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Polarized electric current in semiclassical transport with spin-orbit interaction
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Semiclassical solutions of two-dimensional Schrodinger equation with spin-orbit interaction and smooth 
potential arc considered. In the leading order, spin polarization is in-plane and follows the evolution of the 
electron momentum for a given subband. Out-of-plane spin polarization appears as a quantum correction, for 
which an explicit expression is obtained. Wc demonstrate how spin-polarized currents can be achieved with the 
help of a barrier or quantum point contact open for transmission only in the lower subband.
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I. INTRODUCTION

Achieving spin manipulation in nanodevices by means of 
electric fields (without using less selective magnetic fields) 
represents the ultimate goal of spintronics. Spin-orbit inter
action, which couples electron momentum to its spin, is one 
of the most promising tools for realizing spin-polarized 
transport.1'2 Several schemes leading either to spin accumu
lation or to polarization of the transmitted current induced by 
the spin-orbit interaction have been put forward. Predictions 
of electric field induced spin accumulation at the boundaries 
of a sample, which originates from asymmetric scattering 
from impurities3'4 (extrinsic spin-Hall effect) or from spin- 
orbit split band structure-’’-6 (intrinsic effect), has recently 
reached a stage of experimental realization.7 In-plane bulk 
spin polarization appears in two-dimensional systems with 
broken inversion symmetry.8 Spin polarization in quantum 
wires with low carrier density has been shown to occur due 
to the interfaces of spin-degenerate and spin-split regions.9 
Interfaces between two-dimensional regions with different 
spin-orbit splitting have also been used for that purpose, in 
the case of a sharp10-11 or an arbitrary12 interface, as was the 
scattering from a sample edge.13-14 Other proposals include 
polarization due to tunneling through a double-barrier 
structure1-’’-16 and tunneling between two quantum wires.17 
Reference 18 suggested a three-terminal device with a spin- 
orbit split central region as a spin filter, which was numeri
cally tested by Refs. 19 and 20. Reference 21 pointed to a 
possibility of generating spin-polarized currents by utilizing 
crossings of spin-orbit-split subbands belonging to different 
transverse channels. These proposals are still lacking experi
mental realization.

In the present paper we suggest a way to polarize electric 
currents by passing them through a region where, by increas
ing the external electrostatic potential, the upper spin-orbit- 
split subband is locally positioned above the Fermi level. The 
proposed method utilizes electric gating whose effect is two
fold: (i) it completely suppresses transmission via the upper 
spin-orbit-split subband, and (ii) it allows transmission only 
in a narrow interval of incident angles in the lower subband. 
In contrast to the proposals which advocate strong variations 
of the spin-orbit coupling and, thus, rely on strong gate volt
ages, our method requires only weak potentials of the order 
of a few millivolts (which is a typical scale of the Fermi 
energy). In addition, we predict a specific pinch-off behavior
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of the conductance, which would allow to detect polarized 
currents without actual measurement of spin.

We consider ballistic electron transport in gated two
dimensional electron gas with the Hamiltonian

p 2 mK2
H= —  + X(pxax -  px<jv) + —  + VU\ v). (1) 

2m ' ' 2

For the sake of simplicity we concentrate on the case of the 
“Rashba” spin-orbit interaction (the same method, however, 
can be used for more complicated interactions). Construction 
of semiclassical solutions of the Schrodinger equation with 
the Hamiltonian (1) follows the reasoning of the conven
tional WKB approach,22-2-’’ which is valid for a smooth po
tential, f t|W |-C m in (p3/ m ,p 2\).  The advantages of semi
classics are twofold. First, it allows us to obtain approximate 
analytical solutions for otherwise complicated problems. 
Second, as we will see, it turns out to be especially simple to 
achieve strong polarization of electron transmission in the 
semiclassical regime.

The Mexican hat shape of the effective kinetic energy in 
the case of spin-orbit interaction leads to a variety of unusual 
classical trajectories (see Fig. 2 below), which have never 
been investigated before. Our approach employs strong spin- 
orbit interaction (or smooth external potential) sufficient to 
affect individual electron trajectories, in contrast to previous 
semiclassical treatments26-27 which consider spin-orbit inter
action as a perturbation. Still we do not require the spin-orbit 
interaction to be comparable with the bulk value of the Fermi 
energy. To produce spin-polarized current, it will be suffi
cient to make spin-orbit interaction comparable with the ki
netic energy at some particular area of the system, for ex
ample, near the pinch-off of a quantum point contact.

