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ABSTRACT

Choi, Junil Ph.D., Purdue University, May 2015. Advanced Wireless Communications
Using Large Numbers of Transmit Antennas and Receive Nodes. Major Professor:
David J. Love.

The concept of deploying a large number of antennas at the base station, often

called massive multiple-input multiple-output (MIMO), has drawn considerable in-

terest because of its potential ability to revolutionize current wireless communication

systems. Most literature on massive MIMO systems assumes time division duplex-

ing (TDD), although frequency division duplexing (FDD) dominates current cellular

systems. Due to the large number of transmit antennas at the base station, currently

standardized approaches would require a large percentage of the precious downlink

and uplink resources in FDD massive MIMO be used for training signal transmissions

and channel state information (CSI) feedback. First, we propose practical open-loop

and closed-loop training frameworks to reduce the overhead of the downlink training

phase. We then discuss efficient CSI quantization techniques using a trellis search.

The proposed CSI quantization techniques can be implemented with a complexity

that only grows linearly with the number of transmit antennas while the performance

is close to the optimal case. We also analyze distributed reception using a large

number of geographically separated nodes, a scenario that may become popular with

the emergence of the Internet of Things. For distributed reception, we first propose

coded distributed diversity to minimize the symbol error probability at the fusion

center when the transmitter is equipped with a single antenna. Then we develop effi-

cient receivers at the fusion center using minimal processing overhead at the receive

nodes when the transmitter with multiple transmit antennas sends multiple symbols

simultaneously using spatial multiplexing.



1

1. INTRODUCTION

The concept of wireless systems employing a large number of transmit antennas, often

dubbed massive multiple-input multiple-output (MIMO) systems, has been evolving

over the past few years. It was found in [1] that adding more antennas at the base

station is always beneficial even with very noisy channel estimation because the base

station can recover information even with a low signal-to-noise-ratio (SNR) once it has

sufficiently many antennas. This motivates the concept of using a very large number

of transmit antennas, where the number of antenna elements can be at least an order

of magnitude more than the current cellular systems (10s-100s) [2]. Massive MIMO

systems have the potential to revolutionize cellular deployments by accommodating

a large number of users in the same time-frequency slot to boost the network capac-

ity [3] and by increasing the range of transmission with improved power efficiency [4].

Recently, fundamental limits, optimal transmit precoding and receive strategies, and

real channel measurement issues for massive MIMO systems were studied and sum-

marized in [5] (see also the references therein).

Note that the optimal benefits of MIMO and massive MIMO systems can be

achieved only when the base station and the user (or multiple users in multiuser

MIMO systems) both know the channel state information (CSI) between the two

perfectly. However, it is impossible for the base station and the user to know the

CSI perfectly in practice. Instead, the user acquires the CSI through a training phase

in which the base station transmits training signals that are known at the user a

priori. To provide transmit-side CSI, the base station can learn the CSI from limited

feedback in frequency division duplexing (FDD) [6] or leverage channel reciprocity in

time division duplexing (TDD) [2].

Most of the massive MIMO research assumes TDD systems that rely on channel

reciprocity for the base station to acquire CSI. Ideally, pilot contamination, which is
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caused by using non-orthogonal uplink pilot signals in neighbouring cells, is the only

factor that limits TDD massive MIMO system performance [2, 7]. Some works that

mitigate pilot contamination have been proposed recently [8, 9]. However, in prac-

tice, there are other system imperfections that limit the performance of TDD massive

MIMO systems. Because of calibration error in the downlink/uplink RF chains, the

downlink channel estimated by the uplink channel using channel reciprocity may not

be accurate [10]. Hardware impairments also can limit the performance [11,12]. More-

over, the user is not able to learn the instantaneous downlink channel (because there

is no downlink training for CSI estimation in TDD massive MIMO) [7], which might

cause a significant error in data decoding at the user. In addition, FDD dominates

current wireless cellular systems. Thus, it is of great interest to explore backwards

compatible massive MIMO upgrades for FDD wireless communication systems.

To implement FDD massive MIMO systems, we need to develop 1) a novel train-

ing technique for downlink channel estimation and 2) an efficient CSI quantization

method. Note that the overhead of downlink training (relying on conventional uni-

tary training techniques) and CSI quantization must both scale proportionally to the

number of transmit antennas to enable accurate channel estimation at the user and

to maintain a certain level of CSI quantization loss [13, 14]. Because of the very

large number of antennas, the overhead for both unitary training and vector quan-

tized (VQ) codebook-based CSI feedback might overwhelm the downlink and uplink

resources in massive MIMO systems. Moreover, the complexity of CSI quantization

using unstructured VQ codebooks increases exponentially with the feedback over-

head (or the number of transmit antennas). The heavy training/feedback overhead

and CSI quantization complexity problems should be solved to implement practical

FDD massive MIMO systems.

Although we would be able to deploy a large number of antennas at the base

station, it may be difficult to deploy many antennas at a mobile such as a smartphone

or tablet due to its limited space. The limitation can be overcome by exploiting the

emergence of the Internet of Things (IoT). As more and more internet-enabled things
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are commonly used (e.g., computers, smartphones, tablets, home appliances, and

more), the IoT will change the paradigm of communication systems [15]. In the IoT

environment, devices could be used as distributed transmit and/or receive entities

allowing massive distributed MIMO systems to be implemented.

There is a growing need for advanced distributed transmission and/or reception

techniques that can be applied to a wide array of wireless signal processing scenarios

including cellular systems, target detection in radar systems, wireless sensor networks,

and military communications. Coordinated multipoint (CoMP) in the 3GPP stan-

dard [16–18] enables multiple base stations to cooperate with each other to support

cell edge users using techniques such as joint transmission (JT) [19,20] or coordinated

scheduling/coordinated beamforming (CS/CB) [21,22]. Distributed antenna systems

(DAS) are also adopted to boost performance in cellular systems [23–25]. The geo-

graphically separated radio entities in radar systems can obtain different information

of a target (or multiple targets) and make better decisions, e.g., location or speed of

the target [26–28]. In wireless sensor networks, transmission/reception techniques are

even more crucial because sensors are usually very cheap and only can perform simple

operations [29–32]. Military communications where a squad of radio units serves as

a distributed array in battlefields can be considered as a form of distributed multiple

antenna systems [33, 34].

In what follows, we will develop efficient downlink training and CSI quantization

techniques to implement practical FDD massive MIMO systems. Then, we will de-

scribe distributed reception taking a large number of geographically separated receive

nodes into account. We will focus on two different scenarios, i.e., the cases of single

and multiple transmit antennas, for distributed reception.

1.1 Downlink Training for Massive MIMO

Many papers have been dedicated to deriving the optimal training signals for

open-loop/single-shot training frameworks and verifying their channel estimation per-
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formance in FDD MIMO systems [13,35–38]. Open-loop training means that there is

no feedback information about the preferable training signal, and single-shot training

refers to the case when the user estimates the channel only based on the current

received training signal and discards the past received training signals. In open-

loop/single-shot training, it was shown in [13] that training signals should be orthog-

onal to each other, and the optimal training length in time should be the same as

the number of transmit antennas in uncorrelated Rayleigh fading channels. When

channels are spatially correlated and the base station knows the correlation statistic

perfectly, [35] and [38] showed that the optimal training dimension can be reduced

when the number of statistically dominant subspaces is smaller than the number of

transmit antennas. In temporally correlated channels, a Kalman filter or particle fil-

ter can be used at the user to track the channel variation between the training signal

intervals [39, 40].

The amount of temporal overhead for downlink training has been assumed negli-

gible in past MIMO scenarios because past systems used small numbers of transmit

antennas. However, in FDD massive MIMO systems, the overhead of the training du-

ration could overwhelm the precious downlink resources due to the large number of

transmit antennas. Therefore, we propose practical open-loop and closed-loop train-

ing approaches with successive channel estimation for FDD massive MIMO in order

to reduce the overhead of the downlink training phase.

We consider practical MIMO channels that are correlated in time and space.

Moreover, we assume that the long-term channel statistics are known only to the

user. This assumption is different from [35, 38, 41] that assume perfect knowledge

of the spatial correlation at the base station. Having spatial correlation knowledge

at the base station may not be practical for FDD massive MIMO systems because

the user would have to explicitly feed back the knowledge of the spatial correlation

matrix to the base station. Since the number of entries of the spatial correlation

matrix grows quadratically with the number of transmit antennas, feedback of the
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spatial correlation matrix might not be acceptable in massive MIMO systems.1 The

spatial and temporal correlation vary in time in practice, even though they are long-

term channel statistics, which makes it even harder for the base station to acquire

such statistics. Thus, we assume the base station does not have any knowledge of

those statistics throughout this study.

1.2 CSI Quantization for Massive MIMO with Large Feedback Overhead

There is a large body of literature devoted to accurate CSI quantization for closed-

loop MIMO FDD systems with a relatively small number of antennas [6]. Most

approaches employ a common VQ codebook at the transmitter and the receiver, and

the explicit feedback sequence is simply the binary index of the codeword chosen in

the codebook. Thus, the main focus has been on codebook design. For i.i.d. Rayleigh

fading channel models, deterministic codebook techniques using Grassmannian line

packing (GLP) were developed in [43–45], and the performance of random vector

quantization (RVQ) codebooks was analyzed in [14,46]. Limited feedback codebooks

that adapt to spatially correlated channels were studied in [47–49], and temporal

correlated channels were developed in [50–57].

It has been shown in [46] that an RVQ codebook is asymptotically optimal for

i.i.d. Rayleigh fading channels when the number of transmit antennas gets large,

assuming a fixed number of feedback bits per antenna. However, existing codebook-

based techniques do not scale to approach the RVQ benchmark. In order to maintain

the same level of channel quantization error, the feedback overhead must increase

proportional to the number of transmit antennas [14, 58]. While the linear increase

in feedback overhead with the number of antennas may be acceptable as we scale

to massive MIMO, the corresponding exponential increase in codebook size makes a

direct look-up approach for feedback generation infeasible.

1When statistical reciprocity is available, it is also possible to estimate the downlink spatial corre-
lation matrix by the uplink correlation matrix to sidestep this problem [42].
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In order to address this gap in source coding techniques, it is natural to turn to the

duality between source and channel coding. Just as RVQ provides a benchmark for

source coding, random coding produces information-theoretic benchmarks for channel

coding. However, there are thousands of papers dedicated to practical channel code

designs that aim to approach these benchmarks, with codes such as convolutional

codes, Reed-Solomon codes, turbo codes, and LDPC codes implemented in practice

[59]. While these ideas can and have been leveraged for source coding, the measures

of distortion used have been the Hamming or Euclidean distortion. Our contribution

in this work is to establish and exploit the connection between source coding on the

Grassmannian manifold (which is what is needed for the limited feedback application

of interest to us) and channel coding for noncoherent communication. We coin the

term noncoherent trellis-coded quantization (NTCQ) for the class of schemes that we

propose and investigate. Our approach avoids the computational bottleneck of look-

up based codebooks, with encoding complexity scaling linearly with the number of

antennas, and its performance is near-optimal, approaching that of RVQ.

1.3 CSI Quantization for Massive MIMO with Reduced Feedback Over-

head

NTCQ relies on standard constellation points such as PSK or QAM to quantize

a channel vector, which gives a minimum feedback overhead of one bit per channel

entry and can not be formulated as a straightforward extension of existing 3GPP

codebooks. Thus, we propose a trellis-extended codebook (TEC) for FDD massive

MIMO.

The proposed TEC adopts the same path metric as NTCQ for trellis search,

but TEC utilizes low-dimensional VQ codebooks rather than constellation points.

Therefore, TEC can easily satisfy backward compatibility by exploiting standard-
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ized LTE or LTE-Advanced codebooks2 and achieve a fractional number of bits per

channel entry quantization to allow practical feedback overhead. TEC can utilize

other codebooks, e.g., a GLP codebook [43, 44], a RVQ codebook [14, 58], a VQ op-

timized codebook [60]. We develop a codeword-to-branch mapping rule to maximize

the performance of TEC. The numerical results show that the mapping rule gives a

non-negligible gain even with the same codebook. We also investigate a codebook

design methodology (instead of reusing conventional codebooks) that is optimized for

TEC.

Moreover, we propose trellis-extended successive phase adjustment (TE-SPA)

which functions as a differential version of TEC. TE-SPA quantizes channels suc-

cessively in time and can reduce quantization loss while using fewer feedback bits per

CSI vector than TEC. We show that TE-SPA can be applied to spatially correlated

channels as well without any changes.

1.4 Distributed Reception with Single Transmit Antenna

For distributed reception with a single transmit antenna, we first focus on the

techniques to provide diversity advantage in fading channels. We assume that there

is a transmitter that wants to send a signal to a fusion center with the help of multi-

ple geographically separated receive nodes. Each node receives the broadcasted signal

from the transmitter through a fading channel and forwards the processed received

signal to the fusion center. The fusion center then tries to decode the transmitted sig-

nal using the forwarded information from the receive nodes and, if available, channel

information.

This scenario has been studied in [61] and [62] for cases when the number of pro-

cessing bits at each receive node is greater than or equal to the number of bits repre-

senting data symbol constellation. Our focus is on the more practical case when each

2Instead of having different CSI quantization methods for different number of transmit antennas, it
is desirable to reuse standardized feedback frameworks, e.g., LTE or LTE-Advanced codebooks, in
practice.
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receive node quantizes the received signal before forwarding it to the fusion center.

Thus, the scenario is also related to the compress-and-forward relaying scheme [63–67].

However, the works in [63, 64] only show theoretical achievable rate regions without

deeply studying any practical compression technique. Implementable schemes are

proposed in [65–67] considering only a single receive node. Moreover, compress-and-

forward relaying usually assumes that the fusion center (destination) receives signals

not only from the receive nodes but also from the transmitter directly, which is dif-

ferent from our assumption. We are interested in developing practical compression

techniques that can accommodate a large number of receive nodes without having a

direct path between the transmitter and the fusion center.

We show that there is a strong connection between the problem of minimizing sym-

bol error probability at the fusion center in distributed reception and channel coding

in coding theory. In coding theory, time diversity in fading channels is achieved by

transmitting channel coded data bits over multiple channel instances [68]. Similarly,

our approach can obtain spatial diversity by exploiting multiple receive nodes that

experience weakly correlated or independent channels in distributed reception. This

connection allows us to utilize well-established channel coding techniques to develop

good distributed reception strategies and achieve the maximum diversity gain. The

achieved diversity gain by distributed reception would give range and/or data rate

advantages.

The connection between the distributed reception problem and channel coding has

been first explored in [69–71] for the distributed fault-tolerant classification problem

in wireless sensor networks. A codeword set matrix is generated by two algorithms,

i.e., cyclic column replacement and simulated annealing, for single bit and multiple

bits receive node processing in [69] and [70], respectively. Each codeword (or a sym-

bol in a signal constellation set) forms a row in the codeword set matrix and each

column of the matrix represents the decision rule employed at each receive node. The

proposed approaches in [69, 70], however, are heuristic and do not guarantee opti-

mality for communication in any sense. Moreover, those approaches need complex
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offline optimization to generate code matrices for every different number of the receive

nodes.

In this work, we consider three general assumptions: 1) fading channels between

the transmitter and the receive nodes, 2) arbitrary M-ary data symbol transmission

from the transmitter, and 3) multiple bit processing at the receive nodes. To support

these scenarios effectively, we propose a unified framework of compression at the

receive nodes and decoding at the fusion center. We dub the unified framework as

coded receive diversity.

1.5 Distributed Reception with Multiple Transmit Antennas

Most of the prior work on distributed reception for wireless communication sys-

tems, including our coded receive diversity, considered only detection/estimation of a

single-dimensional parameter or single transmitted symbol. To our knowledge, there

are few papers that discuss multi-dimensional estimation problems. A few exceptions

can be found in [72, 73] which consider the estimation of a multi-dimensional vector

in wireless sensor networks with additive noise at each sensor.

Thus, we consider distributed MIMO communication systems where the trans-

mitter is equipped with multiple antennas and simultaneously transmits independent

data symbols chosen from a standard M-ary constellation using spatial multiplex-

ing to a set of geographically separated receive nodes deployed with a single receive

antenna sent through independent fading channels. Each receive node quantizes its

received signal and forwards the quantized signal to the fusion center. The fusion

center then attempts to decode the transmitted data by exploiting the quantized sig-

nals from the receive nodes and global channel information. This scenario is likely to

become popular with the emergence of massive MIMO and IoT because base stations

tend to be equipped with a large number of antennas in massive MIMO systems and

we can easily have a large number of receive nodes in the IoT environment.
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For practical purposes, we assume each receive node quantizes its received signal

with one bit per real part and one bit per imaginary part of the received signal to

minimize the transmission overhead between the receive nodes and the fusion center.

Quantizer design is a non-trivial problem because the receive nodes are not able

to decode the transmitted symbols due to the fact that each receive node has only

one antenna [74]. Instead, each receive node quantizes a single quantity, i.e., the

received signal, regardless of the number of transmitted symbols. In this setup, we

develop an optimal maximum likelihood (ML) receiver and a low-complexity zero-

forcing (ZF)-type receiver assuming global channel knowledge at the fusion center.

The ML receiver outperforms the ZF-type receiver regardless of the number of receive

nodes and SNR ranges. However, the complexity of the ML receiver is excessive,

especially when the number of transmitted symbols becomes large. On the other hand,

the ZF-type receiver can be easily implemented and gives comparable performance to

that of the ML receiver when the SNR is low to moderate, although it suffers from

an error rate floor when SNR is high. The error rate floor of the ZF-type receiver can

be easily mitigated by having more receive nodes.

When the SNR is high, the distributed reception problem is closely tied to work in

quantized frame expansion. Linear transformation and expansion by a frame matrix

in the presence of coefficient quantization is thoroughly studied in [75, 76]. A lin-

ear expansion method, which is similar to our ZF-type receiver, and its performance

in terms of the mean-squared error (MSE) are analyzed based on the properties of

a frame matrix. An advanced non-linear expansion method relying on linear pro-

gramming is also studied. The major difference compared to our problem setting is

that [75,76] do not assume any additive noise before quantization, while our scenario

considers a fading channel (which corresponds to a frame matrix in frame expansion)

with additive noise prior to quantization at the receive nodes. We rely on some of the

analytical results from [75] for evaluating and modifying the ZF-type receiver later.
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1.6 Outline

The dissertation is organized as follows. In Chapter 2, downlink training tech-

niques for FDDmassive MIMO systems are considered. We first analyze the limitation

of using conventional downlink training techniques in temporally and spatially cor-

related massive MIMO channels. Then we propose open-loop/closed-loop downlink

training with memory to overcome the limitation of conventional training techniques.

