158,448 research outputs found

    Learning retention in mathematics over consecutive weeks: Impact of motivated forgetting

    Get PDF
    Retention is the ability to retain information in the mind, either in short-term or long-term memory. Memory in the long-term is more ideal. Thus, this has become a challenge for educators on how to transfer ideas in short-term memory to long-term memory. To concretize the effect of time on mathematics learning retention, a randomized pre-test post-test x groups design, using matched subjects was used in the study. Seven matched groups of students were identified, and took the pre-test as the basis of the initial amount of learning, after which a group of students was assigned to take the post-test every week for seven weeks. The post-tests results were the basis of the amount of retained learning of the students. The study found out that: i) The amount of retained learning among the students diminished following a negative exponential curve; ii) The amount of retained learning was comparably equal with the initial amount of learning up to the second week; iii) The amount of retained learning became incomparable with the initial amount of learning after the third week; and iv) The concepts in the knowledge level had a great chance to be remembered while the concept with analysis level was prone to motivated forgetting

    Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A)

    Get PDF
    A template-dependent RNA polymerase has been isolated from poliovirus-infected cells by assaying for the ability of the enzyme to copy poly(A) complexed to an oligo(U) primer. The polymerase was solubilized with detergent, and RNA was removed by precipitation with 2 M LiCl. The solubilized polymerase required both poly(A) and oligo(U) for activity and was stimulated by Mg2+ but was inhibited by Mn2+. Poly(A)· oligo(U)-dependent poly(U) polymerase was not found in extracts of HeLa cells until about 2 hr after poliovirus infection, and then there was a linear increase in activity until about 5 hr. Analysis of the polymerase by glycerol gradient centrifugation showed that the majority of the activity sedimented at about 4 S, indicating that it was no longer complexed with high-molecular-weight RNA or cellular membranes. This poly(A)· oligo(U)-dependent polymerase activity could represent an important component of the poliovirus RNA-dependent RNA polymerase

    ABA triblock copolymers: from controlled synthesis to controlled function

    Get PDF
    The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated

    A call for the aggressive treatment of oligometastatic and oligo-recurrent non-small cell lung cancer.

    Get PDF
    Metastatic non-small cell lung cancer (NSCLC) carries a dismal prognosis. Clinical evidence suggests the existence of an intermediate, or oligometastatic, state when metastases are limited in number and/or location. In addition, following initial curative therapy, many patients present with limited metastatic disease, or oligo-recurrence. Metastasis-directed, anti-cancer therapies may benefit these patients. A growing evidence-base supports the use of hypofractionated, image-guided radiotherapy (HIGRT) for a variety of malignant conditions including inoperable stage I NSCLC and many metastatic sites. When surgical resection is not possible, HIGRT offers an effective alternative for local treatment of limited metastatic disease. Early studies have produced promising results when HIGRT was delivered to all known sites of disease in patients with oligometastatic/oligo-recurrent NSCLC. In a population of patients formerly considered rapidly terminal, these studies report five year overall survival rates of 13-22%. HIGRT for metastatic NSCLC warrants further study. We call for large, intergroup, and even international randomized trials incorporating HIGRT and other metastasis-directed therapies into the treatment of patients with oligometastatic/oligo-recurrent NSCLC

    Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains

    Full text link
    In this paper we present results of large-scale correlated calculations of triplet photoinduced absorption (PA) spectrum of oligomers of poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In particular, the high-energy features in the triplet PA spectrum of oligo-PPVs are the focus of this study, which, so far, have not been investigated theoretically, or experimentally. The calculations were performed using the Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken into account by means of multi-reference singles-doubles configuration interaction procedure (MRSDCI), without neglecting any molecular orbitals. The computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting of alternating peaks of high and low intensities. The predicted higher energy features of the triplet spectrum can be tested in future experiments. Additionally, theoretical estimates of exciton binding energy are also presented.Comment: To appear in Phys. Rev.

    Synthesis of hetero-bifunctional, end-capped oligo-EDOT derivatives

    Get PDF
    Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive materials for tissue engineering applications, and as model systems for studying the properties of the widely used polymer PEDOT. We report here the facile synthesis of a series of keto-acid end-capped oligo-EDOT derivatives (n = 2-7) through a combination of a glyoxylation end capping strategy and iterative direct arylation chain extension. Importantly, these structures not only represent the longest oligo-EDOTs reported, but are also bench stable in contrast to previous reports on such oligomers. The constructs reported here can undergo subsequent derivatization for integration into higher order architectures, such as those required for tissue engineering applications. The synthesis of hetero-bifunctional constructs, as well as those containing mixed monomer units is also reported, allowing further complexity to be installed in a controlled manner. Finally, we describe the optical and electrochemical properties of these oligomers and demonstrate the importance of the keto-acid in determining their characteristics

    Mechanically bonded macromolecules

    Get PDF
    Mechanically bonded macromolecules constitute a class of challenging synthetic targets in polymer science. The controllable intramolecular motions of mechanical bonds, in combination with the processability and useful physical and mechanical properties of macromolecules, ultimately ensure their potential for applications in materials science, nanotechnology and medicine. This tutorial review describes the syntheses and properties of a library of diverse mechanically bonded macromolecules, which covers (i) main-chain, side-chain, bridged, and pendant oligo/polycatenanes, (ii) main-chain oligo/polyrotaxanes, (iii) poly[c2]daisy chains, and finally (iv) mechanically interlocked dendrimers. A variety of highly efficient synthetic protocols—including template-directed assembly, step-growth polymerisation, quantitative conjugation, etc.—were employed in the construction of these mechanically interlocked architectures. Some of these structures, i.e., side-chain polycatenanes and poly[c2]daisy chains, undergo controllable molecular switching in a manner similar to their small molecular counterparts. The challenges posed by the syntheses of polycatenanes and polyrotaxanes with high molecular weights are contemplated

    OLIgo mass profiling (OLIMP) of extracellular polysaccharides.

    Get PDF
    The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)(1) (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself(2), and is amenable to high-throughput analyses(3). While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall. OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes(4). For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase(5, 11, 12, 13), xylan using an endo-beta-(1-4)-xylanase (6,7), or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase (8). Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined (9)
    corecore