satisfy the con-

K%lip) ^2 i£fipve - m - a)P>‘ sin^ >

(4.18)

K % l ip )  =  - 2 i e ^ e + f a p r + t t - r t p r + w v p , . )  si n ^ .

(4.19)

Although the form of the kernels is explicitly dependent on 
the parameter a ,  their eigenvalues should be independent 
of a .  In fact, one may easily verify that the eigenvalues of 
K  are given by \ { p )  =  0,

2e - u/Z)' ^ U p-
\

V"* • 'y P U' 
2 , sm o *

Likewise the eigenvalues of K  are given by A (p)  =  0,

2e I ; Pp

\
Ejl

2 ’

the complex conjugate of h ip ) .  The zero eigenvalue, which 
arises from the original gauge invariance of the action, 
should be cured by the gauge-fixing terms. It is important 
to notice that they do not have any other extra zero eigen
values, which implies that both (4.18) and (4.19) could 
serve as the invertible kernels after the gauge-fixing terms 
are properly taken into account. Notice again that the 
eigenvalues always come in complex conjugated pairs, 
ensuring the anti-Hermiticity of the entire formulation. 
These features are direct consequences of the use of two 
sets of oppositely oriented component fields on the lattice.

C. Naive continuum limit
The naive continuum limit of the total action is taken by 

replacing the difference operators by differential operators.

(4.20)

The Hermitian conjugation property of A ±f{ is accordingly 
reduced into the anti-Hermiticity of f) jX,
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(A )+ = (4.21)

The Hermitian conjugation properties, Eqs. (3.24) and 
(3.25), of the component fields are supposed to be retained 
in the continuum. The component fields in the continuum 
limit are accordingly given by

— n\x.x+np * Apix)  A ^ (x )  iBM (x),

( c  + )x+a.x  C+ U )  =  f U )  +  ’d { x ) ,

{c~)x.x+a c~ (x )  =  c{x) ^  id{x),

(4.22)

(4.23)

PHYSICAL REVIEW D 78, 065002 (2008) 

( c +)x+n.x =  ?(*) + id{x),

{c~)x.x+r, c~ (x )  =  c{x) ^  id{x),

b +{x) =  b(x)  + ih{x),  

b~{x)  =  b{x) — ih{x).

(b + )x+'£n.x

(b - )

(4.24)

(4.25)

Here {AM, BM, b, ft), (c, d), and (c, d) denote bosonic anti- 
Hermitian fields, Grassmann odd anti-Hermitian fields, and 
Grassmann odd Hermitian fields, respectively. Note that 
the two possible orientations of the lattice component 
fields can naturally be interpreted as the complex structure 
of the gauge group. In terms of the above expansions, the 
entire action (4.1), (4.2), and (4.3) can be expressed in the 
continuum limit as

n, =  k +s : 0u + A--S-ont

/ M
1

2 t t '”’ J  ~~ "**L2 B ^ d p B p )  +  ^ € f XVp(A.fXA J/,A p S A ^ B ^ B p ) h d ^ A ^  +  h d ^ B ^

„(£>„ c "  \Pn> + ddJD„d  + \_B„, c])
2 tt

v  J  ( P x T rj^y

+ ■ (3AMA rBp ^  BpBrBp) -  bdu Bu -  hduAu -  ddu {Du c -  [BM, d]) -  cdu {Du d + [BM, c])M M M M (4.26)

where the constants u and v  are the real and imaginary with complex gauge group originally proposed in 
parts of the complex parameters k "  =  u ±  iv .  The cova- Ref. [341. Obviously, if one takes B M =  d  =  d  =  h =  0,
riant derivative D M is again defined by D Mc =  the entire action (4.26) is reduced into the expression (2.1) 
d n c + [^//. f]- The action (4.26) can be regarded as the with the coefficient u =  A'. In the general case, according to 
Landau-gauge fixed version of the Chern-Simons action Ref. [341, the parameter u must always be quantized to be

TABLE VI. Twisted SUSY transformation laws in the naive continuum limit for the expanded 
component fields (e, d, c, d, A /x, B /x, b, h ).