II. SEMICLASSICAL WAVE FUNCTION

Without the external potential V, the electron spectrum 
consists of the two subbands, E±(px,p J  = (p±mX)2/2m.  The 
subbands meet at only one point, p = 0, and the spin in each 
subband is always aligned with one of the in-plane directions 
perpendicular to the momentum p. The semiclassical elec
tron dynamics22 naturally captures the essential features of 
this translationally invariant limit. The classical motion in 
each subband is determined by the equations of motion
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which follow from the effective Hamiltonian: 

(p  ± mk)2
H.ell - 2m

+ V(x:,y). (2)

Despite the fact that spin does not appear in this equation, 
one can easily construct semiclassical wave functions, which 
have spin pointed within the xy plane perpendicular to the 
momentum:

J S f h (3)

Here the action S is related to the momentum by p = VS, and 
p=u'u is the classical density for a family of classical trajec
tories corresponding to a given energy E. The action S obeys 
the classical Hamilton-Jacobi equation, (|VS[ ± m \)2/2m+ V 
=E. Application of the Hamiltonian (I) to the approximate 
wave function ij% gives, after some algebra,

Hfa = E f a -  — (V • pv)fa,+ h XFcr.fa, (4) 
2 P

where (summation over repeating indices is assumed) 

r  P  +  m \  „ „ ,  . P A P - P A P
F  = 0 , 3 {PsP;«j\ -  PxPAP,) ± - — r-------— • (5)2mkp ' ' 2pp

The second term in the rhs of Eq. (4) vanishes due to the 
continuity equation

V -p v  = 0 , v = p /m ± \p /p . (6)

The last (~cr.) term in (4) indicates that the spin of an ac
celerated electron cannot exactly stay in the plane of propa
gation and acquires a small ~ h W  projection onto the z 
axis. To take into account this out-of-plain spin precession 
one has to go beyond the approximation of Eq. (3), which is 
done by

(//= (!+  Ufa.) fa. (7)

Since (H -E ) fa :ij%= + 2Kpfu:fa, to the lowest order in h, 
one can relate the functions F  and /

/ =  ±F/2p, (8)

and find the out-of-plane spin density [F is found from Eq. 
(5)]

ft p
iji u  ± — F. 

2 p
(9)

Note that Eq. (9) does not describe the nonadiabatic tran
sitions between subbands. After the electron leaves the re
gion with nonzero potential gradient, VV^O, the in-plain 
spin orientation is restored.

The out-of-plane polarization of the electron flow in the 
external potential is a subject of the rapidly developing field 
of the spin-Hall effect.3-7 Our result, Eqs. (5) and (9), incor
porates previous calculations of Ref. 6 which were restricted 
to the one-dimensional form of the potential, V(.v), with p Y 
being the integral of motion. The validity of Eq. (9), how
ever, is not restricted to a simple one-dimensional case and

describes the out-of-plain polarization for any smooth two
dimensional potential (including confining potentials which 
create quantum wires, quantum dots, etc.). In particular, Eq. 
(9) may serve as a good starting point for an analytical cal
culation of the edge spin accumulation in ballistic quantum 
wires.28-29 We leave further investigation of these interesting 
effects for subsequent research.

Solutions of the form, Eq. (3), have clear and important 
consequences. During its motion, an electron changes the 
momentum p  but always remains in the same spin-subband. 
To change the subband the electron trajectory should pass 
through the degeneracy point where both components of mo
mentum vanish simultaneously, p = 0 , which is generically 
impossible. Moreover, with the proper use of potential barri
ers, one may realize a situation where electrons o f only one 
subband are transmitted and the others are totally reflected. 
This leads to strong polarization of the transmitted electron 
flow.