In Chapter 3, we explain the necessity of designing novel efficient CSI quantization

techniques for FDD massive MIMO systems. Using the duality between source coding

and channel coding, we propose NTCQ of which the complexity increases linearly with

the number of transmit antennas. In Chapter 4, we propose TEC and TE-SPA, which

can achieve a fractional number of bits per channel entry quantization, to reduce the

feedback overhead of NTCQ. In Chapter 5, we study distributed reception with a

single transmit antenna. We exploit the connection between the problem of mini-

mizing the symbol error probability at the fusion center in distributed reception and

channel coding in coding theory and design a unified framework for coded distributed

diversity reception. In Chapter 6, we consider distributed reception with multiple

transmit antennas. We design efficient receivers at the fusion center using minimal

quantized information from the receive nodes. Chapter 7 concludes the dissertation.

1.7 Notation

Upper and lower boldface symbols are used to denote matrices and column vectors,

respectively. XH , XT , X−1, X
1
2 , and tr(X) are used as the Hermitian transpose,

transpose, inverse, square-root, and the trace of X, respectively. Ik is the k × k

identity matrix, 0m represents the m× 1 all zero vector, 1m denotes an m× 1 all one

vector, and X[k:m] represents the sub-matrix of X formed by the k-th column to the

m-th column, inclusively. ‖X‖ and ‖X‖F are used as the two-norm and the Frobenius

norm of a matrix X, respectively. We let λ (X) denote the vector with the eigenvalues

of the matrix X in decreasing order as its elements. Re(x) and Im(x) denote the real
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and complex part of a complex vector x, respectively. Cm (Rm) and Cm×n (Rm×n)

represent the set of all m× 1 complex (real) vectors and the set of all m×n complex

(real) matrices, respectively. mod(a, b) is the remainder of a when divided by b and

CN (x̄,R) is used to denote the complex Gaussian random vector distribution with

mean x̄ and covariance R. The expectation operation is denoted by E[·] and Pr(A)
denotes the probability of event A.
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2. DOWNLINK TRAINING TECHNIQUES FOR FDD

MASSIVE MIMO SYSTEMS: OPEN-LOOP AND

CLOSED-LOOP TRAINING WITH MEMORY

We study downlink training techniques for FDD massive MIMO in this chapter. We

first explain the limitations of conventional single-shot training, which only relies on

the most recently received training signal to estimate the channel. The analysis shows

that the average received SNR quickly saturates to a certain level as the number of

transmit antennas gets large with a fixed training length (that is less than the number

of transmit antennas), and this SNR ceiling could preclude its use in massive MIMO

systems.

Then, we propose open-loop and closed-loop training frameworks with memory

to effectively alleviate the SNR ceiling effect. Although the ceiling effect cannot be

perfectly eliminated with a fixed training length, the proposed training frameworks

can significantly increase the ceiling level. We assume the base station and the user

share a common set of training signals where each training signal has a much lower

rank than the number of transmit antennas. In open-loop training, the base station

transmits training signals in a round-robin manner, and the user predicts/estimates

the channel based on previous channel estimates. Thus, the proposed framework can

be considered open-loop training with memory. With this approach, we can reduce the

number of training channels needed to acquire a good channel estimate to a reasonable

range even with a large number of transmit antennas.

In closed-loop training with memory, which had initial results presented in [77] and

was studied for the stationary channel in [78], the user selects the best training signal

0 c©[2014] IEEE. Reprinted, with permission, from J. Choi, D. J. Love, and P. Bidigare, “Downlink
Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training with
Memory,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 802-814, Oct.
2014.
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based on the prior knowledge of the channel and previously received training signals.

The user feeds back the index of the selected training signal and the base station

relies on the fed back information for the next training phase. This framework is

considerably different from current wireless systems that use pre-determined training

signals in time and frequency [8,79,80]. By allowing a small amount of feedback, we

can further improve channel estimation performance with less training overhead. We

develop two objective functions to select the training signal at the user: 1) minimizing

MSE and 2) maximizing the average received SNR for the data communication phase.

Numerical studies show that the second approach can improve the received SNR when

the number of transmit antennas is moderately large. We also develop an effective

way of designing the set of training signals used for the proposed training frameworks.

Finally, we identify preferable channel conditions and system parameters for closed-

loop training with memory. The performance gain of closed-loop training becomes

larger when 1) the SNR is low, 2) the number of transmit antennas is large relative

to the length of the training phase, or 3) the prior channel estimate is not accurate

at the beginning of the communication setup, all of which could be commonly true

for massive MIMO systems. Simulation results confirm these analyses.

2.1 System Model

We consider an Nt transmit antennas and single receive antenna MISO system

transmitting over a block-fading channel. Although we only consider MISO channels

for simplicity, our framework can be easily extended to general MIMO channels with

the vectorization approach in [35, 38]. We assume the block-fading channel has a

coherence time of L, which means that the channel is static for L channel uses in

each block and changes from block-to-block. The input-output relation for the �-th

channel use in the i-th fading block is given by

yi[�] = hH
i xi[�] + ni[�], (2.1)
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where yi[�] is the received signal, hi ∈ CNt is the channel vector, xi[�] ∈ CNt is the

transmitted signal with E[‖xi[�]‖2] = ρ, and ni[�] ∼ CN (0, 1) is normalized additive

white Gaussian noise at the user.

Each channel block consists of a training phase and a data communication phase.

We assume that the first T < L channel uses and the remaining L− T channel uses

are dedicated for training and data communication, respectively. We further assume

that T < Nt because we consider massive MIMO. For the i-th fading block, the

received training signals yi[�] for � = 0, . . . , T − 1 can be collected into a vector form

as yi,train = [yi[0] · · · yi[T − 1]]T . Then, the input-output relation in (2.1) can be

rewritten as

yi,train = XH
i hi + ni,train, (2.2)

where Xi = [xi[0] · · · xi[T − 1]] is the transmitted signals collected into an Nt × T

matrix and ni,train = [ni[0] · · · ni[T − 1]]T .

Note that unitary training with equal power allocation per pilot symbol which

restricts Xi such that

Xi ∈ X =
{
F : F ∈ C

Nt×T , FHF = ρIT
}
, (2.3)

is optimal in i.i.d. Rayleigh fading channels. We also rely on unitary training through-

out this work because we assume that the base station does not have any prior knowl-

edge of the channel statistics to adapt training signals.1

During the L − T data communication channel uses, we assume that the base

station employs beamforming, and the transmitted signal is written as

xi[�] = wisi[�],

1If the base station knows the channel statistics, then non-unitary training with power allocation
can give a better performance than unitary training in spatially correlated channels.
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where wi is a beamforming vector with ‖wi‖ = 1 and si[�] is a data symbol with

E[|si[�]|2] = ρ. With this setup, the normalized average received SNR of the i-th

fading block at the user is

Γi =
1

ρ
E
[|hH

i xi[�]|2
]
= E

[|hH
i wi|2

]
. (2.4)

The optimal training signal Xi is highly dependent on the channel statistics and

the desired performance metric. Aside from the few works, including [35, 38] that

assume spatially correlated channels and [40] that assumes temporally correlated

channels, most research on training considers uncorrelated channels both in time

and space. In this work, we consider a general and practical channel model, i.e.,

spatially and temporally correlated channels. We assume hi follows a Gauss-Markov

distribution according to

h0 = R
1
2g0,

hi = ηhi−1 +
√

1− η2R
1
2gi, i ≥ 1, (2.5)

where R = E
[
hih

H
i

]
is a spatial correlation matrix,2 gi is an innovation process

with independent and identically distributed (i.i.d.) entries distributed according to

CN (0, INt
) for all i, and 0 ≤ η ≤ 1 is a temporal correlation coefficient. We assume

h0 is independent of gi for all i ≥ 1. Because the spatial correlation matrix R is

a Hermitian positive definite matrix, it can be decomposed as R = UΛUH where

U and Λ = diag ([λ1, λ2, · · · , λNt
]) are the eigenvector and eigenvalue matrices of

R, respectively. We assume the λk’s are in decreasing order as λ1 ≥ · · · ≥ λNt
and

tr (R) =
Nt∑
t=1

λt = Nt. As mentioned in the introduction, we assume the base station

does not have any knowledge of the channel statistics such as R and η throughout

the work.

2R is closely related to the antenna spacing at the base station and the user location. We assume
that R is fixed in time because the user location does not change much with moderate user velocities,
e.g., 3-10km/h.
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2.2 Single-Shot Training and the Ceiling Effect

In most prior work on training, the user discards the previously received training

signals {yk,train}i−1
k=0 and estimates hi based only on the current received training

signal yi,train. We first explain the conventional single-shot training framework and

derive the structure of the optimal training signal Xi,opt for single-shot training at

the i-th fading block assuming there is an unlimited feedback channel for Xi,opt from

the user to the base station (Xi,opt is available only at the user because the base

station does not know the channel statistics). Based on an upper bound on training

performance for single-shot training using the optimal training signal, we show that

deploying a large number of transmit antennas does not increase performance (i.e.,

the normalized average received SNR Γi in (2.4)) with Nt for most practical channel

conditions.

We drop the fading block index i from the notation throughout this section because

of the lack of dependence on the specific block during channel estimation.

2.2.1 Structure of the optimal training signal of single-shot training

We focus on MMSE channel estimation at the user. Assuming h is complex

Gaussian with mean 0 and covariance R, we can derive the MMSE estimate of the

channel h given the observation ytrain in (2.2) as [81]

ĥ = E[h | ytrain]

= RX
(
IT +XHRX

)−1
ytrain.

This estimate ĥ is complex Gaussian with mean 0 and covariance

R
ĥ
= RX

(
IT +XHRX

)−1
XHR.
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The MSE of channel estimation is given by

MSE (X) =
1

Nt

E
[
‖h− ĥ‖2

]
=

1

Nt

tr
(
R−RX

(
IT +XHRX

)−1
XHR

)
, (2.6)

and MMSE estimation minimizes the MSE between h and ĥ for a given X.

As mentioned in (2.3), we assume X ∈ X . If the base station relies on a pre-defined

X for training, we call it open-loop/single-shot training. If there is a feedback channel

from the user to the base station to inform the best training signal for single-shot

training, we call this scheme closed-loop/single-shot training. Then, similar to the

derivation in [35,38], the following lemma shows the optimal structure of Xss,opt that

minimizes the MSE (X) in (2.6) for closed-loop/single-shot training with unlimited

feedback.

Lemma 2.2.1 The optimal Nt × T (Nt ≥ T ) training signal for closed-loop/single-

shot training with full feedback for Xss,opt that minimizes the MSE (X) is given as

Xss,opt = argmin
X∈X

MSE (X)

=
√
ρU[1:T ] (2.7)

where R = UΛUH .

Proof See Appendix A.1.
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Lemma 2.2.1 implies we should transmit the training signal along the first T

dominant eigen-directions of R to minimize the MSE. With Xss,opt =
√
ρU[1:T ], we

can derive the MSE as

MSE (Xss,opt) = 1− 1

Nt
tr
(
RXss,opt

(
IT +XH

ss,optRXss,opt

)−1
XH

ss,optR
)

= 1− 1

Nt
tr
((

IT +XH
ss,optRXss,opt

)−1
XH

ss,optR
2Xss,opt

)
(a)
= 1− 1

Nt

T∑
t=1

ρλ2t
ρλt + 1

(2.8)

where (a) follows from R = UΛUH . From (2.8), we state following lemma3 and

corollaries, which are intuitive.

Lemma 2.2.2 Let RH and RL denote two Nt ×Nt spatial correlation matrices. We

assume λ (RH) majorizes λ (RL), i.e., λ (RH) 	 λ (RL) which corresponds to the

case when RH is more spatially correlated than RL [38]. We let XH and XL denote

the optimal Nt×T orthogonal single-shot training signals for channels correlated with

RH and RL, respectively. Then, we have

MSE (XH) ≤ MSE (XL) .

Proof See Appendix A.2.

Corollary 2.2.1 If ρ and {λt}Tt=1 are fixed and T1 > T2 ≥ 1, then

MSE (Xss,opt(T1)) < MSE (Xss,opt(T2)) .

Corollary 2.2.2 If T and {λt}Tt=1 are fixed and ρ1 > ρ2 > 0, then

MSE (Xss,opt(ρ1)) < MSE (Xss,opt(ρ2)) .

3The result similar to Lemma 2 was already proven in Theorem 2 of [38]; however, we believe the
proof in this work is of value due to its simplicity.
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Lemma 2.2.2, Corollary 2.2.1 and 2.2.2 show that the channel can be estimated with

lower MSE when channels are highly correlated, using more time on training, or

training with higher transmit power. Although the above statements are for the case

of Xss,opt =
√
ρU[1:T ], numerical results in Section 2.4 show that these statements also

hold for a general training signal X.

2.2.2 Ceiling effect of single-shot training

We assume that the user can feed back not only Xss,opt but also the estimated

channel ĥ perfectly to the base station to focus only on the effect of training. We

refer to later chapters and references therein that discuss the downlink CSI quanti-

zation problem in FDD massive MIMO systems. The base station can then set the

beamforming vector to w = ĥ

‖ĥ‖ . Based on Xss,opt and w, we derive an upper bound

of the normalized average received SNR using single-shot training in the following

lemma.

Lemma 2.2.3 With the training signal Xss,opt =
√
ρU[1:T ] and the beamforming vec-

tor w = ĥ

‖ĥ‖ , the normalized average received SNR of single-shot training, Γss,opt, can

be upper bounded as

Γss,opt = E

⎡⎣∣∣∣∣∣hH ĥ

‖ĥ‖

∣∣∣∣∣
2
⎤⎦ ≤

T∑
t=1

ρλ2t
ρλt + 1

+ λ1 (2.9)

where 1 ≤ T ≤ Nt and λt is the t-th dominant eigenvalue of R.

Proof See Appendix A.3.

The upper bound in (2.9) becomes trivial when the rank of R is 1, i.e., tr (R) = λ1 =

Nt. However, (2.9) is a non-trivial upper bound in general.

Lemma 2.2.3 shows that Γss,opt is not a linearly increasing function of Nt although

the impact of Nt is implicitly reflected in λt. With the extreme case of i.i.d. Rayleigh

fading channels where λt = 1 for all t, Γss,opt is fixed to a constant with a given T and
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ρ even when Nt → ∞. Unless the dominant eigen-directions contain most of the gain

of the wireless channel, which is rarely the case even in highly correlated channels in

practice, the gain of having a large number of antennas will saturate eventually.

Now we verify Lemma 2.2.3 with Rayleigh fading channels which are spatial cor-

related with the exponential model of R that is given as4

R =

⎡⎢⎢⎢⎢⎢⎢⎣
1 a · · · aNt−1

a 1
...

. . .

aNt−1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.10)

where 0 < a < 1 is a real number. The amount of spatial correlation is controlled by

a, i.e., a larger (smaller) value of a corresponds to highly (loosely) correlated channels

in space. When a = 0, we have i.i.d. Rayleigh fading channels.

Before showing the numerical results, we state the following corollary which use

the upper bound of the maximum eigenvalue of R of the exponential model [82]

λ1 ≤ 1 + a

1− a
.

Corollary 2.2.3 With the exponential model of R in (2.10), Γss,opt can be further

upper bounded as

Γss,opt ≤
T∑
t=1

ρλ2t
ρλt + 1

+ λ1 < (T + 1)λ1 ≤ (T + 1)
1 + a

1− a
. (2.11)

Corollary 2.2.3 states that the maximum Γss,opt is a function of T and a, not Nt.

In Fig. 2.1, we plot Γss,opt (in dB scale) based on simulation and the upper bounds

in (2.9) and (2.11). From the figure, we see that Γss,opt saturates even with the optimal

Xss,opt and very highly correlated case of a = 0.9. Note that the maximum possible

value of normalized average received SNR is the same as the number of transmit

4We adopt the exponential model of R for simulation purposes. Other structures of R such as a
Kronecker model can be adopted as well.
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Fig. 2.1.: Plots of Γss,opt (in dB scale) with simulation results and the upper bounds
in (2.9) and (2.11) with ρ = 20dB and T = 4. The ordered a values by the arrow
correspond with the curves moving from bottom to top.

antennas Nt. We can increase Γss,opt by using a large number of channel uses T for

training, but this will decrease the number of channel uses T −L for the actual data

communication.

The ceiling effect can be effectively reduced by exploiting the temporal channel

correlation. Although temporal correlation is present essentially for all wireless com-

munication systems, this correlation is not widely exploited in most MIMO channel

estimation and training works. Training for massive MIMO systems should leverage

temporal correlation of the channel to maximize the benefit of having a large number

of antennas.

2.3 Proposed Training Frameworks

In this section, we first explain open-loop training with memory that does not re-

quire any feedback from the user to the base station. We then propose the framework

of closed-loop training with memory. We derive a performance upper bound of closed-

loop training with memory assuming the perfect feedback of the training signal from
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the user to the base station. We also present an effective way of designing the set

of training signals. Finally, we derive preferable system parameters for closed-loop

training compared to open-loop training with memory.

2.3.1 Open-loop training with memory

In the proposed open-loop training with memory, we assume that the base station

and the user share a common set of training signals that can be indexed with B bits

given by5 P = {P1, . . . ,P2B}. Then, training signal for the i-th fading block Xi is

given as

Xi = Pmod(i,2B)+1, i = 0, . . . , T − 1, (2.12)

in a round-robin manner, which requires no feedback for the training signal from the

user to the base station. However, the user estimates the channel hi based not only

on yi,train but also on {yk,train}i−1
k=0 and the channel statistics η and R. Note that

this problem is similar to state prediction in dynamical systems. With the training

problem formulation, (2.5) specifies the state evolution and (2.2) is the input-output

equation [81]. Thus, the user can rely on the Kalman filter (or a more advanced filter

such as the particle filter in [40]) to track the channel evolution and provide a more

accurate channel estimate.

To begin with, we denote

ĥi1|i2 = E
[
hi1 | {yk,train}i2k=0

]
as the predicted value of hi1 given {yk,train}i2k=0 for i1 ≥ i2. Then, we can define the

sequential MMSE estimator ĥi|i based on {yk,train}ik=0 as in Table 2.1. Note that

the distribution of ĥi|i given {yk,train}i−1
k=0 is complex Gaussian with mean ĥi|i−1 and

covariance

Rp,i = Ri|i−1Xi

(
IT +XH

i Ri|i−1Xi

)−1
XH

i Ri|i−1.

