310 research outputs found

    Security-analysis of a class of cryptosystems based on linear error-correcting codes

    Get PDF

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Advanced wireless communications using large numbers of transmit antennas and receive nodes

    Get PDF
    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. First, we propose practical open-loop and closed-loop training frameworks to reduce the overhead of the downlink training phase. We then discuss efficient CSI quantization techniques using a trellis search. The proposed CSI quantization techniques can be implemented with a complexity that only grows linearly with the number of transmit antennas while the performance is close to the optimal case. We also analyze distributed reception using a large number of geographically separated nodes, a scenario that may become popular with the emergence of the Internet of Things. For distributed reception, we first propose coded distributed diversity to minimize the symbol error probability at the fusion center when the transmitter is equipped with a single antenna. Then we develop efficient receivers at the fusion center using minimal processing overhead at the receive nodes when the transmitter with multiple transmit antennas sends multiple symbols simultaneously using spatial multiplexing

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Quantum circuit optimization with deep reinforcement learning

    Get PDF
    A central aspect for operating future quantum computers is quantum circuit optimization, i.e., the search for efficient realizations of quantum algorithms given the device capabilities. In recent years, powerful approaches have been developed which focus on optimizing the high-level circuit structure. However, these approaches do not consider and thus cannot optimize for the hardware details of the quantum architecture, which is especially important for near-term devices. To address this point, we present an approach to quantum circuit optimization based on reinforcement learning. We demonstrate how an agent, realized by a deep convolutional neural network, can autonomously learn generic strategies to optimize arbitrary circuits on a specific architecture, where the optimization target can be chosen freely by the user. We demonstrate the feasibility of this approach by training agents on 12-qubit random circuits, where we find on average a depth reduction by 27% and a gate count reduction by 15%. We examine the extrapolation to larger circuits than used for training, and envision how this approach can be utilized for near-term quantum devices

    Portable Waveform Development for Software Defined Radios

    Get PDF
    This work focuses on the question: "How can we build waveforms that can be moved from one platform to another?\u27\u27 Therefore an approach based on the Model Driven Architecture was evaluated. Furthermore, a proof of concept is given with the port of a TETRA waveform from a USRP platform to an SFF SDR platform

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Publications of the Jet Propulsion Laboratory 1976

    Get PDF
    The formalized technical reporting, released January through December 1975, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory is described and indexed. The following classes of publications are included: (1) technical reports; (2) technical memorandums; (3) articles from bi-monthly Deep Space Network (DSN) progress report; (4) special publications; and (5) articles published in the open literature. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author. Unless designated otherwise, all publications listed are unclassified
    corecore