III. SHARVTN CONDUCTANCE

To give an example of such a spin-polarized current let us 
consider transmission through a barrier, V(.v), varying along 
the direction of a current propagation. We assume periodic 
boundary conditions in the perpendicular direction (y+Z. 
— y). As such a condition makes p Y the integral of motion, 
mixing of orbital channels, which is strongly suppressed for 
generic smooth potential (2), is now absent exactly. For a 
smooth potential V(.v) the conduction channels may either be 
perfectly transmitting or completely closed. The conserved 
transverse momentum takes the quantized values, pn 
= 2rrhn/L. Consider the functions

K ( p*) -
(p " ± m \)2

2m P = ^'Px+P
ia (10)

For n¥= 0 the function E"±(px) splits into two distinct 
branches. At any point x  the equation

E : ( P x ) = E f - V ( x )  (II)

yields solutions pLK and />*, corresponding to left- and right- 
moving electrons. Application of a small bias implies, e.g., 
the excess of right movers over left movers far to the left 
from the barrier. Particles are transmitted freely above the 
barrier if Eq. (11) has a solution, /?*, for any x. Let /i =Ef 

be the difference between the Fermi energy and the 
maximum of the potential. The nth channel in the upper 
branch opens when

f i=  (2 irh  \n\ + m \L ) z/2m L z (12)

For the lower branch E'i[p() Eq. (11) has four solutions (two 
for right and two for left movers) for \n \ <m\L!2Trh. and x 
close to the top of the barrier. However, far from the barrier 
(where the excess of right-movers is created) there are still 
only two crossings described by Eq. (11), one for right and 
one for left movers. As a result, all the extra electrons in
jected a t.v= -“  follow the evolution of a solution of Eq. (11) 
with the largest positive p K. For all \n \ <tn\LI2irh  such a 
solution does exist for any positive p,. Thus, at / i = 0 as many
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FIG, 1, Conductance (in units of e2lh). and spin polarization of 
the current vs gate voltage (in units of m \2/ 2). Dashed lines show 
the smoothed curves (14) and (15), solid lines show the quantized 
values for mXL/fi = ]Q.5ir. Dotted line shows the conductance 
without spin-orbit interaction,

as nf)=mkL/rrfi channels open up simultaneously. The chan
nels with higher values |h| >  mkL/lrdi  in the lower subband 
E'l open when

fj, = (2tt h |h| -  mkL)2/2mL2 (13)

According to the Landauer formula, ballistic conductance is 
given by the total number of open channels multiplied by the 
conductance quantum Gfj=e2lh

G = G„—
L I \2 fj,m + mk. 0 < fj,< mk-/2 

fj, >  ink2/!.
(14)

This dependence G(fi) is shown in Fig. 1. The striking evi
dence of the presence of spin-orbit interaction is the huge 
jump of the conductance at the pinch-off point, as opposed to 
the conventional square-root increase in the absence of spin- 
orbit coupling. This jump is a consequence of the “Mexican- 
hat” shape of the spectrum /L(/?A,/?,,). Accuracy of Eqs. (12) 
and (13) is sufficient to resolve the steps in the conductance 
due to the discrete values of |/i | = 0 ,1 ,2 , . . . ,  (conductance 
quantization), as shown in Fig. 1. The steps in G(/j,) are 
abrupt in the limit d V /d x^O .

Close to the pinch-off, at j x ^ m k 2, the conserved p v com
ponent of the electronic momentum varies for different trans
mitted channels within the range Therefore, far 
from the barrier, where the Fermi momentum is large 
Pf'^>mk, we have px'^>pv and transmitted electrons propa
gate in a very narrow angle interval 18\ < \m k 2/2Ef  <C 1. 
Since the electron spin is perpendicular to its momentum, we 
conclude that the current due to electrons from each of the 
subbands is almost fully polarized. The total polarization of 
the transmitted current is given by the difference of two cur
rents

(crv) = (ip’ a vvxip)/(ip’vxip) =m in(l, smk“/2fj,), (15)

which is also depicted in Fig. 1. This current polarization 
may also be viewed as a creation of in-plain nonequilibrium 
spin density, maximal on the barrier.

Vanishing transmission for electrons from the upper band 
for 0 <  f j ,<mk2/2 (14) resembles the total internal reflection 
suggested for creation of polarized electron beams in Ref. 
12. Unlike the latter case, in our proposal there is no need to 
collimate incident electron flow, since the upper band elec
trons are reflected at any angle.