5Our framework can also be combined with a time-varying P similar to how differential codebooks
are used in CSI quantization [55, 56] for better performance.
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Table 2.1.: Sequential MMSE channel estimation based on the Kalman filter [81].

Initialization:

ĥ0|−1 = 0,

R0|−1 = R = E
[
h0h

H
0

]
.

Prediction:
ĥi|i−1 = ηĥi−1|i−1.

Minimum prediction MSE matrix (Nt ×Nt):

Ri|i−1 = η2Ri−1|i−1 + (1− η2)R.

Kalman gain matrix (Nt × T ):

Ki = Ri|i−1Xi

(
IT +XH

i Ri|i−1Xi

)−1
.

Correction:
ĥi|i = ĥi|i−1 +Ki

(
yi,train −XH

i ĥi|i−1

)
.

Minimum MSE matrix (Nt ×Nt):

Ri|i =
(
INt

−KiX
H
i

)
Ri|i−1.

Because we assume perfect CSI feedback from the user to the base station, the beam-

forming vector becomes

wi =
ĥi|i

‖ĥi|i‖
. (2.13)

From the numerical results in Section 2.4, open-loop training with memory can sig-

nificantly increase the channel estimation performance.

2.3.2 Closed-loop training with memory

We assume the channels are correlated in time and space. Thus, the training signal

at the i-th fading block can be adapted using the channel statistics and the previously

received training signals {yk,train}i−1
k=0 if they are available to the transmitter. Because

the base station will not have direct access to the channel statistics and {yk,train}i−1
k=0,
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Fig. 2.2.: Concept of closed-loop training.

the best training signal Pi,best is selected from a predefined set of training signals

P = {P1, . . . ,P2B} at the user and sent back to the base station with B bits of

feedback. The base station then uses the fed back signal as the training signal for the

i-th fading block. The training signal selection at the user is based on using channel

prediction to track the statistics of the channel at the i-th fading block conditioned

on the user’s side information as explained in open-loop training with memory. The

conceptual explanation of closed-loop training with memory is given in Fig. 2.2.

We propose two metrics for selecting Pi,best at the user, i.e., minimizing the MSE

of channel estimation and maximizing the normalized average received SNR for the

data communication phase.

1) Minimizing the MSE (MSE-based): It is easy to show that the MSE between

hi and ĥi|i is a function of Xi and given as

MSE (Xi) =
1

Nt

E
[
‖hi − ĥi|i‖2

]
=

1

Nt

tr
(
Ri|i

)
=

1

Nt
tr
(
Ri|i−1 −Rp,i

)
. (2.14)
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Therefore, the user selects Pi,best for the i-th block that minimizes the MSE as

Pi,best = argmin
Pk∈P

MSE (Pk) (2.15)

= argmax
Pk∈P

tr (Rp,i) ,

and feeds back the B-bit index of Pi,best to the transmitter. Then, the base station

uses Xi = Pi,best for the training signal for the i-th block.

2) Maximizing the normalized average received SNR (SNR-based): Using the

beamforming vector w =
ĥi|i

‖ĥi|i‖
as in (2.13), Γi given {Xk,yk,train}ik=0 becomes

Γi

({Xk,yk,train}ik=0

)
= E

[∣∣hH
i w

∣∣2 | {Xk,yk,train}ik=0

]
= wH

(
ĥi|iĥH

i|i +Ri|i
)
w

=
∥∥∥ĥi|i

∥∥∥2 + ĥH
i|iRi|iĥi|i∥∥∥ĥi|i

∥∥∥2 . (2.16)

The user maximizes the expected value of (2.16) averaged over yi,train by selecting

Pi,best as

Pi,best = argmax
Pi∈P

E
[
Γi (Pi,yi,train) |{Xk,yk,train}i−1

k=0

]
= argmax

Pi∈P
Γi

(
Pi, {Xk,yk,train}i−1

k=0

)
, (2.17)

with the expectation taken over yi,train.

We can evaluate Γi

(
Pi, {Xk,yk,train}i−1

k=0

)
in (2.17) as

Γi

(
Pi, {Xk,yk,train}i−1

k=0

)
= tr (Rp,i) +

∥∥∥ĥi|i−1

∥∥∥2 + q(Pi)
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where q(Pi) is defined as

q(Pi) = E

⎡⎢⎣ ĥH
i|iRi|iĥi|i∥∥∥ĥi|i

∥∥∥2
∣∣∣∣∣∣∣ {Xk,yk,train}i−1

k=0

⎤⎥⎦ .

By defining α1 = ĥH
i|iRi|iĥi|i and α2 =

∥∥∥ĥi|i
∥∥∥2, we can approximate q(Pi) as [83]

q(Pi) ≈ E [α1]

E [α2]

(
1− Cov(α1, α2)

E [α1] · E [α2]
+
V ar(α2)

(E [α2])
2

)

where

E [α1] = ĥH
i|i−1Ri|iĥi|i−1 + tr

(
Ri|iRp,i

)
,

E [α2] = ‖ĥi|i−1‖2 + tr (Rp,i) ,

V ar(α2) = 4ĥH
i|i−1Rp,iĥi|i−1 + 2 tr (Rp,i)

2 ,

Cov(α1, α2) = 4ĥH
i|i−1Ri|iRp,iĥi|i−1 + 2 tr

(
Ri|iRp,iRp,i

)
.

Thus, Pi,best can be selected by the user according to

Pi,best = argmax
Pi∈P

(
tr (Rp,i) +

∥∥∥ĥi|i−1

∥∥∥2 + q(Pi)

)
, (2.18)

and the B-bit index of Pi,best can be sent as feedback from the user to the base station.

Note that maximizing (2.18) is the same as minimizing the MSE in (2.15) aug-

mented with the term q(Pi) (ĥi|i−1 is a constant regardless of Pi). Numerical studies

in Section 2.4 show that q(Pi) has a non-negligible impact on the received SNR when

Nt is moderately large, the channel is highly correlated in space, and the SNR is low.

For other cases, however, the difference between the two metrics is negligible.
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2.3.3 Closed-loop training with memory with full feedback to minimize

MSE

In this subsection, we derive the optimal training signal Xi,opt of closed-loop train-

ing with memory that minimizes the MSE of the i-th fading block in (2.14). Note

that Xi,opt is possible only when closed-loop training supports unlimited feedback

overhead. Thus, Xi,opt only gives an MSE lower bound of the proposed closed-loop

with memory.

Because the MSE in (2.14) has the same formulation as (2.6) onceRi|i−1 is replaced

by R, the same arguments employed in Lemma 2.2.1 can be used to show that the

optimal training signal is given as

Xi,opt =
√
ρUi[1:T ] (2.19)

where Ri|i−1 = UiΛiU
H
i with Λi = diag ([λi,1, · · · , λi,Nt

]). Comparing (2.7) and

(2.19), the optimal training signal is now the first T dominant eigen-directions of the

prediction matrix Ri|i−1.

It is interesting to point out that, using the recursive derivation of Ri|i−1 and

Ri|i, we can easily show that Ui is column-wise permutation of U (the eigenvector

matrix of R), which means the T dominant eigenvectors varies with i. Thus, the

full-feedback scheme can be thought of as a training technique that scans among the

eigen-directions of the original spatial correlation matrix R. This property has been

exploited in [41] for FDD massive MIMO training when the base station has perfect

knowledge of R.

We now derive the MSE of the i-th fading block using Xi,opt to provide a lower

bound on the MSE of closed-loop training with memory in the following lemma.
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Lemma 2.3.1 Recall R = UΛUH and let U0 = U and Λ0 = Λ. Using the Kalman

filter update in Table 2.1 and the optimal training signal Xi,opt =
√
ρUi[1:T ], the MSE

at the i-th fading block is given as

MSEi(Xi,opt) = 1− 1

Nt

i∑
k=0

T∑
t=1

η2(i−k)ρλ2k,t
ρλk,t + 1

, (2.20)

where λk,t is the t-th dominant eigenvalue of Rk|k−1.

Proof See Appendix A.4.

When i = 0, (2.20) simplifies down to (2.8). Lemma 2.3.1 clearly shows that in tem-

porally correlated channels with η ≈ 1, the MSEi in (2.20) is always lower than the

MSE of closed-loop/single-shot training in (2.8) for i > 0. Thus, channel prediction

with an optimized training signal selection will improve channel estimation perfor-

mance. Although it is hard to analyze the normalized received SNR with Xi,opt, we

can expect from Lemma 2.3.1 that closed-loop training with memory can effectively

reduce the ceiling effect of single-shot training discussed in Section 2.2.2.

2.3.4 Design of training signal set P

Now, we discuss an effective way of generating a set of training signals P. We

again restrict P to be a subset of the set X meaning

P ⊂ X =
{
F : F ∈ C

Nt×T , FHF = ρIT
}
.

It is shown in the previous subsection that the optimal training method that minimizes

the MSE scans over the eigen-directions of R that are orthogonal to each other. To

mimic this, the training signals in P should be as orthogonal as possible. This can

be numerically achieved by Grassmannian subspace packing (GSP).
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The chordal distance between the two matrices X and Y is given as

dc (X,Y) �
1√
2

∥∥XXH −YYH
∥∥
F
,

and the minimum chordal distance of a candidate training set Pc =
{
Pc,1, . . . ,Pc,2B

}
as

dc,min (Pc) � min
1≤m≤n≤2B

dc (Pc,m,Pc,n) .

Then, the GSP training set PGSP can be given as

PGSP = argmax
Pc⊂Pall

dc,min (Pc) ,

where Pall is a set of all possible candidate sets Pc. We adopt numerically optimized

PGSP for performance evaluation in Section 2.4.

2.3.5 Impact of system parameters on closed-loop training

In this subsection, we give explanations of scenarios when closed-loop training with

memory has a gain compared to open-loop training with memory. The explanations

are based on the optimal training signal Xi,opt that minimizes the MSE for tractable

analyses.

1) Variation with SNR (ρ): The minimization of the MSE in (2.14) can be first

converted to the maximization of

tr
(
Ri|i−1Xi

(
IT +XH

i Ri|i−1Xi

)−1
XH

i Ri|i−1

)
and approximated as

tr
(
XH

i R
2
i|i−1Xi

)
in the low-SNR regime and

tr
((

XH
i Ri|i−1Xi

)−1
XH

i R
2
i|i−1Xi

)
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in the high-SNR regime. The optimal training signal in both cases is again Xi,opt =
√
ρUi[1:T ]. However, if we plug in Xi,opt into each approximated objective function, we

have
T∑
t=1

ρλ2i,t in the low-SNR regime and
T∑
t=1

ρλi,t in the high-SNR regime. Assuming

λi,t > 1 for t = 1, . . . , T , which is typically true for spatially correlated massive

MIMO channels, the subspace spanned by the columns of the training signal is more

important in the low-SNR regime than the high-SNR regime. Thus, it is expected that

closed-loop training with memory would be more beneficial in the low-SNR regime.

2) Variation with length of training phase (T ): When T = 1, the direction of the

optimal training signal is the dominant eigenvector of Ri|i−1 so that xi,opt = Ui[1:1].

However, when T = Nt, it is easy to show in a similar manner as (2.8) that any scaled

unitary matrix Xi,opt =
√
ρV is optimal giving

tr
((

INt
+XH

i,optRi|i−1Xi,opt

)−1
XH

i,optR
2
i|i−1Xi,opt

)
=

Nt∑
t=1

ρλ2i,t
ρλi,t + 1

.

This means that there is no preferable direction for Xi,opt when T = Nt. In the

case of 1 < T < Nt, it is obvious that any other combination of T columns of Ui

(except rearranging the first T columns ofUi) for Xi gives inferior results thanUi[1:T ].

However, the gap between Ui[1:T ] and other combinations will reduce as T increases.

Thus, the subspace spanned by the columns of the training signal is more important

when T (or the ratio T
Nt
) is small, and closed-loop training with memory is most

beneficial in this scenario.

3) Variation with fading block index i: Intuitively, the subspace spanned by the

columns of the training signal seems to be more important at the beginning of channel

estimation when the user lacks accurate channel knowledge. To explain this rigor-

ously, we know from (2.20) in Lemma 2.3.1 that the MSE is decreased by
T∑
t=1

ρλ2
i,t

ρλi,t+1
at

the i-th block when Xi,opt is used as a training signal. We also know from the proof

of Lemma 2.3.1 that the first T eigenvalues of Ri|i−1 are decreasing with i such that
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Fig. 2.3.: Γ
(dB)
i of SNR-based closed-loop training according to the fading block index

i with ρ = 0dB, T = 2, a = 0.9, and different B and Nt values.

λi−1,t ≥ λi,t for t = 1, . . . , T . Because of the Schur-convexity of
T∑
t=1

ρλ2
i,t

ρλi,t+1
as shown in

Appendix B, we have
T∑
t=1

ρλ2i−1,t

ρλi−1,t + 1
≥

T∑
t=1

ρλ2i,t
ρλi,t + 1

.

Thus, having the right subspace spanned by the columns of the training signal can

reduce the MSE more effectively when i is small, and closed-loop training with mem-

ory has more gain when a prior channel estimate is not accurate at the beginning of

channel estimation.

2.4 Simulation Results and Discussions

To evaluate the proposed training frameworks, we present Monte-Carlo simulation

results with 10000 iterations in this section. Each iteration consists of 10 fading

blocks which are temporally and spatially correlated as shown in (2.5). We adopt

Jakes’ model [84] for the temporal correlation coefficient η = J0(2πfDτ) where J0(·)
is the 0-th order Bessel function of the first kind, τ = 5ms is the channel instantiation

interval, and fD = vfc
c

denotes the maximum Doppler frequency. With the user speed
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Fig. 2.4.: Γ
(dB)
i according to the fading block index i with Nt = 16 and different ρ, T ,

and a values.

v = 3km/h, the carrier frequency fc = 2.5GHz, and the speed of light c = 3×108m/s,

the temporal correlation coefficient becomes η = 0.9881. Assuming a 5ms coherence

time and the frame structure of 3GPP LTE FDD systems [79], each fading block

consists of L ≈ 10 static channel uses. We adopt the same spatial correlation matrix

R as in (2.10), and the numerically optimized GSP training set PGSP that is used in

both open-loop and closed-loop training with memory. The dB scale of the normalized

average received SNR in (2.4), Γ
(dB)
i , is used for the performance metric.
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We first compare Γ
(dB)
i of closed-loop training with memory based on the SNR

metric with different values of B for PGSP in Fig. 2.3. We set the signal power

ρ = 0dB, the number of channel uses for training T = 2, and the spatial correlation

parameter a = 0.9. As the size of PGSP increases, Γ
(dB)
i also increases in both Nt = 16

and 64 cases. The gain of having larger B is more prominent when Nt is large;

however, it is expected that having B less than 10 bits seems to be enough to have

a notable gain. This means that the computational complexity of training signal

selection might not be a big issue in practice. We set B = 6 for other simulations in

this section.

In Figs. 2.4 and 2.5, we plot Γ
(dB)
i of open-loop/single-shot (OL/SS), open-loop

with memory (OL w/ memory), and closed-loop with memory based on the MSE

metric (CL w/ memory, MSE-based) and the SNR metric (CL w/ memory, SNR-

based) training schemes according to the fading block index i with Nt = 16 and 64

and different values of ρ, T , and a. We randomly reorder the indices of PGSP at each

iteration to preclude the effect of a specific ordering of training signals in open-loop

training.

From the figures, it is easy to verify that with the same T the proposed train-

ing frameworks outperform open-loop/single-shot training, which adopts the training

signal for the i-th block with a round-robin manner in (2.12) with PGSP but only

relies on yi,train for the i-th block channel estimation. Moreover, in Fig. 2.4b, closed-

loop training with memory is slightly better than open-loop/single-shot training with

T = Nt when a = 0.9 and i = 9. This shows that the successive channel estimation

approach of closed-loop training with memory can effectively alleviate the impact of

noise.

Comparing open-loop and closed-loop training with memory, the gain of closed-

loop training with memory becomes larger when 1) ρ is low, 2) T is small relative

to Nt, and 3) i is small, which are inline with the discussions in Section 2.3.5. It is

shown in Figs. 2.4 that closed-loop training with memory based on the SNR metric
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(b) ρ = 0dB, T = 4.
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Fig. 2.5.: Γ
(dB)
i according to the fading block index i with Nt = 64 and different ρ, T ,

and a values.

gives non-negligible gain compared to closed-loop training based on the MSE metric

when Nt is moderately large and ρ is small in highly correlated case.

The performance of all schemes increases as a increases, i.e., when channels are

highly correlated in space. This certainly shows that the spatial correlation helps in

estimating the channel, which is pointed out in Lemma 2.2.2 and [35, 38].

We also plot the MSE of each scheme in Fig. 2.6. Similar to the previous figures of

Γ
(dB)
i , the proposed training frameworks give far lower MSE than open-loop/single-

shot training. Note that the MSE of closed-loop training with memory based on
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Fig. 2.6.: MSE according to the fading block index i with different Nt, ρ, T , and a
values.
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Fig. 2.7.: Γ
(dB)
i according to Nt with different ρ, T , and a values.

the MSE metric is smaller than that of closed-loop training based on the SNR metric

when Nt = 16, which shows the tradeoff between SNR and MSE metric in closed-loop

training.

In Fig. 2.7, we plot Γ
(dB)
i of the 9th fading block according toNt. Note that Γ

(dB)
i of

open-loop/single-shot training quickly saturates as Nt increases. We also plot the re-

sults of closed-loop/single-shot training with full feedback ofXss,opt (CL/SS w/Xss,opt)
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Fig. 2.8.: Γ
(dB)
i of SNR-based closed-loop training according to the fading block index

i with T = 2, a = 0.9, B = 6, Nt = 64 and different ρ and v values.

discussed in Section 2.2, which also experiences the ceiling effect, for comparison. It

is obvious that open-loop and closed-loop training with memory can effectively re-

duce the ceiling effect even with small T compared to L, especially when a is large.

This clearly shows that the gain of the proposed training schemes for massive MIMO

systems.

Finally, we plot closed-loop training with memory based on the SNR metric with

different user velocities in Fig. 2.8. Note that v = 10km/h corresponds to η = 0.8721.