s0) r IJ■sp s°!*p s[])

c c2 -  d2 —Ap 0 - b  + {(“, c} -  {d, d}
d {<’. d} - B p 0 ~h + {(”, d} + {d, (•}
c b 0 Ap c2 -  d2
d h 0 Bp {«”, d}
A/t - O lxc + [ B lx d} -epp,<K,c ~ D /xc + [B/x, dJ
Bm - 0 „ d  - , d - e IHU,0,,d -ep^,,0,,d
b 0 0pc DpC -  [Bp, d] [c, b] -  [d, h\
h 0 0 pd D pd  + [Bp,c] [c, h] + [d, b]

5 (2) -a>Sp r 2’Sp 5(2.)

c {<’. d} Bp 0 h — {(”, d} — {d, {•}
d — C2 + d2 — Ap 0 - b  + {t“, c} -  {d, d}
c h 0 Bp ~{c, d}
d —b 0 —Ap C2 -  d2
A,x - D lxd - [ B lt, c] epp t.0t,d - epp , , 0 , , d Dlxd + [B/X,c ]
BP OpC-[B^t, d] - e p tuM,,c epp,<K,c - D p C  + iBp.d]
b 0 - 0  d Dpd + [Bp, c] -[c , h] -  [d, b]
h 0 Opt- -DpC + [Bp, d] [c, b] -  [</, ti\
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an integer k  if the Tr is normalized correctly, while there is 
no quantization condition for the real parameter v.

The lattice supercharges { s ^ , s ^ , s ^ , s ^ )  may also be 
expanded as

s "  =  ±  t s t2)),

■ - w

IS (2)),

i s ? ) ,

(4.27)

(4.28)>p 2' I*

with which the naive continuum limit of the lattice SUSY 
algebra (3.19) and (3.20) is given by

±  ie'i)'d lx,

{ s lL  s(/}=(<5 '7  ±  i e iJ) e M,.p dp,
(4.29)

5 ^ ’}= — (S 'j  -i- ie'i)'dp, {others} =  0, (4.30)

for the continuum-limit multiplet tp" =  (c^, c " , A ^ ,  b ^ ) ,  
respectively. The suffixes /, j  take 1 or 2, and e 12 =

€2  ̂ =  1. The SUSY transformation laws in terms of 
(su), s '̂J, s ^ ,  s u))_ for the expanded component fields 
{Ap, c, d, c, d, b, h) are summarized in Table VI. It is 
straightforward to verify that the action with the coefficient 
u and the action with v  in (4.26) are separately invariant 
under the twisted SUSY transformations (su), s '̂J, s u)).

V. TRANSFORMATION PROPERTIES UNDER 
PARITY

The properties under parity transformation are an im
portant issue for continuum Chern-Simons theory. In this 
section we address this issue for our twisted SUSY Chern- 
Simons action on a lattice. We first recall that on a 
Euclidean three-dimensional lattice or spacetime, parity 
may be defined by the simultaneous inversion of all coor
dinates (2.11). Since the gauge fields A+ are located on
links (A + „)fjL/x±.np,x and the parity also flips the link orienta

tions, one may naturally define the parity operation P  for 
A+ on the lattice by

P (A +V)x+n„,xl — M -u ) - (5.1)

where —x  denotes (—.t], ~ x 2, —x^). The difference opera
tors are also located on links so that their parity trans
formation law is

P ( & + vl)x +„„,x P ~ x =  ,-.v> (5 -2 )

which is also consistent with the fact that A +/I actually 
take the unit values in the link commutators [see (3.3)]. As 
for the gauge-fixing component fields and the super
charges, we define

(5.3)
P(.C + h + a ,x P  ' =  + ( c ~ )I ) —x —a>—x ,

P ( c + )x + r ,.x P ^ (C ) —x —a, —x>

P ( l’ + )x+£ n , x P ^ \N
1H\

1II

P ( s  + )x+ll,xP ~ X +  (5  S) —X — a f —Xy

P ( s + )x+r,.xP ( 5  ) —x  — —Xy

P (S p )x + n l£. x P ^ (^/x)— x —a^, — x>

P i s ^ x + a ^ x P ^ (^/x ) — x —a^,— X'

J

(5.4)

(5.5)

(5.6)

In the following we will see two interesting features result
ing from these definitions. One is regarding the parity of 
the lattice Chern-Simons action. The other one is the parity 
property in the continuum limit.