Semiclassical formulas (14) and (15) are valid provided 
that there are many open transmission channels, and account 
correctly for the electrons with /?"¥= 0. The case n= 0, how
ever, requires special attention. The curve E?t(px) does not 
split into the lower and upper branches, but instead consists 
of two crossing parabolas shifted horizontally. Right movers 
from both parabolas are transmitted or reflected simulta
neously. The electron flow due to the channels with n =0 is, 
therefore, unpolarized. For small n ¥= 0 the crossing of two 
parabolas is avoided. However, the electrons from the upper 
subband E" may tunnel into the lower branch E'l in the vi
cinity of the point p (=0, which results in the decrease of 
spin-polarization of the current. Let the barrier near the top 
has a form V(x) = - m i l 2x2/2. Simple estimation shows that 
classically forbidden transition between the subbands do not 
change the net polarization of the current as long as 
M l -4̂  ink2.

Our results Eqs. (14) and (15) were obtained for the peri
odic boundary conditions. However, the boundary conditions 
do not play important role for the conductance (G^L)  if the 
width of the “wire” is large compared with the width of the 
barrier, i.e., if L>- \ h / mQ^> h / ink. If the transverse con
finement in the wide wire is ensured by the smooth 
potential30 the semiclassical transmitted scattering states may 
be constructed explicitly using the method of Ref. 34. How
ever, since the spin-orbit interaction in our approach appears 
already in the classical Hamiltonian (2), calculation of 
smoothed conductance (14) requires only a simple counting 
of classical trajectories.3-'’ Our next example below demon
strates such semiclassical treatment of realistic boundary 
conditions.

IV. QUANTUM POINT CONTACT

Let us consider probably the most experimentally relevant 
example of a quantum point contact, described by the poten
tial

V ( . T .  v )  :
mi rx"  ma)"v"

(16)

We will see that even in this simple model the electron flow 
in the presence of spin-orbit interaction acquires a number of 
interesting and peculiar features. Classical equations of mo
tion follow in the usual manner from the effective Hamil
tonian (2): f=(9//eff I dp, /? = -cWeff/ dr. We consider quantum 
point contact (QPC) close to the opening with only the lower 
E_ subband contributing to the conductance. A crucial prop
erty of the Hamiltonian / / eff, Eq. (2), is the existence of a 
circle of minima of the kinetic energy at |/?| =mk. Expanding 
around a point on this circle, cos a, p Yn=itik sin a,
one readily finds the equations of motion for V = p Kcos a  
+/?vsin a - i n k - ^ m k .
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FIG. 2. Three kinds of trajectories in the point contact, a, trans
mitted trajectory whose momentum is always collinear with the 
velocity, b, trajectory bouncing inside the QPC. This trajectory is 
periodic in the linearized approximation described in the text, while 
the exact calculation for finite amplitude shows its slow drift, c, 
transmitted trajectory whose momentum inside the contact is oppo
site to the velocity. Electrons flow from left to right. Arrows show 
momentum and spin orientations. Few equipotential lines are also 
shown.

V  + ( -  f l2cos ct  + w2sin ot )V  = 0, a = 0 .  (17)

The trajectory is found from the relations, x= 'Pcos a!nt, y 
=V sin aim.  We observe from Eq. (17) that only the trajec
tories within the angle

tan|a| <  tan aQ = fl/w (18)

are transmitted through QPC. Trajectories with larger angles 
are trapped (oscillate) within the point contact. Examples of 
both types of trajectories are presented in Fig. 2. Quantiza
tion of trapped trajectories would give rise to a set of (ex
tremely) narrow resonances in the conductance, specific for 
spin-orbit interaction. We leave the detailed investigation of 
these narrow features for future research. Below we consider 
only the smoothed conductance.

To calculate the current J through QPC one has to inte
grate over the phase space of the states which are transmitted 
from left to right.