The loss from the high velocity is severe, i.e., almost 1.4dB loss of the received SNR in

the saturation regime. When the user velocity is high, instead of relying on the closed-

loop training framework, the base station should transmit sounding signals more

frequently in an open-loop manner in practice. For example, four sounding signals

(or reference signals) would be transmitted within a 1ms time period to support

350km/h user velocity in 3GPP LTE systems [79]. Even in this case, the proposed

open-loop training with memory can be exploited.
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3. NONCOHERENT TRELLIS CODED QUANTIZATION:

A PRACTICAL LIMITED FEEDBACK TECHNIQUE FOR

MASSIVE MIMO SYSTEMS

In this chapter, we explain NTCQ that can solve the CSI quantization problem in

FDDmassive MIMO. Our NTCQ approach relies on two key observations: (a) Quanti-

zation for beamforming requires finding a quantized vector, from among the available

choices, that is best aligned with the true channel vector, in terms of maximizing

the magnitude of their normalized inner product. This corresponds to a search on

the Grassmann manifold rather than in Euclidean space. We point out, as have oth-

ers before us, that this source coding problem maps to a channel coding problem

of noncoherent sequence detection, where we try to find the most likely transmitted

codeword subject to an unknown multiplicative complex-valued channel gain. (b)

We know from prior work on noncoherent communication that a noncoherent block

demodulator can be implemented near-optimally using a bank of coherent demodu-

lators, each with a different hypothesis on the unknown channel gain. Furthermore,

signal designs and codes for coherent communication are optimal for noncoherent

communication, as long as we adjust our encoding and decoding slightly to account

for the ambiguity caused by the unknown channel gain.

The relationship between quantization based on a mean squared error cost func-

tion and channel coding for coherent communication over the AWGN channel has

been exploited successfully in the design of trellis coded quantization (TCQ) [85], in

which the code symbols take values from a standard finite constellation used for com-

munication, such as phase shift keying (PSK) or quadrature amplitude modulation

0 c©[2014] IEEE. Reprinted, with permission, from J. Choi, Z. Chance, D. J. Love, and U. Madhow,
“Noncoherent Trellis-Coded Quantization: A Practical Limited Feedback Technique for Massive
MIMO Systems,” IEEE Transactions on Communications, vol. 61, no. 12, pp. 5016-5029, Dec.
2013.
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(QAM). The quantized code vector can then be found by using a Viterbi algorithm for

trellis decoding. Our observation (b) allows us to immediately extend this strategy to

the noncoherent setting. The code vectors for NTCQ can be exactly the same as in

standard TCQ, but the encoder now consists of several Viterbi algorithms (in practice,

a very small number) running in parallel, with a rule for choosing the best output.

Thus, while approximating a beamforming vector on the Grassmann manifold as in

(a) appears to be difficult, it can be easily solved by using several parallel searches

in Euclidean space. Furthermore, just as noncoherent channel codes inherit the good

performance of the coherent codes they were constructed from, NTCQ inherits the

good quantization performance of TCQ.

We first show that channel codes, and by analogy, source codes developed in a co-

herent setting can be effectively leveraged in the noncoherent setting of interest in CSI

generation for beamforming. As shown through both analysis and simulations, the

resulting NTCQ strategy provides near-optimal beamforming gain, and has encoding

complexity which is linear in the channel dimension. We also develop adaptive NTCQ

techniques that are optimized for spatial and temporal correlations. A differential ver-

sion of NTCQ utilizes the temporal correlation of the channel to successively refine

the quantized channel to decrease the quantization error. A spatially adaptive ver-

sion of NTCQ exploits the spatial correlation of the channel so that it only quantizes

the local area of the dominant direction of the spatial correlation matrix. Utiliza-

tion of channel statistics using such advanced schemes can significantly improve the

performance or decrease the feedback overhead by utilizing channel statistics.

An important feature of NTCQ is its flexibility, which makes it an attractive

candidate for potentially providing a common channel quantization approach for het-

erogeneous fifth generation (5G) wireless communication systems, which could involve

a mix of advanced network entities such as massive MIMO, coordinated multipoint

(CoMP) transmission, relay, distributed antenna systems (DAS), and femto/pico cells.

For example, massive MIMO systems could be implemented using a two-dimensional

(2D) planar antenna array at the base station to reduce the size of antenna ar-
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ray [86]. Depending on the channel quality, the base station could turn on and off

the rows/columns of this 2D array to achieve better performance. The same situation

could be encountered in CoMP and DAS because the number of coordinating trans-

mit stations may vary over time. NTCQ can easily adjust to such scenarios, since it

can adapt to different numbers of transmit antennas (or more generally, space-time

channel dimension) by changing the number of code symbols, and can adapt CSI

accuracy and feedback overhead by changing the constellation size and the coded

modulation scheme.

We have already mentioned conventional look-up based quantization approaches

and discussed why they do not scale. Trellis-based quantizers for CSI generation have

been proposed previously in [87–90], but the path metrics used for the trellis search are

ad hoc. On the other hand, the mapping to noncoherent sequence detection, similar to

NTCQ, has been pointed out in [91]. Depending on the number of constellation points

used for the candidate codewords, the proposed algorithms in [91] are dubbed as

PSK & QAM singular vector quantization (SVQ). Although PSK/QAM-SVQ adopt

similar codeword search methods as NTCQ, they do not consider coding. The use of

nontrivial trellis codes as proposed here significantly enhances performance compared

to PSK/QAM-SVQ with the same amount of feedback overhead. Furthermore, [91]

employs optimal noncoherent block demodulation, derived in [92,93], for quantization,

incurring complexity O(M3
t ) for QAM-SVQ and O(Mt logMt) for PSK-SVQ, where

Mt denotes the number of antennas. Our NTCQ scheme exhibits better complexity

scaling: near-optimal demodulation in O(Mt) complexity by running a small number

of coherent decoders in parallel, as proposed in [94], suffices for providing near-optimal

quantization performance.
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Fig. 3.1.: Multiple-input, single-output communications system with feedback.

3.1 System Model and Theory

3.1.1 System setup

We consider a block fading MISO communications system with Mt transmit an-

tennas at the transmitter as in Fig. 3.1. The received signal, y�[k] ∈ C, for a channel

use index � in the kth fading block can be written as

y�[k] = hH [k]f [k]s�[k] + z�[k],

where h[k] ∈ CMt is the MISO channel vector, f [k] ∈ CMt is the beamforming vector

with ‖f [k]‖22 = 1, s�[k] ∈ C is the message signal with E [s� [k]] = 0 and E [|s�[k]|2] = ρ,

and z�[k] ∈ C is additive complex Gaussian noise such that z�[k] ∼ CN (0, σ2). A

number of different models for h[k] will be considered in the design and performance

evaluation of quantization schemes, but for now, we allow it to be arbitrary. The re-

ceiver quantizes its estimate of h[k] into a Btot-dimensional binary vector b[k], which

is sent over a limited rate feedback channel. The transmitter uses this feedback to

construct a beamforming vector f [k]. In order to focus attention on channel quanti-

zation, we do not model channel estimation errors at the receiver or errors over the

feedback channel.



42

Since we do not consider temporal correlation in {h[k]} for quantizer design in

this section, we drop the time index k for the remainder of this section. Assuming an

average power constraint at the transmitter, we wish to choose f so as to maximize

the normalized beamforming gain that is defined as

J(f ,h) =
|hHf |2

‖h‖22‖f‖22
. (3.1)

Although ‖f‖2 = 1, we still normalize with ‖f‖2 in (3.1) to maintain notational

generality. An equivalent approach is to minimize the chordal distance between f and

h, defined as

d2c(f ,h) = 1− J(f ,h) = 1− |hHf |2
‖h‖22‖f‖22

.

These performance measures require searching for codewords on the Grassmann man-

ifold, a projective space in which vectors are mapped to one-dimensional complex

subspaces.

Conventional VQ codebook-based channel quantization typically employs exhaus-

tive search to select a codeword from an unstructured and fixed Btot-bit codebook

C = {c1, c2, . . . , c2Btot} according to

copt = argmax
c∈C

J(c,h) = argmin
c∈C

d2c(c,h), (3.2)

and the binary sequence b = bin(opt) is fed back to the transmitter where bin(·)
converts an integer to its binary representation. Then the beamforming vector is

reconstructed at the transmitter as

f =
cint(b)

‖cint(b)‖2

where int(·) converts a binary string into an integer. Exhaustive search, which does

not require geometric interpretation of the performance metric, incurs computational

complexity O(Mt2
Btot), which is exponential in the number of bits. We shall see that
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utilizing the geometry of the Grassmann manifold, and in particular, relating it to

Euclidean geometry, is key to more efficient quantization procedures.

Since our performance criterion is independent of the codeword norm, one could,

without loss of generality, normalize the codewords to unit norm up front (i.e., set

‖c‖2 ≡ 1). However, for the code constructions and quantizer designs of interest to

us, it is useful to allow codewords to have different norms (the performance criterion,

of course, remains independent of codeword scaling).

3.1.2 Feedback overhead

The relation between the feedback overhead Btot (or codebook size 2Btot) and the

performance of MIMO systems has been thoroughly investigated for i.i.d. Rayleigh

fading channels. In single user (SU) MISO channels with the Btot bits RVQ codebook,

the loss in normalized beamforming gain is given as [14]

E

[
1− max

f∈FRVQ

J(f ,h)

]
= 2Btotβ

(
2Btot ,

Mt

Mt − 1

)
≈ 2

− Btot
Mt−1 (3.3)

where FRVQ is an RVQ codebook, β(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function, Γ(x) =∫∞
0
tx−1e−tdt is the Gamma function, and expectation is taken over h and FRVQ.

The expression in (3.3) indicates that the feedback overhead needs to be increased

proportional to Mt to maintain the loss in normalized beamforming gain at a certain

level.

For MU-MIMO zero-forcing beamforming (ZFBF), a similar conclusion is drawn

in [95,96]: in order to achieve the full multiplexing gain ofMt, the number of feedback

bits per user, Buser, must scale linearly with SNR (in dB) and Mt as

Buser = (Mt − 1) log2 ρ ≈
Mt − 1

3
ρdB.
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We therefore assume that at each channel use, the receiver sends back a binary

feedback sequence of length

Btot � BMt + q

where B is the number of quantization bits used per transmit antenna and q is a

small, fixed number of auxiliary feedback bits, which does not scale with Mt.

While linear scaling of feedback bits with the number of transmit elements is

typically acceptable in terms of overhead, a VQ codebook-based limited feedback is

computationally infeasible for massive MIMO systems with large Mt because of the

exponential growth of codeword search complexity with Mt as O(Mt2
BMt). Thus, we

need to develop new techniques to quantize CSI for large Mt.

In order to develop an efficient CSI quantization method for massive MIMO

systems, we draw an analogy between searching for a candidate beamforming vec-

tor to maximize beamforming gain as in (3.2) and noncoherent sequence detection

(e.g., [87, 91]). We then employ prior work relating noncoherent and coherent detec-

tion to map quantization on the Grassmann manifold to quantization in Euclidean

space, which can be accomplished far more efficiently. This line of reasoning, which

corresponds to the process of quantization, has been previously established in [91], but

we provide a self-contained derivation in Section 3.1.3 pointing to a low-complexity,

near-optimal source encoding strategy. We then show, in Section 3.1.4 that struc-

tured quantization codebooks for Euclidean metrics are effective for quantization on

the Grassmann manifold. This leads to a CSI quantization framework which is effi-

cient in terms of both overhead and computation.
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3.1.3 Efficient Grassmannian encoding using Euclidean metrics

Consider a single antenna noncoherent, block fading, additive white Gaussian

noise (AWGN) channel with received vector

y = βx+ n,

where β ∈ C is an unknown complex channel gain, x ∈ CN is a vector of N transmit-

ted symbols, n ∈ CN is complex Gaussian noise, and y ∈ CN is the received signal.

Using the generalized likelihood ratio test (GLRT) as in [91, 94], the estimate of the

transmitted vector, x̂, is given by

x̂ = argmin
x∈CN

min
β∈C

‖y− βx‖22 (3.4)

= argmin
x∈CN

min
α∈R+

min
θ∈[0,2π)

‖y‖22 + α2‖ejθx‖22 − 2αRe(ejθyHx) (3.5)

= argmin
x∈CN

min
α∈R+

‖y‖22 + α2‖x‖22 − 2α|yHx| (3.6)

= argmax
x∈CN

|yHx|2
‖x‖22

, (3.7)

where we decomposed the entire complex plain β = αejθ with α ∈ R
+ and θ ∈ [0, 2π)

in (3.5), and (3.6) comes from

min
θ∈[0,2π)

{−Re(ejθyHx)
}
= −|yHx|.

To derive (3.7), we differentiate (3.6) with respect to α and set to 0 which gives

α
 = |yHx|
‖x‖22

. Note that α
 is the global minimizer of (3.6) because (3.6) is a quadratic

function of α. We can derive (3.7) after plugging α
 into (3.6) and some basic algebra.

We can easily check from (3.2) and (3.7) that finding the optimal codeword for

a MISO beamforming system and the noncoherent sequence detection problems are

equivalent (although this relation is already shown in [91], we proved the duality of

(3.4) and (3.2) more explicitly than [91]). Therefore, we can find copt for a MISO
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beamforming system with a Euclidean distance quantizer (or noncoherent block de-

modulator)

min
α∈R+

min
θ∈[0,2π)

min
ci∈C

‖h̄− αejθci‖22. (3.8)

where h̄ = h
‖h‖2 is the normalized channel direction.

Moreover, instead of searching over the entire complex plane by having α ∈ R
+

and θ ∈ [0, 2π), we know from prior work on noncoherent communication [94] that

the noncoherent block demodulator in (3.8) can be implemented near-optimally us-

ing a bank of coherent demodulators over the optimized discrete sets of α ∈ A =

{α1, α2, . . . , αKα
} and θ ∈ Θ = {θ1, θ2, . . . , θKθ

}. While optimal noncoherent detec-

tion can be accomplished with quadratic complexity in Mt [91], as we show through

our numerical results, a small number of parallel coherent demodulators (which incurs

complexity linear inMt) is all that is required for excellent quantization performance.

The preceding development tells us that we can apply coherent demodulation,

which maps to quantization using Euclidean metrics, to noncoherent demodulation,

which maps to quantization on the Grassmann manifold. However, we must still de-

termine how to choose the quantization codebook. Next, we present results indicating

that we can simply use codes optimized for Euclidean metrics for this purpose.

3.1.4 Efficient Grassmannian codebooks based on Euclidean metrics

We begin with an asymptotic result for i.i.d. Rayleigh fading coefficients, which

relies on the well-known rate-distortion theory for i.i.d. Gaussian sources.

Theorem 3.1.1 If we quantize an Mt × 1 i.i.d. Rayleigh fading MISO channel

h ∼ CN (0, σ2
hI) with a Euclidean distance quantizer using B bits per entry (which

corresponds to B
2
bits per each of real and imaginary dimension) as

gED = min
gi∈G

‖h− gi‖22 (3.9)
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where G = {g1, . . . , g2Btot}, Btot = BMt, gi ∼ CN (0, (σ2
h − 2D)I) for all i, and

D = 1
2
σ2
h2

−B, then the asymptotic loss in normalized beamforming gain, or chordal

distance, is given by

d2c(h, gED)
Mt→∞−→ 2−B. (3.10)

Proof By expanding ‖h− gED‖22, we have

‖h− gED‖22 =
Mt∑
t=1

[{Re(ht)− Re(gED,t)}2 + {Im(ht)− Im(gED,t)}2
]

where ht and gED,t are the t
th entry of h and gED, respectively. Note that Re(ht) and

Im(ht) are from the same distribution N (0, 1
2
σ2
h), and Re(gED,t) and Im(gED,t) are

from the distribution N (0, 1
2
σ2
h −D). Assuming B

2
bits are used to quantize each of

Re(ht) and Im(ht) for all t, by rate-distortion theory for i.i.d. Gaussian sources [97],

we can achieve the rate-distortion bound

E
[{Re(ht)− Re(gED,t)}2

]
= E

[{Im(ht)− Im(gED,t)}2
]

= D

as Mt → ∞. Thus, by the weak law of large numbers, the following convergences

hold1

1

Mt
‖h− gED‖22 P→ 2E

[{Re(ht)− Re(gED,t)}2
]
= 2D,

1

Mt

‖h‖22 P→ 2E[{Re(ht)}2] = σ2
h,

1

Mt

‖gED‖22 P→ 2E[{Re(gED,t)}2] = σ2
h − 2D

1Let X̄n = 1

n
(X1 + · · ·+Xn) and μ = E[Xi] for all i. We say X̄n converges to μ in probability as

X̄n
P→ μ for n→ ∞ when lim

n→∞

Pr
(|X̄n − μ| > ε

)
= 0 for any ε > 0.
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as Mt → ∞. Moreover,
∣∣∣hHgED

Mt

∣∣∣2 can be lower bounded as

∣∣∣∣hHgED

Mt

∣∣∣∣2 ≥ (Re(hHgED)

Mt

)2

=

(‖h‖22 + ‖gED‖22 − ‖h− gED‖22
2Mt

)2

P→ (
σ2
h − 2D

)2
.

Then, the normalized beamforming gain loss relative to the unquantized beamforming

case is bounded as

d2c(h, gED) = 1− |hHgED|2
‖h‖22‖gED‖22

≤ 2D

σ2
h

= 2−B,

d2c(h, gED)
(a)

≥ 2
− BMt

Mt−1

where (a) follows from the optimality of the RVQ codebook in large asymptotic

regime [46]. As Mt → ∞, the lower bound of d2c(h, gED) converges to the upper

bound 2−B, which finishes the proof.

Note that the loss in (3.10) is asymptotically the same as that of the RVQ code-

book in (3.3). Since the RVQ codebook is known to be asymptotically optimal as

Mt → ∞ (fixing the number of bits per antenna) [46], we conclude that coherent

Euclidean distance quantization as in (3.9) with a rich, rotationally invariant con-

stellation such as a Gaussian codebook G, is also an asymptotically optimal way to

quantize the channel vector h. Of course, in practice, for finite constellations and

number of antennas, we must “align” the codewords gi with the channel h, using

parallel branches with different amplitude scaling α and phase rotations θ as in (3.8),

prior to computing the Euclidean metric, in order to maximize the beamforming gain.

We also note that the use of nontrivial codes is implicit in Theorem 3.1.1, hence

the uncoded constellations employed in [91] do not achieve optimal quantization per-
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formance. The constellation expansion employed in the NTCQ schemes considered

here is required to approach optimal performance.