As for the parity transformation of the action, it is easy 
to see that the definitions (5.1), (5.2), (5.3), and (5.4) 
interchange the two oppositely oriented parts of the action, 
S + given by Eq. (4.2) and given by Eq. (4.3):

p s + p -1 =  _ L / > y Tr
4-77

I
„ I Tr477 “

1
^  € I1 V P [' A + I l ) x + Y '  H ..Y+H,. 

1
2 e pvp

=  _  ' £ Xr 
4 7 7 ^

1
2 6

( A v

i—

H..1

[Artp

[A_,., 4

v, A — p J

-  p  J.Y — f l  — f l  , X + =  - S~ (5.7)

Here from the second line to the third, we have replaced 
x —> —x.  Likewise, we also have P S ~ P ~ l =  —S + . We 
thus have the parity transformation for the total action 
S l°l (4.1) as

p S io x p - \  =

I----------------------------------------------------------------------------------

the complex parameters k "  as k "  =  u ±  i v ,  we actually 
have

-k +S -  -  k~S* (5.8)

Slot =  u ( S + + S ~ )  + i v ( S + 

P S X°XP - '  =  - u ( S + + S ~ )  + iv (S ^

s - ), 

- S - ) .

(5.9)

(5.10)

which implies that the total action is not an eigenstate of 
the parity defined by (5.1), (5.2), (5.3), and (5.4). Writing

Now it becomes clear that the total action is a sum of a 
parity even part with the coefficient u and a parity odd part
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with the coefficient iv .

Stotl„=o: parity odd, 5"tot |„=0: parity even. (5.11)

One can understand the mixed behavior of the total 
action under parity more clearly by examining the parity 
behavior of the component fields in the continuum limit. In 
fact, by considering the continuum limit (4.22) of the 
lattice parity operation (5.1), one obtains

P A ^ { x ) P - '  =  - A ^ - x ) ,  P B ^ x ) P ~ x =  + B ^ - x ) ,

(5.12)

which imply that the A ^ { x )  is an ordinary vector, while the 
B ^ ix )  is a pseudovector. By considering the continuum 
limit of the relations (5.3), (5.4), (5.5), and (5.6), one also 
obtains the parity behavior of the other component fields 
and the supercharges as listed in Table VII. In the language 
of forms, the complex gauge fields A^ may be regarded as 
complex combinations of a one-form A and a two-form B ,

A * d x l l = A ± i * B ,  (5.13)

where A =  A ^ d x ^  and B =  ^ B ^ ^ d x ^  A dx,.. The symbol
* denotes the Hodge star operation. Likewise, the contin
uum limits of the gauge-fixing component fields 
(r  , c , b ) are divided into the complex combinations 
of 0-forms and 3-forms. It is interesting to note that our 
anti-Hermitian lattice formulation together with the 
twisted SUSY structure actually involves all possible sim- 
plicial forms in the three-dimensional spacetime.

The mixed behavior under parity of the continuum 
action (4.26) is now clearly understood. One can easily 
see from Table VII that part of the action with the coeffi
cient u is actually parity odd, just like the ordinary Cheni- 
Simons action for a single gauge field, while part of the 
action with the coefficient v  is parity even. The manifestly 
anti-Hermitian formulation on the lattice thus eventually 
leads to a unified picture of even and odd parity Cheni- 
Simons theory. It is worthwhile to mention that the parity 
even part of the continuum action (4.26) shares the same 
parity behavior as the so-called “ dumbbell" Chern- 
Simons action addressed in [131, where vector and pseu
dovector gauge fields are introduced as the lattice objects 
dual to each other. We also note that the parity even part of 
the continuum action (4.26) shares the same parity behav
ior with the so-called “ doubled" Chern-Simons theory 
discussed in [81, though the action is actually not the same.

VI. SUMMARY AND DISCUSSIONS

We have constructed the Landau-gauge fixed Cheni- 
Simons theory on a three-dimensional regular lattice. The 
N  =  4 D =  3 twisted SUSY associated with the Chern- 
Simons action in Landau gauge has played a crucial role as 
the guiding principle in the present lattice construction. 
The one-vector arbitrariness associated with the N  =  4 
D  =  3 lattice algebra is shown to play an important role 
in maintaining the twisted SUSY invariance of the lattice 
action. In order to ensure the manifest anti-Hermiticity on 
the lattice, we have introduced two sets of oppositely 
oriented component fields attached to every possible link. 
Owing to this “ doubling" of the lattice component fields, 
the gauge kernels are shown to be free from the extra zero- 
eigenvalue problem. We have also addressed the trans
formation properties under parity of the fields involved in 
our construction. It was pointed out that a natural definition 
of parity on the lattice involves component fields of oppo
site parity. Parity invariance then puts a constraint between 
the coefficients in front of the actions for the oppositely 
oriented component fields.

