970 research outputs found

    Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

    Get PDF
    Forests are the most diverse terrestrial ecosystems and their biological diversity includes trees, but also other plants, animals, and micro-organisms. One-third of the forested land is in boreal zone; therefore, changes in biological diversity in boreal forests can shape biodiversity, even at global scale. Several forest attributes, including size variability, amount of dead wood, and tree species richness, can be applied in assessing biodiversity of a forest ecosystem. Remote sensing offers complimentary tool for traditional field measurements in mapping and monitoring forest biodiversity. Recent development of small unmanned aerial vehicles (UAVs) enable the detailed characterization of forest ecosystems through providing data with high spatial but also temporal resolution at reasonable costs. The objective here is to deepen the knowledge about assessment of plot-level biodiversity indicators in boreal forests with hyperspectral imagery and photogrammetric point clouds from a UAV. We applied individual tree crown approach (ITC) and semi-individual tree crown approach (semi-ITC) in estimating plot-level biodiversity indicators. Structural metrics from the photogrammetric point clouds were used together with either spectral features or vegetation indices derived from hyperspectral imagery. Biodiversity indicators like the amount of dead wood and species richness were mainly underestimated with UAV-based hyperspectral imagery and photogrammetric point clouds. Indicators of structural variability (i.e., standard deviation in diameter-at-breast height and tree height) were the most accurately estimated biodiversity indicators with relative RMSE between 24.4% and 29.3% with semi-ITC. The largest relative errors occurred for predicting deciduous trees (especially aspen and alder), partly due to their small amount within the study area. Thus, especially the structural diversity was reliably predicted by integrating the three-dimensional and spectral datasets of UAV-based point clouds and hyperspectral imaging, and can therefore be further utilized in ecological studies, such as biodiversity monitoring

    Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

    Get PDF
    Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using 'non-professional' instruments and automating estimates of dendrometric parameters

    PHOTOGRAMMETRIC POINT CLOUD CLASSIFICATION BASED ON GEOMETRIC AND RADIOMETRIC DATA INTEGRATION

    Get PDF
    The extraction of information from point cloud is usually done after the application of classification methods based on the geometric characteristics of the objects. However, the classification of photogrammetric point clouds can be carried out using radiometric information combined with geometric information to minimize possible classification issues. With this in mind, this work proposes an approach to the classification of photogrammetric point cloud, generated by correspondence of aerial images acquired by Remotely Piloted Aircraft System (RPAS). The proposed approach for classifying photogrammetric point clouds consists of a pixel-supervised classification method, based on a decision tree. To achieve this, three data sets were used, one to define which attributes allow discrimination between the classes and the definition of the thresholds. Initially, several attributes were extracted based on a training sample. The average and standard deviation values for the attributes of each class extracted were used to guide the decision tree definition. The defined decision tree was applied to the other two point clouds to validate the approach and for thematic accuracy assessment. The quantitative analyses of the classifications based on kappa coefficient of agreement, applied to both validation areas, reached values higher than 0.93

    a critical analysis of internal reliability for uncertainty quantification of dense image matching in multi-view stereo

    Full text link
    Nowadays, photogrammetrically derived point clouds are widely used in many civilian applications due to their low cost and flexibility in acquisition. Typically, photogrammetric point clouds are assessed through reference data such as LiDAR point clouds. However, when reference data are not available, the assessment of photogrammetric point clouds may be challenging. Since these point clouds are algorithmically derived, their accuracies and precisions are highly varying with the camera networks, scene complexity, and dense image matching (DIM) algorithms, and there is no standard error metric to determine per-point errors. The theory of internal reliability of camera networks has been well studied through first-order error estimation of Bundle Adjustment (BA), which is used to understand the errors of 3D points assuming known measurement errors. However, the measurement errors of the DIM algorithms are intricate to an extent that every single point may have its error function determined by factors such as pixel intensity, texture entropy, and surface smoothness. Despite the complexity, there exist a few common metrics that may aid the process of estimating the posterior reliability of the derived points, especially in a multi-view stereo (MVS) setup when redundancies are present. In this paper, by using an aerial oblique photogrammetric block with LiDAR reference data, we analyze several internal matching metrics within a common MVS framework, including statistics in ray convergence, intersection angles, DIM energy, etc.Comment: Figure

    Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data

    Get PDF
    Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantationsinfo:eu-repo/semantics/publishedVersio

    Accuracy of High-Altitude Photogrammetric Point Clouds in Mapping

    Get PDF
    During the past decade, airborne laser scanning (ALS) has established its status as the state-of-the-art method for detailed forest mapping and monitoring. Current operational forest inventory widely utilizes ALS-based methods. Recent advances in sensor technology and image processing have enabled the extraction of dense point clouds from digital stereo imagery (DSI). Compared with ALS data, the DSI-based data are cheap and the point cloud densities can easily reach that of ALS. In terms of point density, even the high-altitude DSI-based point clouds can be sufficient for detecting individual tree crowns. However, there are significant differences in the characteristics of ALS and DSI point clouds that likely affect the accuracy of tree detection. In this study, the performance of high-altitude DSI point clouds was compared with low-density ALS in detecting individual trees. The trees were extracted from DSI-and ALS-based canopy height models (CHM) using watershed segmentation. The use of both smoothed and unsmoothed CHMs was tested. The results show that, even though the spatial resolution of the DSI-based CHM was better, in terms of detecting the trees and the accuracy of height estimates, the low-density ALS performed better. However, utilizing DSI with shorter ground sample distance (GSD) and more suitable image matching algorithms would likely enhance the accuracy of DSI-based approach.Peer reviewe
    corecore