We now provide a non-asymptotic result regarding the chordal distances associ-

ated with Grassmannian line packing (GLP) attained by codebooks optimized using

Euclidean metrics. Let N = 2Btot and UN
Mt

∈ CMt×N denote the set of Mt × N com-

plex matrices with unit vector columns. To minimize the average quantization error

of (3.8) or (3.9) in Euclidean space with a fixed codebook C, we have to maximize

the minimum Euclidean distance between all possible codeword pairs

d2E,min(C) � min
1≤k<l≤N

d2E(ck, cl)

where dE(x,y) � ‖x− y‖2, and {ci}Ni=1 are column vectors of C. Let CED denote an

optimized Euclidean distance (ED) codebook that maximizes the minimum Euclidean

distance as

CED = argmax
C∈UN

Mt

d2E,min(C).

On the other hand, beamforming codebooks are ideally designed for i.i.d. Rayleigh

fading channels to maximize the minimum chordal distance between codewords as

d2c,min(C) � min
1≤k<l≤N

d2c(ck, cl),

and a GLP codebook is given as [43, 44]

CGLP = argmax
C∈UN

Mt

d2c,min(C).

Note that the optimization metrics of CGLP and CED are different, the former is the

chordal distance and the latter is the Euclidean distance. The following lemma shows

the relation of the two metrics.
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Lemma 3.1.1 For any two unit vectors x and y, the squared chordal distance between

x and y is upper bounded by a function of their Euclidean distance as

d2c(x,y) ≤ 1−
(
1− 1

2
d2E(x,y)

)2

= d2E(x,y)−
1

4
d4E(x,y).

Proof Let us define d2θ(x,y) as

d2θ(x,y) � min
θ∈[0,2π)

d2E(x, e
jθy)

= ‖x‖22 + ‖y‖22 − 2 max
θ∈[0,2π)

Re
{
ejθxHy

}
= 2− 2|xHy| ≤ d2E(x,y).

Then, the squared chordal distance of x and y is upper bounded as

d2c(x,y) = 1− |xHy|2

= 1−
(
1− 1

2
d2θ(x,y)

)2

≤ 1−
(
1− 1

2
d2E(x,y)

)2

,

which finishes the proof.

Moreover, Lemma 3.1.1 can be directly extended to the following corollary.

Corollary 3.1.1 The minimum chordal distance of CED, d2c,min(CED), is upper bounded
by the minimum Euclidean distance of CED, d2E,min(CED) as

d2c,min(CED) ≤ d2E,min(CED).

Although Corollary 3.1.1 does not say that CED maximizes the minimum chordal

distance between its codewords, CED is expected to have a good chordal distance

property. We verify this by simulation with numerically optimized CGLP and CED in
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Fig. 3.2.: The minimum chordal distances of different codebooks with Mt = 8. GLP
and Euclidean distance (ED) codebook are numerically optimized according to their
metrics, while the minimum distance of RVQ codebook is averaged over 1000 different
RVQ codebooks.

Fig. 3.2. It is shown that the minimum chordal distance of CED is larger than the

(averaged) minimum chordal distance of the RVQ codebook for all Btot values.

3.2 Noncoherent Trellis-Coded Quantization (NTCQ)

3.2.1 Euclidean distance codebook design

The observations in the preceding section provide the following practical guidelines

for quantization on the Grassmann manifold: (a) find a good codebook in Euclidean

space whose structure permits efficient encoding (or, equivalently, find a good, effi-

ciently decodable channel code); (b) use parallel versions of the Euclidean encoder

with different amplitude scalings and phase rotations, and choose the best output

(or, equivalently, implement block noncoherent decoding efficiently with a number of

parallel coherent decoders). The proposed NTCQ emerges naturally from application

of these guidelines.
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Fig. 3.3.: Quantization and reconstruction processes for a Euclidean distance quan-
tizer using trellis-coded quantization (TCQ).

NTCQ relies on TCQ which was originally proposed in [85], exploiting the func-

tional duality between source coding and channel coding to leverage the well-known

trellis-coded modulation (TCM) channel codes designed for coherent communication

over AWGN channels [98]. TCM integrates the design of convolutional codes with

modulation to maximize the minimum Euclidean distance between modulated code-

words. This is done by coding over partitions of the source constellation. Let CTCM

denote a fixed codebook with N codewords generated by a TCM channel code. Then

CTCM can be mathematically expressed as

CTCM = argmax
C∈VN

Mt

d2E,min(C)

where VN
Mt

⊂ UN
Mt

is the set of Mt ×N complex matrices generated by a given trellis

structure with a finite number of constellation points of interest for entries of the

matrix. Note that CTCM is a Euclidean distance codebook within a given set VN
Mt

.

Thus, CTCM is expected to have a good chordal distance property as well.

In TCQ, the decoder and encoder of TCM are used to quantize and reconstruct

a given source, respectively. From Fig. 3.3, we see that the TCQ system consists of

a source constellation, a trellis-based decoder (for source quantization), and a convo-

lutional encoder (for source reconstruction). Quantization is performed by passing a

source vector x ∈ CN through a trellis-based optimization whose goal is to minimize
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a mean square error distortion between the quantized output and the source message

input. The additive structure of the square of Euclidean distance implies that the

Viterbi algorithm can be employed to efficiently search for a codebook vector that

minimizes the Euclidean distance from a given source vector as

copt = argmin
ci∈CTCM

‖x− ci‖22, (3.11)

which is then mapped to a binary sequence b = bin(opt). The quantized source vector

x̂ is reconstructed by passing the binary sequence b into the convolutional encoder

and mapping the binary output of the convolutional encoder to points on the source

constellation (as if modulating the signal). Due to the linearity of the convolutional

code, each unique binary sequence b represents a unique quantized vector x̂.

NTCQ adopts TCQ to quantize CSI. Note that (3.11) is the same optimiza-

tion problem as (3.8) with a given α ∈ A = {α1, α2, . . . , αKα
} and θ ∈ Θ =

{θ1, θ2, . . . , θKθ
}. Thus, the minimization (3.8) can be performed using Kα ·Kθ par-

allel instances of the Viterbi algorithm. This is the same paradigm proposed as in

TCQ except for the search over α and θ parameters; due to the presence of these

terms, the process is coined noncoherent trellis-coded quantization. Note that with

PSK constellations, we can set α = 1 because all the candidate beamforming vectors

ci’s have the same norm.

We explain the implementation of NTCQ with 8PSK and 16QAM constellations

next (we also report results for QPSK, but do not describe the corresponding NTCQ

procedure, since it is similar to that for 8PSK). Before explaining the actual imple-

mentation, it should be pointed out that, because of the inherited TCM structure,

the number of constellation points is larger than 2B in NTCQ where B is the number

of quantization bits per channel entry. We explicitly list the relationship between B

and the constellations in Table 3.1. This issue will become clear as we explain the

8PSK implementation.
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Table 3.1.: Mapping of quantizing bits/entry (B) and constellations.

B 1 bit/entry 2 bits/entry 3 bits/entry
Constellation QPSK 8PSK 16QAM

z
-1

z
-1

z
-1

bin,1

bin,2

bout,1

bout,2

bout,3+

+

bout,4bin,3

Fig. 3.4.: This rate 2/3 convolutional code corresponds to the trellis in Fig. 3.6. In
the figure, the smaller the index the less significant the bit, e.g., bin,1 is the least
significant input bit and bin,3 is the most significant input bit.

Fig. 3.5.: 8PSK constellation points used in NTCQ are labeled with binary sequences.

3.2.2 NTCQ with 8PSK (2 bits/entry)

We adopt the rate 2/3 convolutional code in [98], as shown in Fig. 3.4. The source

constellation is assumed to be 8PSK as in Fig. 3.5. Note that all constellation points

are normalized with the number of transmit antennas Mt.

The construction of the feedback sequence is done using a trellis decoder. As is

done in traditional decoding of convolutional codes, the encoding process is repre-
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Fig. 3.6.: The Ungerboeck trellis with S = 8 states corresponding to the convolutional
encoder in Fig. 3.4. The input/output relations using decimal numbers correspond
to state transitions from the top to bottom. The example path p2 = [1, 2, 5] that
corresponds to binary input sequence [01, 00]T (or decimal input [1, 0]T ) and binary
output sequence [100, 001]T (or decimal output [4, 1]T ) is highlighted.

sented using a trellis showing the relationship between states of the encoder along

with input and output transitions. The trellis with input/output state transitions

corresponding to the convolutional code in Fig. 3.4 is shown in Fig. 3.6.

We select candidate beamforming vectors using an Mt-stage trellis where each

stage selects an entry in each of the candidate vectors. Thus, each path through the

trellis corresponds to a unique candidate beamforming vector. It is important to note

that there are only four state-transitions from any of the eight states in Fig. 3.6.

Each transition is mapped to one point of the 8PSK constellation. Therefore, even

though the source constellation is 8PSK, each element of h̄ is quantized with one

of the QPSK subconstellations marked by black or white circles in Fig. 3.5, which

results in 2 bits quantization per entry as shown in Table 3.1.

The path choices are enumerated with binary labels, and each path also corre-

sponds to a unique binary sequence. The candidate vector or path that is chosen for

output is the one that optimizes the given path metric. The path metric is chosen to

reflect the desired Euclidean distance minimization regarding codeword ci in (3.8) for
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a given α and θ. The output of the quantization is the binary sequence corresponding

to the best candidate path.

Each transition from each state at the tth stage, st ∈ {1, 2, . . . , S}, in the trellis to

a state at the (t+ 1)th stage, st+1, corresponds to a point in the source constellation.

For example, a transition from state 4 to state 8 corresponds to the binary output

sequence 011 which corresponds to the constellation point 1√
2Mt

(−1 + j) in Fig. 3.5.

Note that, in this setup, a single entry is chosen at each stage where it is possible

to choose more; this is done by using intermediate codebooks for each stage of the

trellis. For more details on this method and the design of the codebooks, the reader

is referred to [87].

To optimize over the trellis, the first task is to define a path metric. Let pt

be a partial path, or a sequence of states, up to the stage t. For example, the

path p2 = [1, 2, 5] using state indices is highlighted in Fig. 3.6. Also, define the

two functions in(·) and out(·) such that in(pt) outputs the binary input sequence

corresponding to path pt, and out(pt) gives the sequence of output constellation

points corresponding to the path pt. Again, using the sample path p2 in Fig. 3.6, we

can see that

in(p2) = [01, 00]T , out(p2) =
1√
Mt

[
−1,

1√
2
(1 + j)

]T
.

With these definitions, we can define the path metric, m(·), as

m(pt, θ) = ‖h̄t − ejθ out(pt)‖22,

where θ ∈ [0, 2π) and h̄t is the vector created by truncating of normalized MISO

channel vector h̄ to the first t entries. Note that α = 1 because all constellation points

have the same magnitude in the 8PSK case. It is easy to check that minimizing over
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the path metric will minimize the Euclidean distance. It is also important to notice

that the path metric can be written recursively as

m(pt, θ) = m(pt−1, θ) +
∣∣h̄t − ejθ out

(
[pt−1 pt]

T
)∣∣2 ,

where h̄t and pt are the tth entry of h̄ and pt, respectively. The above path metric

can be efficiently computed via the Viterbi algorithm. The path metric is computed

in parallel for each quantized value of θ ∈ Θ = {θ1, θ2, . . . , θKθ
}. Then the best path

pbest and the phase θbest that minimize the path metric can be found as

min
θ∈Θ

min
pMt

∈PMt

m(pMt
, θ)

where PMt
denotes all possible paths up to stageMt. Finally, the beamforming vector

f is calculated as

copt = out(pbest), f =
copt

‖copt‖2 .

Note that ‖copt‖2 = 1 for 8PSK; therefore f = copt.

It is important to point out that minimizing over θ only increases the complexity

of quantization, not the feedback overhead because the transmitter does not have to

know the value of θbest that minimizes the path metric during the beamforming vector

reconstruction process. However, there is additional feedback overhead with NTCQ.

Since we test all paths in the trellis, the transmitter has to know the starting state of

pbest, which causes additional log2 S bits of feedback overhead where S is the number

of states in the trellis. Therefore, the total feedback overhead is

Btot = BMt + log2 S.

The additional feedback overhead log2 S bits can vary depending on the trellis used

in NTCQ.
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Fig. 3.7.: 16QAM constellation points used in NTCQ are labeled with binary se-
quences.

3.2.3 NTCQ with 16QAM (3 bits/entry)

For the 16QAM constellation, the rate 3/4 convolution encoder is shown in Fig.

3.4. The source constellation is shown in Fig. 3.7 where d = 	
2
√
Mt

with � =
√

6
M−1

with M = 16 to have E[‖ci‖22] = 1 where expectation is taken over ci assuming all

constellation points are selected with equal probability.

The procedure of NTCQ using 16QAM is basically the same as the 8PSK case.

The difference arising for 16QAM is that we have to take α into account during the

path metric computation as

m(pt, α, θ) = ‖h̄t − αejθ out(pt)‖22 (3.12)

where θ ∈ Θ = {θ1, θ2, . . . , θKθ
} and α ∈ A = {α1, α2, . . . , αKα

}. Similar to the 8PSK

case, additional log2 S feedback bits are needed to indicate the starting state of pbest

to the transmitter in the 16QAM case.

3.2.4 Complexity

NTCQ relies on a trellis search to quantize the beamforming vector, and the

trellis search is performed by the Viterbi algorithm. In each state transition of the

trellis, one channel entry is quantized with one of 2B constellation points. This
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computation is performed for S states in each state transition (stage) and there are

Mt state transitions in total. Thus, the complexity of the Viterbi algorithm becomes

O(2BSMt).

The Viterbi algorithm has to be executed Kθ · Kα times in NCTQ, which gives

the overall complexity of O(KθKα2
BSMt). In the limit of large Mt, Theorem 3.1.1

tells us that we can get away with Kθ → 1 and Kα → 1 without performance loss.

However, even for moderate values of Mt, our results in Section 3.4.1 show that small

values of Kθ and Kα can be employed with minimal performance degradation. The

key aspect to note is the linear scaling of complexity with the number of transmit

antennas Mt, which makes NTCQ particularly attractive for massive MIMO systems

for which conventional look-up based approaches are computationally infeasible.

3.2.5 Variations of NTCQ

We can also construct several variations of NTCQ with minor tradeoffs between

the total number of feedback bits, Btot, and performance. We explain one of the

variations briefly below.

• Variation: Fixing the starting state for the trellis search.

Because NTCQ searches paths which start from every possible state in the first stage

in the trellis, we need an additional log2 S bits of feedback overhead to indicate

the starting state of pbest. One variation is to fix the first state to eliminate these

additional bits, so that the total feedback overhead incurred is exactly BMt bits. We

do incur a small performance loss by doing this, since allowing starting from different

states effectively leads to considering more possible values of the scaling parameters

α and θ. However, this loss becomes negligible as Mt gets large (consistent with

Theorem 3.1.1).

For other variations, we can fix the first entry of copt to a constant in the trellis

search or adopt a tail-biting convolutional code.
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3.3 Advanced NTCQ Exploiting Channel Correlations

In practice, channels are temporally and/or spatially correlated. In this section,

we propose advanced NTCQ schemes that exploit these correlations to improve the

performance or reduce the feedback overhead.

3.3.1 Differential scheme for temporally correlated channels

A useful model of this correlation is the first-order Gauss-Markov process [99]

h[k] = ηh[k − 1] +
√
1− η2g[k]

where g[k] ∈ CMt denotes the process noise, which is modeled as having i.i.d. entries

distributed with CN (0, 1). We assume that the initial state h[0] is independent of g[k]

for all k. The temporal correlation coefficient η (0 ≤ η ≤ 1) represents the correlation

between elements ht[k − 1] and ht[k] where ht[k] is the t
th entry of h[k].

If η is close to one, two consecutive channels are highly correlated and the differ-

ence between the previous channel h[k − 1] and the current channel h[k] might be

small. Differential codebooks in [50–57] utilize this property to reduce the channel

quantization error with an assumption that both the transmitter and the receiver

know η perfectly. Most of the previous literature, however, focused on the case with

a fixed and small number of transmit antennas and moderate feedback overhead, e.g.,

Mt = 4 and Btot = 4. Therefore, we have to come up with a new differential feedback

scheme to accommodate massive MIMO with large feedback overhead.

We denote f [k − 1] as the quantized beamforming vector at block k − 1 and

fopt[k] =
h[k]

‖h[k]‖2



61

as the unquantized optimal beamforming vector at time k. In our differential NTCQ

scheme, instead of quantizing h[k] directly at time k, the receiver quantizes fdiff [k]

which is given as

fdiff [k] =
(
IMt

− f [k − 1]fH [k − 1]
)
fopt[k].

Note that fdiff [k] is a projection of fopt[k] to the null space of f [k − 1]. We let f̂diff [k]

denote the quantized version of fdiff [k] by NTCQ with ‖f̂diff [k]‖22 = 1. The receiver then

constructs candidate beamforming vectors fᾱ,θ̄ with weights ᾱ ∈ Ā = {ᾱ1, . . . , ᾱKᾱ
}

and θ̄ ∈ Θ̄ =
{
θ̄1, . . . , θ̄Kθ̄

}
as

fᾱ,θ̄ =
ηf [k − 1] + ᾱejθ̄

√
1− η2f̂diff [k]∣∣∣∣∣∣ηf [k − 1] + ᾱejθ̄

√
1− η2f̂diff [k]

∣∣∣∣∣∣
2

. (3.13)

The receiver selects the optimal weights ᾱopt and θ̄opt by optimizing

max
ᾱ∈Ā

max
θ̄∈Θ̄

∣∣h̄H [k]fᾱ,θ̄
∣∣2 , (3.14)

and the final beamforming vector is given as

f [k] = fᾱopt,θ̄opt.

To construct candidate beamformaing vectors as in (3.13), we have to define sets of

weights Ā and Θ̄. It is easy to conclude that Θ̄ = [0, 2π) because the quantization

process uses beamformer phase invariance. To derive the range of the set Ā, we make

the following proposition.

Proposition 3.3.1 When η → 1, the range of Ā can be set as

1− η√
1− η2

≤ ᾱ ≤ 1 + η√
1− η2

. (3.15)
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Proof First, we define fnom
ᾱ,θ̄

as the numerator of (3.13) as

fnomᾱ,θ̄ = ηf [k − 1] + ᾱejθ̄
√
1− η2f̂diff [k].

Then, the norm square of fnom
ᾱ,θ̄

becomes

‖fnomᾱ,θ̄ ‖22 = η2 + ᾱ2(1− η2) + 2ᾱ
√

1− η2Re
{
ejθ̄fH [k − 1]f̂diff [k]

}
.