J: j  dy J evx
ctp

(27Tfl)2
■ GV, (19)

and have the energy within the interval / n - e V / 2 < E ^ <  /n 
+eV/2, with V standing for the applied voltage. In this sec
tion we define n  as the difference between the Fermi energy 
and the value of the potential at the saddle point n = E F 
-  V(0,0). The integral is most simply evaluated at x=0 (with 
the velocity given by v x=Vcos  a/m).  The allowed absolute 
values of the momentum are

2fi -  e V - m a ) 2y 2 < V 2/m < 2/ll + e V - m a ) 2y 2. (20)

The angle interval of transmitting trajectories consists of two 
domains: ^ > 0 ,  and \ a - T r \ < a 0, V < 0 .  The ap
pearance of the latter range of integration is highly non
trivial. A simple reasoning shows that the particles with the 
velocity antiparallel to the momentum (uA> 0 , px< 0) should 
not contribute to the conduction in the case of a transition 
through a one-dimensional barrier V=V(.v), see Eq. (14). De

spite corresponding to the right-moving electrons, these 
states do not originate in the left lead. Indeed, they exist only 
in the vicinity of x=0, but disappear as .v— and, thus, 
cannot be populated by the excess electrons (except due to 
the tunneling transitions which are irrelevant in the semiclas
sical regime). Such trajectories, however, do exist in QPC, 
Eq. (16), as demonstrated in Fig. 2. After passing through 
QPC the trajectory bounces at the wall reversing its velocity. 
This kind of classical turning points, where both components 
of the velocity vanish simultaneously, are specific for the 
effective Hamiltonian (2). The existence of transmitting tra
jectories with la-Tr) < a ,o, £?<0 results in the doubling of 
the conductance. Simple calculation yields

G = G,
4mk  sin a0 j2/x
1 7rh <i>

(21)

The presence of a threshold angle a^, as well as the square- 
root dependence of G(fi), are in a sharp contrast to the well- 
known result G=GqIi / irfi u), in the absence of spin-orbit in
teraction.

Equation (21) is valid in the case of many open channels. 
Since Eq. (17) describes only the linearized electron dynam
ics, Eq. (21) is formally valid if /n<t.m\2. Nevertheless, the 
current remains totally polarized for 0 < f i < m \ 2/2 [similar 
to Eq. (15)]

(ax) = ( ^ a xvxm ^ v ^ ) =  I- (22)

With increasing the chemical potential, f i > m \ 2/2, transmis
sion via the upper subband E+ kicks in and the degree of 
polarization gradually decreases, similarly to Eq. (15), 
though with different, more complicated, dependence of 
spin-polarization on fi. Note that transmission of different 
orbital channels through QPC is independent as long as the 
confining potential (16) is smooth over a distance of the 
characteristic spin-orbit length hhn'K. It is easy to see that 
this requirement is equivalent to the condition that 
(w,fl)<Cm \ 2/h. This is also a condition of large conduc
tance G » G 0.

V. DISCUSSION

In both analyzed systems (of ballistic Sharvin conduc
tance and of QPC) polarization of current is achieved when 
many channels are transmitting. As a consequence of the 
Kramers degeneracy, transmission eigenvalues always ap
pear in pairs in the presence of time-reversal symmetry, lead
ing to the prohibition of the spin-current in the lowest (n 
= 0) conducting channels (cf. Ref. 18). In the case of higher 
channels, however, the degenerate transmission eigenvalues 
belong to the same spin-orbit subband and carry, respec
tively, the same spin polarization. For example, in the case of 
the QPC any transmitted trajectory x(t),y(t) (e.g., one of the 
two shown in Fig. 2) is accompanied by its mirror reflection 
x(t),-y(t)  with identical transmission.

In InAs-based heterostructures, typical value of spin-orbit 
coupling36 is \ f r  =2 X 10“11 eV m. Characteristic spin-orbit 
length lR= T ih n \ =  100 nm and energy m'"k2!2=QA meV. In 
order to have strongly spin-polarizing QPC, the latter should
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support many transmitting channels at chemical potential /jl  

~ m  "k2!2'S> fi ct). This condition can, equivalently, be written 
in terms of the width of the point contact Ay, see Eq. (16), as 
A y ^> lK. This is a realistic condition for typical ballistic con
strictions.

To conclude, we have proposed a way to polarize currents 
in the ballistic regime by means of using electric gates to 
suppress transmission in the upper spin-orbit-split subband. 
The polarization is stronger when there are many transmit
ting channels in the lower subband. This is exactly the con
dition when the semiclassical expansion in powers of ft is 
applicable. An obvious advantage of our scheme is that we

do not require the spatial modulation of the strength of spin- 
orbit interaction. Neither do we need a restricted angle of 
incident electrons in order to have a polarized current.
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