It is important to ask whether one can recover the 
appropriate N  =  4 D  =  3 twisted SUSY Chern-Simons 
theory in the continuum limit. In particular, whether the 
continuum rotational symmetry and the entire N  =  4 D  =  
3 twisted SUSY invariance are restored in the continuum 
limit is an important issue, worth further study. Discussing 
these aspects requires a careful examination of possible 
quantum corrections on the lattice. Here we would like to 
point out an important correlation between the rotational 
symmetry and the twisted SUSY invariance of the lattice 
action (4.6), (4.7), (4.8), and (4.9). Since in our formulation 
we respect only part of the entire set of SUSY generators, 
not only the continuous rotational symmetry but also the 
discrete rotational symmetry (for the square lattice) are 
broken on the lattice. However, as one can see in Table IV 
and Fig. 3, the lattice action with the parameter choice a =  
— Y. n- which corresponds to the invariance (4.6), has a 
symmetry subgroup with a single 3-fold rotation axis, C3 =  
(E , C3, C3 ), of the octahedral group O. This is because all 
the gauge-fixing component fields ( c \  , b ^ )  are located 
on the diagonal link parallel to a =  while the gauge
fields ,4 . jL are located on the regular edges. The lattice 
action with a =  — X  n- which corresponds to the invari
ance (4.9), also has the same symmetry. Figure 5 shows the 
projected field configurations normal to a =  — £  n, where 
the 3-fold rotational symmetry is manifest. It is interesting 
to notice that the gauge-fixing component fields (c, c, b) 
and the supercharge s are projected onto a point, which

PHYSICAL REVIEW D 78, 065002 (2008)

TABLE VII. Behavior under parity of the component fields and supercharges in the continuum limit.

c il c d b h ,,(2)
‘V

-J2)
‘V ‘V o,2>■V 1?(D 1?(2)

dM
Parity - + + - - + - + + - - + + - - + -
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FIG. 5. Field configurations of Fig. 3 on a projected plane 
normal to a =  — X  «: All the edges are occupied by -4+7, •

corresponds to the fact that these component fields and the 
supercharge should behave as (pscudo-)scalars in the con
tinuum limit.

It should be stressed again that our latticc action is a 
gauge-fixed one. Namely, it is not invariant under gauge 
symmetry. Instead, it has N  =  4 D =  3 twisted supcrsym- 
mctry whose scalar transformation corresponds to the 
BRST transformation associated with the Landau-gaugc 
fixed Chern-Simons theory. Although further study is 
needed to clarify whether the entire N  =  4 D =  3 twisted 
SUSY invariancc can be properly restored in the contin
uum limit, the following three important features of our 
formulation may be explored to argue for the gauge invari
ancc in the continuum limit: (1) The Landau gauge-fixed 
action (2.1) enables us to make use of the N  =  4 D =  3 
twisted SUSY structure in building the latticc action;

(2 ) the remnant of the gauge symmetry in the original 
Chern-Simons action has turned into the scalar part of 
the N  =  4 D  =  3 twisted SUSY; (3) the infinitesimal 
BRST transformations arc preserved on the latticc. 
Therefore, at least formally, in our gauge-fixed formulation 
there is no need to be conccrncd about large gauge trans
formations, which would be far more difficult to realize 
dircctly on the latticc.

It is also important to ask whether the latticc formulation 
presented in this paper could really serve as a useful 
regularization schcmc; namely, whether the quantum as
pects such as the Chern-Simons cocfficicnt renormaliza
tion [40] could be calculated in this framework. Wc should 
also address the possibility that the entire latticc SUSY 
description presented in this paper could be formulated 
more rigidly in terms of a ccrtain noncommutativc 
(supcr)spacc formalism. The work is in progress.

Another interesting question for possible applications in 
physics is whether there exists a real or model system in 
condcnscd matter physics that has a topological phase 
dcscribcd by the Chern-Simons action with complcx gauge 
group.
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