Because −1 ≤ Re
{
ejθ̄fH [k − 1]f̂diff [k]

}
≤ 1, we have

(
η − ᾱ

√
1− η2

)2
≤ ‖fnomᾱ,θ̄ ‖22 ≤

(
η + ᾱ

√
1− η2

)2
. (3.16)

Note that fH [k − 1]f̂diff [k] ≈ 0 with a good quantizer. Moreover, with the as-

sumption of a slowly varying channel which is typically assumed in the differential

codebook literature, we approximate η ≈ 1. Then we have ‖fnom
ᾱ,θ̄

‖22 = 1, and plugging

this into (3.16) gives the range of ᾱ in (3.15).

Note that the range in (3.15) can be further optimized numerically. In Section 3.4.2,

we set 1−η√
1−η2

≤ ᾱ ≤ 1+η

3
√

1−η2
for simulation. Once the receiver selects the optimal

weights ᾱopt and θ̄opt by (3.14), it feeds back f̂diff [k], ᾱopt and θ̄opt to the transmitter

over the feedback link and the transmitter reconstructs f [k] as in (3.13). Additional

feedback overhead caused by ᾱopt and θ̄opt can be very small compared to the feedback

overhead for f̂diff [k]. Simulation indicates that 1 bit for ᾱopt and 3 bits for θ̄opt is

sufficient to have near-optimal performance in a low mobility scenario.

3.3.2 Adaptive scheme for spatially correlated channels

If the transmit antennas are closely spaced, which is likely for a massive MIMO

scenario, channels tend to be spatially correlated and can be modeled as

h[k] = R
1
2hw[k]
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where hw[k] is an uncorrelated MISO channel vector with i.i.d. complex Gaussian

entries and R = E
[
h[k]hH [k]

]
is a correlation matrix of the channel where expecta-

tion is taken over k. We assume that R is a full-rank matrix. For spatially correlated

MISO channels, codebook skewing methods were proposed in [47–49] such that code-

words in a VQ codebook are rotated and normalized with respect to R to quantize

only the local space of the dominant eigenvector of R. It was shown in [47–49]

that this skewing method can significantly reduce the quantization error with the

same feedback overhead. With NTCQ, however, there are no fixed VQ codewords for

channel quantization which precludes the normal approach for skewing. Therefore, we

propose the following method to mimic skewing with NTCQ for spatially correlated

MISO channels.

We assume that both the transmitter and the receiver know R in advance2. At

the receiver side, hw[k] is obtained by decorrelating h[k] with R− 1
2 , i.e.,

hw[k] = R− 1
2h[k].

Then the receiver quantizes hw[k] with NTCQ and get ĥw[k]. The receiver feeds back

ĥw[k], and the transmitter reconstructs f [k] as

f [k] =
R

1
2 ĥw[k]∣∣∣∣∣∣R 1
2 ĥw[k]

∣∣∣∣∣∣
2

.

This procedure effectively decouples the procedure of exploiting spatial correlation

from that of quantization, while providing the same performance gain as standard

skewing of fixed codewords.

2In practice, the transmitter can acquire an approximate knowledge of R by averaging f [k], i.e.,
R ≈ E

[
f [k]fH [k]

]
where expectation is taken over k.
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3.4 Performance Evaluation and Discussions

In this section, we present Monte-Carlo simulation results to evaluate the per-

formance of NTCQ in i.i.d. channels, temporally correlated channels, and spatially

correlated channels. In each scenario, we simulate the original NTCQ and its vari-

ation, differential NTCQ, and spatially adaptive NTCQ explained in Sections 3.2,

3.3.1, and 3.3.2, respectively. We use the average beamforming gain in dB scale

JdB
avg = 10 log10

(
E[|hHf |2])

as a performance metric where the expectation is over h.

3.4.1 i.i.d. Rayleigh fading channels

For i.i.d. Rayleigh fading channels, h[k] is drawn from i.i.d. complex Gaussian

entries (i.e., h[k] ∼ CN (0, I)). In Fig. 3.8, we first plot JdB
avg of NTCQ and its

variation in i.i.d. channels with Mt = 20 transmit antennas depending on different

quantization levels for θk and αk. Clearly, the variation of NTCQ gives strictly lower

JdB
avg than the original NTCQ. Note that it is enough to have Kθ = 4 (2 bits for

θk) for 1 bit/entry (QPSK) to achieve near-maximal performance of NTCQ and its

variation. Interestingly, we can fix αk = 1 with 3 bits/entry (16QAM) for NTCQ and

its variation without having any performance loss. This is because when optimizing

(3.12), it is likely to have E [‖copt‖22] = 1 since the objective variable is the normalized

channel vector h̄ which has a unit norm, i.e., ‖h̄‖22 = 1. We fix Kθ = 16 (4 bits for

θk) for simulations afterward regardless of the number of bits per entry to have a fair

comparison. We also fix αk = 1 for 3 bits/entry quantization.

In Fig. 3.9, we plot JdB
avg for variation of NTCQ (to have the same feedback over-

headBtot = BMt with the other limited feedback schemes) as a function of the number

of quantization bits per entry, B, in i.i.d. Rayleigh channel realizations. We also plot

JdB
avg for unquantized beamforming, RVQ, PSK-SVQ in [91], scalar quantization, and
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Fig. 3.8.: JdB
avg vs. different quantization levels of θk and αk with Mt = 20 in i.i.d.
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Fig. 3.9.: JdB
avg vs. B with Mt = 20 and 100 in i.i.d. Rayleigh fading channels.

PSK-SVQ is from [91]. All limited feedback schemes have the same Btot.

the benchmark from Theorem 3.1.1 which is given as Mt

(
1− 2−B

)
(in linear scale).

The performance of RVQ is plotted using the analytical approximation in (3.3) as

Mt

(
1− 2

− Btot
Mt−1

)
(in linear scale), because it is computationally infeasible to simu-

late when the number of feedback bits grows large. In scalar quantization, B bits are
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used to quantize only the phase, not the amplitude, of each channel entry because

the phase is generally more important than the amplitude in beamforming [100].

As the number of feedback bits increases, the gap between the unquantized case

and all limited feedback schemes decreases as expected. RVQ gives the best per-

formance among limited feedback schemes with the same number of feedback bits.

However, the difference between JdB
avg for RVQ and variation of NTCQ is small for all

B. The plots of the benchmark using Theorem 3.1.1 well approximate JdB
avg of NTCQ

for all B and Mt, which shows the near-optimality of NTCQ. Note that variation

of NTCQ achieves better JdB
avg than PSK-SVQ regardless of B and Mt, and the gap

becomes larger as Mt increases. This gap comes from the coding gain of NTCQ. As

shown in Table 3.1, NTCQ can exploit 2B+1 constellation points while PSK-SVQ only

utilizes 2B constellation points with B bits quantization per entry. The coding gain

of variation of NTCQ is around 0.25 to 1dB depending on Mt and B. Although we

do not plot the performance of QAM-SVQ which relies on QAM constellations, it has

the same structure as PSK-SVQ meaning that QAM-SVQ roughly experiences the

same performance degradation compared to NTCQ.

3.4.2 Temporally correlated channels

To simulate the differential feedback schemes with the original NTCQ algorithm in

temporally correlated channels, we adopt Jakes’ model [84] to generate the temporal

correlation coefficient η = J0(2πfDτ), where J0(·) is the 0th order Bessel function of

the first kind, fD denotes the maximum Doppler frequency, and τ denotes the channel

instantiation interval. We assume a carrier frequency of 2.5 GHz and τ = 5ms. We

set the quantization level for the combiners θ̄ and ᾱ in (3.13) as 3 bits and 1 bit,

respectively, which causes 4 bits of additional feedback overhead.

In Fig. 3.10, we plot the performance of the proposed differential NTCQ feedback

schemes with the velocity v = 3km/h (η = 0.9881) assuming no feedback delay. The

differential NTCQ schemes, even with 1 bit/entry quantization, achieve almost the
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Fig. 3.11.: JdB
avg−delay[d] vs. fading block index k with Mt = 100, d blocks of feedback

delay, and v = 3km/h in temporally correlated channels.

same performance as unquantized beamforming regardless of Mt. Thus, if we can

adjust the feedback overhead as a function of time, we can switch from NTCQ with

2 or 3 bits/entry quantization to 1bit/entry quantization in differential NTCQ to

reduce the overall feedback overhead.
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To see the effect of feedback delay in temporally correlated channels, we simulate

the Mt = 100 case with different numbers of delay d measured in fading blocks (one

fading block corresponds to 5ms) in Fig. 3.11 such that

JdB
avg−delay[d] = 10 log10

(
E[|hH [k]f [k − d]|2)]) .

It is shown that the effect of feedback delay is negligible, i.e., around 0.1dB loss with

one additional block delay for all cases, which confirms the practicality of the differen-

tial NTCQ scheme. Moreover, we can reduce the frequency of the feedback updates

to reduce the total amount of feedback overhead without significant performance

degradation when the velocity of the receiver is low.

3.4.3 Spatially correlated channels

To generate spatially correlated channels, we adopt the Kronecker model for the

spatial correlation matrixR which is given asR = UΣΣΣUH whereU and ΣΣΣ areMt×Mt

eigenvector and diagonal eigenvalue matrices, respectively. The performance of the

adaptive scheme will highly depend on the amount of spatial correlation. To see the

effect of spatial correlation, we assume the eigenvalue matrix ΣΣΣ has a structure given

by

ΣΣΣ = diag

{
λ1,

Mt − λ1
Mt − 1

, · · · , Mt − λ1
Mt − 1

}
where 1 ≤ λ1 < Mt is the dominant eigenvalue of R. If λ1 is small (large), the

channels are loosely (highly) correlated in spatial domain. Note that channels are

i.i.d. when λ1 = 1.

In Fig. 3.12, and 3.13, we plot JdB
avg as a function of λ1 for Mt = 10 and 20 cases.

The performance of spatially adaptive NTCQ become closer to that of unquantized

beamforming as λ1 increases with the same feedback overhead as original NTCQ.

This shows the effectiveness of the proposed adaptive NTCQ scheme for spatially

correlated channels.
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Fig. 3.13.: JdB
avg vs. λ1 with Mt = 20 in spatially correlated channels.

While we have developed an efficient channel quantization method for massive

MIMO systems, we note that limitations on feedback overhead would typically prevent

scaling to an indefinitely large number of antennas. However, the feedback overhead

may be reasonable for the moderately large number of antennas (32 to 64) expected in

initial deployments [86], and NCTQ represents a computationally efficient approach
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to generating such feedback. Moreover, we propose TEC and TE-SPA that can reduce

the feedback overhead of NTCQ in the next chapter.
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4. TRELLIS-EXTENDED CODEBOOKS AND

SUCCESSIVE PHASE ADJUSTMENT: A PATH FROM

LTE-ADVANCED TO FDD MASSIVE MIMO SYSTEMS

Note that the minimum feedback overhead of NTCQ is one bit per channel entry,

which could prevent its use in certain scenarios that need small feedback overhead.

In this chapter, we explain TEC and TE-SPA codebooks that can achieve a fractional

number of bits per channel entry quantization. The TEC and TE-SPA codebooks

can be used similarly to the LTE-Advanced dual codebooks, i.e., TEC quantizes long-

term/wideband CSI while TE-SPA quantizes short-term/subband CSI. This unified

structure for long-term/wideband and short-term/subband CSI quantization is a sig-

nificant benefit compared to other stand-alone CSI quantization schemes for massive

MIMO systems.

4.1 System Model

To simplify explanation, we first consider a block fading MISO channel with Mt

transmit antennas at the base station and a single receive antenna at the user. The

proposed TEC can be easily extended to a multiple receive antenna case as explained

in Section 4.2.3. With the block fading assumption, the received signal for each

channel use in the kth fading block, y[k] ∈ C, is written as

y[k] =
√
PhH [k]f [k]s + z[k],

0 c©[2014] IEEE. Reprinted, with permission, from J. Choi, D. J. Love, and T. Kim, “Trellis-Extended
Codebooks and Successive Phase Adjustment: A Path from LTE-Advanced to FDD Massive MIMO
Systems,” accepted to IEEE Transactions on Wireless Communications, Nov. 2014.
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where P is the transmit power, h[k] ∈ CMt is the MISO channel vector, f [k] ∈ CMt is

the unit norm beamforming vector, s ∈ C is the message signal1 satisfying E [s] = 0

and E [|s|2] = 1, and z[k] ∼ CN (0, σ2) is complex additive white Gaussian noise.

For CSI quantization, we assume that the total number of feedback bits Btot scales

linearly with Mt as

Btot � BMt

where B is the number of quantization bits per transmit antenna. The linear re-

lationship of the feedback overhead with the number of antennas is necessary to

achieve a certain level of channel quantization error [14] or a full multiplexing gain of

MU-MIMO (assuming the conditions on the feedback rate and SNR dependence are

satisfied) [95, 96].

If we rely on the conventional approach of using a Btot-bit unstructured vector

quantization (VQ) codebook C = {c1, . . . , c2Btot} that consists of unit norm codewords

for CSI quantization, the user quantizes its channel by selecting the codeword copt[k]

that aligns with the channel most closely as

copt[k] = argmax
c∈C

|hH [k]c|2. (4.1)

The user then feeds back the binary index of copt[k], i.e., b[k] = bin(opt) where bin(·)
converts an integer to its binary representation, to the base station. If the base station

adopts maximum ratio transmission (MRT) beamforming, which is popular due to

its simplicity for massive MIMO [5], we have f [k] = copt[k].

Note that the codeword search complexity of using a VQ codebook is O(Mt2
BMt).

If Btot orMt is small as in current cellular systems, the complexity of CSI quantization

is not a problem. However, in massive MIMO systems with a very large number of

Mt, brute force codeword selection becomes infeasible.

1The message signal changes in every channel. We neglect the index for channel use for brevity.
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4.2 Trellis-Extended Codebook (TEC)

TEC can exploit and extend preexisting VQ codebooks such as LTE or LTE-

Advanced codebooks. Because of its backward compatibility, TEC is an excellent

candidate for CSI quantization in future FDD massive MIMO systems. We first

explain the concept and the procedure of TEC. We then discuss the codeword-to-

branch mapping and codebook design criteria to maximize the performance of TEC.

Because we do not consider temporal correlation of channels in this section, we drop

the block index k to simplify notations for the remainder of this section.

4.2.1 Concept and procedure of TEC

Similar to [87] and NTCQ, TEC exploits a trellis decoder and a convolutional

encoder in channel coding as a CSI quantizer and a CSI reconstructor, respectively.

Low-dimensional VQ codewords (e.g., codebooks designed for smaller arrays) are

mapped to trellis branches to quantize multiple channel entries simultaneously by

the Viterbi algorithm. We first explain the concept of TEC in detail. Then, we

summarize the procedure of TEC.

Like NTCQ, TEC is based on the equivalence between the two optimization prob-

lems

x̂ = argmin
x∈CN

min
θ∈[0,2π)

∥∥∥∥y− ejθ
x

‖x‖2

∥∥∥∥2
2

and

x̂ = argmax
x∈CN

|yHx|2
‖x‖22

. (4.2)

Note that (4.2) is the same as (4.1). Thus, with the constraint of ‖c‖22 = 1, we can

transform the CSI quantization problem in (4.1) to

copt = argmin
c∈C

min
θ∈[0,2π)

∥∥h− ejθc
∥∥2
2
. (4.3)
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Fig. 4.1.: A rate 2
3
convolutional encoder that can be used to generate a TEC code-

book. In the figure, bin,1 and bin,2 are the least significant and the most significant
input bits, respectively. Same for the output bits.

Instead of optimizing θ over the continuous space [0, 2π), we can discretize the search

space, i.e., θ ∈ Θ = {θ1, . . . , θKθ
}, as in noncoherent sequence detection [94]. With a

given θ, (4.3) can be efficiently solved by well-known source coding techniques such

as TCQ or trellis quantizer [85]. This conversion is successfully exploited in [91]

and NTCQ to develop efficient CSI quantizers. TEC also solves (4.3) using trellis

quantizers similar to NTCQ. The main difference is that NTCQ handles one channel

entry per state transition of the trellis search while TEC processes multiple channel

entries simultaneously.

TEC can be implemented using any trellis quantizer. In this work, we adopt

the Ungerboeck trellis and convolutional encoder [98] because of their simplicity and

good performance. Let Bin and Bout be the number of input and output bits of a

convolutional encoder of interest, respectively. The Ungerboeck convolutional encoder

satisfies Bout = Bin + 1. Note that each state in the trellis of the corresponding

convolutional encoder has 2Bin branches; however, the total number of distinctive

branch labels is 2Bout. An example of a rate 2
3
convolutional encoder from [98] (with

Bin = 2 and Bout = 3) and the corresponding trellis are shown in Fig. 4.1 and 4.2,

respectively. As shown in Fig. 4.2, each state has four branches differentiated with

inputs and even or odd outputs.

Let L denote the number of simultaneously quantized channel elements in a state

transition of a trellis. We assume that L divides the number of transmit antennas
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Fig. 4.2.: The trellis representation of the convolutional encoder in Fig. 4.1. Each
state transition in the right side is mapped with input/output relation using decimal
numbers in each box in the left. For example, 1/4 (in decimal numbers) in the
top red-dot box represents the state transition from the state 0 to the state 1 with
input=01/output=100 (all in binary numbers).

Mt. Note that TEC supports B = Bin

L
bits per channel entry quantization, which will

become clear later. Thus, if L > Bin, TEC can achieve a fractional number of bits

per channel entry quantization.

To process L channel entries per state transition, TEC maps L × 1 codewords

cLk ∈ CL to branches in the trellis. To do this, we need to have a VQ codebook

(such as the LTE codebook) with 2Bout codewords, i.e., CL
2Bout

=
{
cL0 , . . . , c

L
2Bout−1

}
,

to assign all 2Bout branches of the trellis with different output. We will discuss the

codeword-to-branch (or outputs) mapping and the codebook design criteria later. For

the time being, we assume that all 2Bout branches are mapped with some codewords.

To perform the trellis search using the Viterbi algorithm, we need to define a path

metric to solve (4.3). Let pt be a partial path up to the stage t in the trellis. We also

define in(pt) as the binary input sequence corresponding to path pt and out(pt) as the

sequence of codewords cLk ’s that are mapped to branches in the path pt. Note that
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out(pt) ∈ CLt where each block of L entries of out(pt) is from a specific codeword cLk .

Then we can define the path metric based on (4.3) as

m(pt, θ) =
∥∥h[1:Lt] − ejθout(pt)

∥∥2
2

= m(pt−1, θ) +
∥∥h[L(t−1)+1:Lt] − ejθout([pt−1 pt])

∥∥2
2

(4.4)

where h[m:n] is the truncated vector of h from the mth entry to the nth entry. The

path metric in (4.4) can be efficiently computed for a given candidate value of θ

using the Viterbi algorithm where the total number of stages in the trellis is equal

to T = Mt

L
. The pair (pbest, θbest) that minimizes the path metric in (4.4) is given by

solving

min
θ∈Θ

min
pT∈PT

m(pT , θ)

where PT denotes the set of all possible paths up to stage T . The best codeword copt

and the binary feedback sequence b are given as

copt = out(pbest), b = in(pbest), (4.5)

respectively. If we normalize cLk as ‖cLk ‖22 = L
Mt

for all k, then we have ‖copt‖22 = 1.

It is important to point out that b consists of input bits (not output bits) of the

convolutional encoder, which results in B = Bin

L
bits per channel entry quantization.

The procedure of TEC can be summarized as follows: 1) for a given θ, find the path

pT that minimizes the path metric defined in (4.4) by running the Viterbi algorithm;

2) among selected candidate paths depending on θ, select θbest (and corresponding

pbest) that gives the minimum path metric; 3) pbest is converted to the binary feedback

sequence b as in (4.5) and b is fed back to the base station; and 4) the base station

reconstructs copt based on b.

Note that searching over θ only increases complexity, not the feedback overhead

of TEC. The base station only needs to know the binary feedback sequence b that

represents the best path pbest to reconstruct copt using the convolutional encoder. We
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fix the starting state of the trellis search to the first state. Otherwise, we need an

additional feedback overhead to indicate the starting state of the best path.

4.2.2 Codeword-to-branch mapping and codebook design criteria for TEC

To exploit a preexisting VQ codebook in TEC, we need a clever mapping rule

between codewords in CL
2Btot

and branches in the trellis. The mapping rule should

depend on the structure of the given trellis or convolutional encoder. We propose a

mapping rule for the trellis structure in Fig. 4.2 with an arbitrary codebook CL
2Btot

.

Similar mapping rules can be defined for other trellis structures.

1) Codeword-to-branch mapping rule for Fig. 4.2: Because the branch labels do

not vary with θ, we need to separately maximize the minimum Euclidean distance

between codeword pairs that are mapped to all even and odd outputs in Fig. 4.2. To

further optimize the mapping, we also need to consider the distinctive pairs of paths

in Fig. 4.3 because we fix the starting state of the trellis search as the first state in

TEC. Considering the red-solid paths and the first state transition of the blue-dot

paths, all even outputs are interconnected with each other. For odd outputs, however,

we can further maximize the Euclidean distance between the two codewords that are

mapped to outputs {1, 5} and {3, 7}.
To realize this, with some abuse of notation, let CL

1 and CL
2 denote all possible

partitions of CL
2Btot

satisfying

CL
1 ∪ CL

2 = CL
2Btot ,

CL
1 ∩ CL

2 = φ,

card(CL
1 ) = card(CL

2 ) = 2Btot−1

where card(·) is the cardinality of an associated set and φ denotes the empty set. Let

cm,k ∈ CL
k for k = 1, 2. We denote CL

odd and CL
even as the set of codewords mapped to
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Fig. 4.3.: Distinctive pairs of paths of which the Euclidean distance should be maxi-
mized. Two pairs of paths are highlighted with trellis outputs.

the trellis branches of odd and even outputs, respectively. We generate CL
odd and CL

even

as

CL
odd = argmax

CL
1 ⊂CL

min
m
=n

‖cm,1 − cn,1‖22 ,

CL
even = argmax

CL
2 ⊂CL

min
m
=n

‖cm,2 − cn,2‖22 , (4.6)

respectively. Once we have CL
odd and CL

even as above, we can have arbitrary mappings

between the codewords in CL
even and the trellis branches of even outputs. For the

trellis branches of odd outputs, however, we need one more step. We divide CL
odd

into CL
odd,1 and CL

odd,2 as we divide CL
2Btot

into CL
odd and CL

even in (4.6). Then, we map

the codewords in CL
odd,k to the trellis branches with outputs {(2k − 1), (2k + 3)} for

k = 1, 2.

2) Codebook design criterion: Instead of reusing conventional codebooks, we can also

design a codebook that is optimized for TEC. Note that the second term of the path

metric in (4.4) is the quantization problem in Euclidean space. Thus, we can generate
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a codebook with 2Bout codewords of dimension L × 1 that maximize the minimum

Euclidean distance between all possible codeword pairs as

CL
ED,2Bout = argmax

C∈U2Bout
L

d2ED,min(C) (4.7)

where UN
L ∈ CL×N is the set of all L×N complex matrices with unit norm columns

and

d2ED,min(C) � min
1≤k<l≤2N

‖ck − cl‖22

with ck, cl ∈ C.
The proposed codebook design criterion exploits the same concept as the GLP

codebook that maximizes the minimum chordal distance between all codeword pairs

[43,44]. The difference is that the GLP codebook directly quantizes a channel on the

Grassmann manifold while the proposed codebook works in Euclidean space.

Remark: A similar codebook design and codeword-to-branch mapping criteria have

been proposed in [87]. However, [87] first generates the L×1 Euclidean codebook with

2Bin codewords (not 2Bout codewords as in the proposed scheme) that are mapped to

odd (or even) outputs. With some abuse of notation, denote this Euclidean codebook

CL
odd. Then CL

even is generated by rotating CL
odd with a unitary matrix U where U is de-

signed to maximize the minimum chordal distance between codewords in CL
odd ∪CL

even.

Because U tries to maximize the minimum chordal distance, not the minimum Eu-

clidean distance, the approach in [87] cannot guarantee to maximize the minimum

Euclidean distance between all possible pairs of codewords generated by TEC. More-

over, [87] cannot easily utilize an existing VQ codebook different from TEC.

4.2.3 TEC for multiple receive antennas

We extend the proposed TEC to accommodate MIMO with Mr receive antennas

at the user. Assume that Mt ≥ Mr and the base station transmits K ≤ Mr data

streams simultaneously. If we rely on a VQ codebook, we select the matrix codeword
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(or precoder matrix) F ∈ CMt×K that maximizes the instantaneous achievable rate

which is defined as

Rach = log2 det

(
IK +

P

σ2K
FHHHHF

)
(4.8)

where P
σ2 is SNR and H ∈ CMt×Mr is the channel matrix. It is not possible to follow

this approach with TEC because TEC does not explicitly use a codebook of precoders.

Instead, we quantize the first K dominant eigenvectors of HHH , which is denoted

as U (H) ∈ CMt×K . For this case, we need to use matrix codewords CL×K
k ∈ CL×K

(which has orthogonal columns) to quantize U (H). We can rewrite the path metric

defined in (4.4) as2

m(pt, θ) =
∥∥∥U (H)[1:Lt] − ejθout(pt)

∥∥∥2
F

= m(pt−1, θ) +
∥∥∥U (H)[L(t−1)+1:Lt] − ejθout([pt−1 pt])

∥∥∥2
F

where A[m:n] is the truncated matrix of A from the mth row to the nth row, and

‖A‖F denotes the Frobenius norm of a matrix A. We can use the same codebook

design and codeword-to-branch mapping criteria to the multiple receive antenna case

by changing the 2-norm operation to a Forbenius norm operation. Because we restrict

the matrix codewords to have orthogonal columns, the columns of the final selected

precoder F are also orthogonal with each other.

4.3 Trellis-Extended Successive Phase Adjustment (TE-SPA)

In practice, channels are correlated in time and space. There has been much

work on differential codebooks that leverage the temporal correlation of channels for

better CSI quantization, e.g., [50–57]. However, most of those works focused on a

small number of transmit antennas and feedback bits. Thus, we first propose TE-

2We can rotate each column of out (pt) separately using different values of θ to optimize the path
metric with additional search complexity.
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SPA which is a differential codebook version of TEC for temporally correlated massive

MIMO systems. Later, we show that TE-SPA can be applied to spatially correlated

channels as well.

We consider temporally correlated channels that are modeled by a first order

Gauss-Markov process as

h[k] = ηh[k − 1] +
√
1− η2g[k] (4.9)

where 0 ≤ η ≤ 1 is the correlation coefficient, h[k] is the channel realization at time

k, and g[k] is the innovation process at time k. We assume that h[0] is independent of

g[k] for all k. Note that the model in (4.9) is also applicable to frequency correlated

channels if k denotes the subcarrier or subband index of a wideband channel.

If the channel variation is small in time, i.e., η is close to 1, we can successively

reduce quantization error by adjusting the phase of each entry or the block of entries of

previous CSI. TE-SPA adjusts phases in a block-wise manner to reduce the feedback

overhead. TE-SPA consists of block-wise phase adjustment matrix generation and

block shifting.

4.3.1 Block-wise phase adjustment matrix generation

Let ĥk−1 = copt[k − 1] and hk = h[k] represent the previous (quantized) CSI and

the current channel vector, respectively, to simplify notations. TE-SPA quantizes the

channel at time k by adjusting the phases of ĥk−1 in a block-wise manner. That is,

ĥk−1 is rotated with a block-wise phase adjustment matrix Pk which is given as3

Pk = diag
([
ejϕk,1, . . . , ejϕk,T

]⊗ 1L

)
(4.10)

3The block length L with the same phase ϕk,n in Pk is a design parameter and does not need to be
the same as that of TEC. We assume the length of L is the same as in TEC for simple explanation.
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where T = Mt

L
, ⊗ is the Kronecker product, and 1L = [1, . . . , 1]T is the length L all

1 vector. Then, the quantized version of the current CSI becomes

ĥk = Pkĥk−1.

TE-SPA exploits the trellis structure as in TEC to generate Pk, i.e., TE-SPA

selects {ϕk,n} from a given set Ψ = {ψ1, . . . , ψ2Bout} as

(ϕk,1, . . . , ϕk,T ) = argmin
ϕk,n∈Ψ

min
θ∈Θ

∥∥∥hk − ejθPkĥk−1

∥∥∥2
2

(4.11)

using the Viterbi algorithm. Note that the convolutional encoders for TEC and TE-

SPA can be different, e.g., we could adopt a rate 2
3
convolutional encoder for TEC

while a rate 1
2
convolutional encoder is used for TE-SPA to reduce successive feedback

overhead.

To quantize CSI effectively, we need to appropriately set the values of the elements

in Ψ and assign those elements to the trellis branches, which are exactly the same

principles as the codebook design and the codeword-to-trellis branch mapping criteria

in TEC. Previous works on differential codebook design tried to optimize codebook

update methods taking the temporal correlation coefficient η into account. In TE-

SPA, this is implicitly handled during the trellis search, i.e., the trellis search selects

the best set of phases for Pk which rotates the previous CSI “close” to the current

channel. Therefore, it is better to have values of elements in Ψ such that they are

able to generate various rotation matrices as possible. Note that Pk is determined

by the relation among {ϕk,n}. If T = 2, then diag([1, ej
π
4 ] ⊗ 1L) is the same as

diag([ej
7π
4 , 1] ⊗ 1L) in terms of Pk. Thus, we restrict the search space to [0, π) and

assign the values in Ψ as4

ψν =
ν − 1

2Bout
π, ν = 1, . . . , 2Bout.

4For large T , searching over [0, 2π) would give different choices of Pk; however, a larger search space
gives coarse quantization for ψν resulting in performance degradation.
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(ϕk,1, . . . , ϕk,T ) = argmin
ϕk,n∈Ψ

min
θ∈Θ

∥∥∥∥hk

[
L

2
(k − 1)

]
c

− ejθPkĥk−1

[
L

2
(k − 1)

]
c

∥∥∥∥2
2

, k ≥ 1.

(4.12)

Now, we need a mapping rule between ψν ’s and trellis outputs. We consider ψν ’s

as PSK constellation points and follow the same mapping rule as in TCM [98]. That

is, we maximize the minimum Euclidean distance among ψν ’s that are mapped to

the branches with the same incoming/outgoing states by mapping ψν to the trellis

output ν.

Remark: We can further reduce the feedback overhead of TE-SPA. Note that we

can rewrite Pk in (4.10) as

Pk = ejϕk,1 diag
([
1, . . . , ej(ϕk,T−ϕk,1)

]⊗ 1L

)
.

Let P̆k = diag
([
1, . . . , ej(ϕk,T−ϕk,1)

]⊗ 1L

)
. Then, the objective function in (4.11) can

be rewritten as ∥∥∥hk − ej(θ+ϕk,1)P̆kĥk−1

∥∥∥2
2
.

Thus, if we appropriately redesign Θ for the noncoherent search in (4.11), we can

always fix the first entry of P̆k as 1 and skip (or fix) the first stage of the trellis search

which gives a reduced feedback overhead.

4.3.2 Block-shifting

If we fix the block structure of the phase adjustment matrix Pk, then the per-

formance can quickly saturate because we cannot adjust the phase relation of the

elements within each block. Moreover, since we fix the starting state of the trellis

search, the first state transition suffers from using a restricted number of branches,

e.g., only 4 branches with even trellis outputs are exploited for the first state transi-

tion in Fig. 4.3. These might not be serious problems for one-shot quantization as in
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Fig. 4.4.: A conceptual explanation of TE-SPA with block-shifting with Mt = 12 and
L = 4. ĥk is the result of multiplying ejϕk,n’s to ĥk−1 in a block-wise manner.

TEC, but the loss could be accumulated in successive quantizations as in TE-SPA.

Therefore, we adopt block-shifting to mitigate these problems.

Let a[m]c and A[m]c denote the left circularly shift of a vector a and diagonal

entries of a matrix A of m elements, respectively. For example, if a = [1, 2, 3, 4, 5],

then a[2]c = [3, 4, 5, 1, 2]. Using this notation, we rewrite the optimization problem

in (4.11) as in (4.12). We interweave two consecutive blocks by circularly shifting

L
2

elements in (4.12) to prevent the saturation effect.5 After generating Pk, the

quantized CSI at time k is given as

ĥk = Pk

[
−L
2
(k − 1)

]
c

ĥk−1.

The conceptual explanation of TE-SPA with block-shifting is shown in Fig. 4.4.

Note that TEC is used for CSI quantization at k = 0. The proposed block shifting can

adjust not only the phase relation among blocks but also that of elements within each

5To further improve performance, we can dynamically reassign the blocks of Pk instead of circularly
shifting elements in time.
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block in time. Moreover, the phase ϕk,1 from the first state transition is multiplied

to the different blocks of ĥk depending on k, which prevents the accumulation of the

loss caused by the first state transition.

4.3.3 Applying TE-SPA to spatially correlated channels

In massive MIMO systems, channels tend to be spatially correlated due to small

antenna spacing. We can model spatially correlated channels as

h[k] = R
1
2hw[k]

where R = E[h[k]hH [k]] is a spatial correlation matrix and hw[k] is uncorrelated

channel vector with i.i.d. complex Gaussian entries. Let u1(R) denote the dominant

eigenvector of R. We assume R is perfectly known only at the receive side.

If the channels are highly correlated in space, the matrix R becomes ill condi-

tioned, and u1(R) and h[k] tend to be highly correlated. In this case, we can quantize

u1(R) using TEC and apply TE-SPA to quantize h[k] in each fading block of k based

on the quantized version of u1(R). Because u1(R) is a long-term statistic and varies

very slowly compared to hw[k], the additional feedback overhead for u1(R) would be

negligible. Although this approach is based on one-step (instead of successive) phase

adjustment, we keep the terminology TE-SPA to avoid any confusion.

4.4 Simulations and Discussions

We performed Monte-Carlo simulations using 10000 channel realizations to evalu-

ate the proposed TEC and TE-SPA. We set Kθ = 16 for Θ = {θ1, . . . , θKθ
} to perform

the noncoherent search of TEC and TE-SPA.
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We first evaluate TEC in i.i.d. Rayleigh fading channels as h ∼ CN (0, IMt
).

Because our focus is CSI quantization techniques, we use the average beamforming

gain in dB scale that is defined as

10 log10
(
E[|hHcopt|2]

)
for a performance metric where the expectation is taken over h. We set L = 4 to

exploit VQ codebooks with dimension 4 × 1. Thus, TEC schemes with B = 3/4

and B = 1/2 bits per entry quantize 4 channel elements using 3 bits and 2 bits,

respectively. In Fig. 4.5, we plot the average beamforming gain of TEC with the

proposed codeword-to-branch mapping rule using different codebooks, e.g., trellis

extended-Euclidean distance (TE-ED) refers to TEC using the Euclidean distance

(ED) codebook defined in (4.7), according to the number of transmit antennas Mt.

We also plot the average beamforming gain of NTCQ (denoted [101] in the figure)

with B = 1 and that of RVQ with the same feedback overhead with TEC schemes

for comparison purpose. Note that TE-LTE with B = 1/2 refers to TEC using only

the first 8 among 16 codewords of LTE 4 transmit antennas codebook, which are the

same as 8 DFT codewords. The total feedback overhead of each scheme is given as

Btot = BMt.

As expected in Section 4.2.2, TE-ED using the ED codebook gives the best perfor-

mance among the TEC schemes. The gain is more than 1 dB compared to TE-LTE

when B = 3/4 andMt is more than 64. TE-LTE suffers from practical constraints6 on

its codewords such as constant modulus (which causes the loss of norm information

of channel elements) and finite alphabet properties. The conventional VQ codebook

approach using RVQ is better than TEC schemes, but the plot of the RVQ codebook

is based on the analytical approximation of Mt

(
1− 2

− Btot
Mt−1

)
[14] because it is infea-

sible to simulate the performance of the RVQ codebook with Btot = 16 bits (which is

6The practical constraints lead to the decreased minimum Euclidean distance among the LTE code-
words as well.
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Fig. 4.5.: Average beamforming gain (dB) with Mt in i.i.d. Rayleigh fading channels.
TE-‘codebook name’ refers to TEC using the specific codebook. Btot = BMt.
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Fig. 4.6.: Average beamforming gain (dB) with Mt in i.i.d. Rayleigh fading channels.
TEC schemes with the proposed codeword-to-branch mapping and random mapping
are compared.

the case of Mt = 32 with B = 1/2) or more. NTCQ outperforms TEC with a much

larger feedback overhead than the TEC schemes.7

7We did not compare TEC with [87] because the proposed scheme in [87] cannot even maintain a
constant performance gap with the RVQ codebook.
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Fig. 4.7.: Achievable rate with SNR in i.i.d. Rayleigh fading channels with Mt = 16,
Mr = 2, and K = 2. Btot = BMt.

We also compare the beamforming gains of the proposed codeword-to-branch map-

ping and a random mapping (per iteration) using TE-ED and TE-LTE in Fig. 4.6.

Note that the proposed mapping has negligible impact on the average beamforming

gain of TE-ED. The reason is that the Euclidean distance among codewords in the

ED codebook is already far apart and the random mapping is also guaranteed to

have a good Euclidean distance property. On the other hand, the proposed mapping

achieves around 0.1 to 0.2 dB gain compared to the random mapping in TE-LTE.

This shows that if we reuse preexisting VQ codebooks that are not optimized in the

Euclidean distance, the proposed mapping can achieve additional gain with the same

codebook.

Now, we evaluate TEC for a multiple receive antenna case. We set Mt = 16,

Mr = 2, and the transmission rank as K = 2. The number of transmit antennas is

not too large in this case because we want to compare TEC and the RVQ codebook

with the same feedback overhead. With Mt = 16, TEC with B = 3/4 and B = 1/2

correspond to Btot = 12 and Btot = 8 bits, respectively. Denote the average achievable

rate as E [Rach] where Rach is defined in (4.8) and the expectation is taken over H.

Each entry of H is distributed with CN (0, 1). For the RVQ codebooks, the precoder
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matrix is selected to maximize Rach while F is generated as explained in Section

4.2.3 for TEC. We plot the average achievable rates of TE-ED and RVQ in Fig.

4.7 with SNR. The proposed TE-ED maintains a constant gap of around 1 bps/Hz

loss compared to the RVQ codebook with the same feedback overhead for all SNR

values. Considering the asymptotic optimality of the RVQ codebook in high rank

transmission [46], the proposed TEC can achieve a good performance even in multiple

receive antenna cases with feasible complexity.

In Fig. 4.8, we evaluate TE-SPA with Mt = 64 in temporally correlated Rayleigh

fading channels which is shown in (4.9) with g[k] ∼ CN (0, IMt
). We rely on Jakes’

model for the temporal correlation coefficient [84] such that η = J0(2πfDτ) where

J0(·) is the zero-th order Bessel function, fD is the maximum Doppler frequency,

and τ is the channel instantiation interval. With practical system parameters of

2.5GHz carrier frequency, τ = 5ms, and 3km/h user velocity, the temporal correlation

coefficient is given as η = 0.9881. We do not consider any feedback delay in this

simulation because it has been shown in the previous chapther that the impact of

feedback delay is marginal.

At k = 0, channels are quantized with TE-ED using B = 1/2 bits per channel

entry while channels are quantized using TE-SPA using BSPA bits per entry when

k ≥ 1. As shown in the figure, the average beamforming gain increases with k due

to reduced quantization error using TE-SPA even with lower feedback overhead of

BSPA = 1/4. All TE-SPA schemes outperform the RVQ codebook that does not

consider temporal correlation of channels in quantization. The gain of using TE-

SPA with block shifting is more than 1.6 dB when BSPA = 1/2. Note that TE-SPA

with block shifting gives far better performance than TE-SPA without block shifting

because it can adjust the phase relation of the elements within each block and spread

out the loss from the first state transition as explained in Section 4.3.

To evaluate TE-SPA in a more practical scenario, we perform simulations using

the spatial channel model (SCM) [102] that is commonly adopted in standards such as

3GPP. In Fig. 4.9, we plot the average beamforming gain using the same simulation
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Fig. 4.9.: Average beamforming gain (dB) with k andMt = 64 using an SCM channel
model. Simulation setups are the same as in Fig. 4.8 with uniform linear array
antennas with 0.5λ antenna spacing and 8 degrees angle spread.

setups as in Fig. 4.8 with uniform linear antenna array with 0.5λ antenna spacing

and 8 degrees angle spread. As clearly shown in the figure, TE-SPA also works for

the practical scenario.
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Fig. 4.10.: Average beamforming gain (dB) with Mt in spatially correlated Rayleigh
fading channels. TE-LTE with B = 3/4 quantizes h[k] directly while TE-SPA refers
to the scheme of which u1(R) is quantized with TE-LTE with B = 1/2 and h[k] is
quantized by TE-SPA with B = 1/2 based on the quantized u1(R).

Finally, we evaluate TE-SPA in spatially correlated channels. We adopt the ex-

ponential model [103] for the spatial correlation matrix R, which is defined as

[R]�,r =

⎧⎪⎨⎪⎩
(αejϑ)r−�, � ≤ r

[R]∗�,r, � > r

,

where [R]�,r is the (�, r)-th element of R and α and ϑ are the magnitude and the

phase of the correlation coefficient, respectively. We set α = 0.9 to mimic a high

spatial correlation of a massive MIMO system while ϑ ∈ [0, 2π) is uniformly randomly

generated in each channel realization.

As we can see in Fig. 4.10, TE-SPA is also beneficial for spatially correlated chan-

nels even with less feedback overhead than TE-LTE which quantizes h[k] directly. It

is important to point out that TE-SPA for spatially correlated channels has additional

feedback overhead, i.e., we adopt TE-LTE with B = 1/2 to quantize u1(R). However,

as stated in Section 4.3.3, R is a long-term statistic, and the feedback overhead for

u1(R) would be negligible in long-term sense.
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Because TEC and TE-SPA both support various numbers of CSI quantization

bits, the proposed techniques can easily allocate different numbers of feedback bits

per user based on system requirements or channel conditions [104–106]. This is also a

strong benefit for FDD massive MIMO systems of which the feedback overhead needs

to be carefully optimized.
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5. CODED DISTRIBUTED DIVERSITY: A NOVEL

DISTRIBUTED RECEPTION TECHNIQUE FOR

WIRELESS COMMUNICATION SYSTEMS

In this chapter, we propose the coded receive diversity technique to minimize the sym-

bol error rate (SER) at the fusion center for distributed reception when the trans-

mitter is equipped with a single transmit antenna. Coded receive diversity fully

exploits the connection of the distributed reception problem with coding theory, and

we are able to exploit efficient linear block codes such as simplex codes or first-order

Reed-Muller codes that achieve the Griesmer bound with equality [107,108]. We also

develop novel shortened concatenated repetition-simplex (SCRS) codes for an arbi-

trary number of receive nodes and show that the SCRS codes are optimal with respect

to the Griesmer bound in many practical scenarios. The SCRS codes are very easy to

generate, meaning that we do not need to perform any kind of complex optimization

to generate a SCRS code for an arbitrary number of receive nodes. We study the

performance of coded receive diversity by analytically deriving the diversity gains

attained by maximum likelihood (ML) and minimum Hamming distance detection.

It is shown that numerical studies perfectly match with the analytical derivations.

5.1 Motivating Example and System Model

We first show a motivating example of this work and explain a general system

model.

0 c©[2014] IEEE. Reprinted, with permission, from J. Choi, D. J. Love, and p. Bidigare, “Coded Dis-
tributed Diversity: A Novel Distributed Reception Technique for Wireless Communication Systems,”
accepted to IEEE Transactions on Signal Processing, Dec. 2014.
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5.1.1 Motivating example

Consider a SIMO system with three geographically separated receive nodes. The

ith receive node operates with an input-output equation

yi =
√
ρhis+ ni, i = 1, 2, 3

where ρ denotes the transmit SNR, hi ∈ C is the channel from the transmitter to

the node i, s ∈ S ⊂ C is the transmitted signal selected from S with a uniform

distribution, and ni is complex additive white Gaussian noise (AWGN) distributed as

CN (0, 1). We assume that the noise is spatially independent, i.e., each receive node

experiences independent noise. We further assume that the channel collected across

the distributed array h = [h1 h2 h3] is a spatially uncorrelated channel with CN (0, 1)

entries and the ith receive node has perfect knowledge of hi and no knowledge of the

other users’ channels.

If the fusion center knows h = [h1 h2 h3] and y = [y1 y2 y3] perfectly, then as in

a standard, centralized combining system, the fusion center can produce

ỹ =
yz∗

hz∗
(5.1)

where z = h/‖h‖ is the optimal linear combiner. The processed output ỹ is used to

detect the transmitted symbol s. However, the main focus of this work is the case

when each receive node only can send a processed (or compressed) version of yi, which

we denote by ui throughout this work, using a small number of bits per channel use

to the fusion center, and the fusion center tries to decode the transmitted symbol

based on {ui}3i=1 along with possibly the knowledge of h. We assume that each node

can forward ui without any error to the fusion center.1 Many receive architectures in

both commercial and military systems fall into this distributed reception scenario.

1This assumption is reasonable for many scenarios, e.g., 1) the receive nodes are connected with the
fusion center through wired lines as in most CoMP, DAS, or radar systems, 2) the receive nodes and
the fusion center are closely located with each other in wireless sensor networks.
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In this example, we focus on the case when each node can pass only one bit for ui

per channel use to the fusion center; however, the transmitted symbol s is uniformly

selected from a QPSK constellation

S =

{√
1

2
(1 + j),

√
1

2
(1− j),

√
1

2
(−1 + j),

√
1

2
(−1− j)

}
.

Thus, the fusion center needs to detect the transmitted symbol using 3 bits (1 bit per

receive node) per channel use.

With a naive approach, this problem can be mapped into a binary hypothesis

testing problem at each node. For example, nodes 1 and 3 detect the real component

as

ui =

⎧⎪⎨⎪⎩
1 if Re(h∗i yi) ≥ 0

0 if Re(h∗i yi) < 0

, i = 1, 3

while node 2 detects the imaginary component as

u2 =

⎧⎪⎨⎪⎩
1 if Im(h∗2y2) ≥ 0

0 if Im(h∗2y2) < 0

,

and all nodes send their decisions {ui}3i=1 to the fusion center. With an assumption

that each node i has perfect knowledge of its channel hi, the probability of incorrectly

detecting the desired component at node i is given by

P b
e (hi, ρ) = Q

(√
|hi|2ρ

)
(5.2)

for i = 1, 2, 3. With full CSI knowledge at the fusion center, ML detection will give

a probability of symbol error as

Pe,unc(h, ρ) = 1−
(
1− min

i∈{1,3}
P b
e (hi, ρ)

)(
1− P b

e (h2, ρ)
)
.



96

Because Pe,unc(h, ρ) is dominated by P b
e (h2, ρ), the diversity order is given as

− lim
ρ→∞

log(Pe,unc(ρ))

log ρ
= 1 (5.3)

with Pe,unc(ρ) = E [Pe,unc(h, ρ)] where the expectation is taken over h. This is a dis-

couraging result because the distributed reception with three nodes has not provided

any increase in diversity.

Note that a better solution exists. As in the previous approach, nodes 1 and 2

detect the real and imaginary component, respectively. However, node 3 now detects

the product of the real and imaginary components such that

u3 =

⎧⎪⎨⎪⎩
1 if Re(h∗3y3) Im(h∗3y3) ≥ 0

0 if Re(h∗3y3) Im(h∗3y3) < 0

.

Nodes 1 and 2 have a probability of incorrect detection as in (5.2) while node 3 has

a probability of detecting incorrectly given by

P b
e (h3, ρ) = 2Q

(√
|h3|2ρ

)(
1−Q

(√
|h3|2ρ

))
.

If we let P b
e,(i)(h(i), ρ) be the i-th largest probability of error among the nodes such

that

P b
e,(1)(h(1), ρ) ≥ P b

e,(2)(h(2), ρ) ≥ P b
e,(3)(h(3), ρ),

a probability of error at the fusion center is given by

Pe,code(h, ρ) = 1− (1− P b
e,(2)(h(2), ρ)

) (
1− P b

e,(3)(h(3), ρ)
)

with ML detection. Then, the diversity order becomes

− lim
ρ→∞

log(Pe,code(ρ))

log ρ
= 2
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Fig. 5.1.: A conceptual figure of distributed reception.

where Pe,code(ρ) = E [Pe,code(h, ρ)] with the expectation taken over h.

Thus, without increasing the number of bits sent from any of the nodes to the

fusion center or changing the channel model, we have increased the diversity order

from 1 to 2 by using a smart detection scheme at each node. More generally, this

work aims to address the following question:

“How should each receive node quantize yi into a small number of bits to be sent to

the fusion center when detecting M-ary modulation in distributed reception?”

As we show later, this problem has intriguing ties to coding theory since the problem

of designing the quantization map at the receive nodes can be regarded as encoding

of data at the receive nodes.

5.1.2 System model

We consider a network consisting of a transmitter, a fusion center, and N geo-

graphically separated receive nodes. The conceptual figure of our system model is

shown in Fig. 5.1. The received signal at the i-th node, yi, is written as

yi =
√
ρhis+ ni, i = 1, · · · , N
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where s ∈ S is the transmitted symbol from an M-ary constellation

S = {s1, s2, . . . , sM} ⊂ C.

We assume hi and ni have the same distributions as in the motivating example.

We further assume that s is selected uniformly from S and satisfies E[s] = 0 and

E[|s|2] = 1. We define the conditional symbol error probability at the i-th receive

node as

Pe(hi, ρ) � E [Pr (ŝi �= s | s sent, hi, ρ)] (5.4)

where the expectation is taken over s and ŝi is the estimated symbol at the i-th receive

node defined as

ŝi = argmin
t∈S

‖yi −√
ρhit‖2. (5.5)

Note that the majority of the distributed reception work has been dedicated for

binary modulation schemes, i.e., binary hypothesis testing in AWGN channels without

fading. In this case, s ∈ S = {s1, s2}, and each node can make a hard decision on the

transmitted symbol. We consider generalized distributed reception in this work such

that the transmitter can send the symbol from an arbitrary M-ary constellation.

To make the system practical, we assume that the bandwidth between the receive

node and the fusion center is limited. Thus, each receive node only can forward a

quantized version of the estimate ŝi (which is represented using multiple bits) to the

fusion center.

5.2 Coded Receive Diversity and Diversity Order

We first explain the general concept of coded receive diversity and then discuss

the symbol detection schemes using the quantized node information. We finish this

section with diversity order analyses with respect to the decoding schemes.
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5.2.1 General concept of coded receive diversity technique

Note that the M-ary constellation S can be represented with a log2(M)-bit mes-

sage that we denote as b = [b1 b2 · · · blog2(M)]. Each node quantizes its received signal

yi into a B-bit vector2 ui ∈ GF (2B). We assume

B ≤ log2(M)

to limit the overhead needed for the distributed decisions. This gives rise to the

concept of a compression ratio that is defined as

K �
log2(M)

B

which satisfies K ≥ 1. We assume K is an integer value throughout this work. We let

a = [a1 a2 · · · aK ] be the vectorized version of b with entries in GF (2B). There are

multiple ways of converting b into a using different primitive polynomials of GF (2B);

however, using a specific primitive polynomial does not affect average performance.

An example of the system parameters is M = 16 (e.g., 16-quadrature amplitude

modulation (QAM)) which gives

b ∈
{[

0 0 0 0
]
, · · · ,

[
1 1 1 1

]}
,

and QPSK signaling from each receive node to the fusion center, resulting in B =

2. The primitive polynomial with coefficients in GF (2) used to describe GF (4) is

x2 + x+ 1.

Commonly, detectors forM-ary constellations are designed using non-overlapping

decision regions. Denote the decision regions by {W1, . . . ,WM} such that

W1

⋃
· · ·
⋃

WM = C.

2We let GF (q)m denote the m-dimensional vector of elements in GF (q). This is different represen-
tation than GF (qm) which denotes the finite field of order qm.
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Using the decision regions, the detection problem at receive node i can be formulated

as ŝi = sm0
with

m0 = argmax
1≤m≤M

1 (yi ∈ Wm)

with 1(·) denoting the indicator function which returns 1 if the argument is true.

In our problem, however, we assume that the number of decision regions at each

receive node is smaller than M , i.e., the compression ratio is constrained as K ≥ 1.

Let the non-overlapping decision regions at node i be
{Di,1, . . . ,Di,2B

}
such that the

union of the regions spans the complex plane. The distributed reception problems

can be succinctly stated as determining the sets of decision regions
{Di,1, . . . ,Di,2B

}
for i = 1, . . . , N to minimize the probability of symbol detection error at the fusion

center. As shown in the motivating example of Section 5.1, this problem is nontrivial.

We show how well-developed coding techniques can be used to design the sets of

decision regions.

Because of the constraint on the compression ratio K ≥ 1, we assume the decision

regions
{Di,1, . . . ,Di,2B

}
of node i are constructed by certain unions of the linear

combinations of the constellation decision regions {W1, . . . ,WM}. To do this, we

formulate the problem using finite field notations.

To simplify the notation, let b denote the bit representation of the transmitted

symbol s. Suppose that the node i first estimates the transmitted symbol from the

received signal yi as in (5.5) to generate a log2(M)-bit vector b̂i. If the node i detects

s correctly, then we have b̂i = b. Note that b̂i can be represented with a K-entry

vector âi with entries in GF (2B). The node i then generates ui = fi (âi) using a

function

fi : GF (2
B)K → GF (2B)

and sends ui to the fusion center.

If each node received a (or equivalently b) without any error, this problem can

be formulated as a coding problem. The K-dimensional message a is transformed

to an N -dimensional vector codeword u = [u1 · · · uN ] with entries in GF (2B). In
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the distributed reception case, each node is coding on noisy data, and the vector u

is corrupted with noise corresponding to reception error at each node. Despite this,

the goal in distributed reception is very similar to code design in coding theory. We

must find a coding technique that minimizes the decoding error of the transmitted

symbol at the fusion center.

Similar to the coding problem, we focus on the creation of an M vector codeword

set {u[1], . . . ,u[M ]} where each codeword u[k] corresponds to a constellation point

sk ∈ S. Further, we focus on linear block codes to enable efficient encoding. This

means that the function fi is explicitly given as

ui = fi (âi) = âig
T
i (5.6)

where gi ∈ GF (2B)K . We can collect everything together in vector form such that

u = c(s) + v

where c(s) ∈ GF (2B)N denotes the distributed detection bits if all nodes make the

correct bit decisions when s is transmitted and v ∈ GF (2B)N represents noise caused

by reception error at each node. Due to the linear structure, a generator matrix

G ∈ GF (2B)K×N can be given as

G =

⎡⎢⎢⎢⎣
g1

...

gN

⎤⎥⎥⎥⎦
T

and

c(s) = aG.

This generates a code for the constellation points S as

C = {c(s) : s ∈ S}.
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We define a matrix C from the set C as

C =
[
c(s1) c(s2) · · · c(sM)

]T
(5.7)

which will be useful for explaining the difference between the proposed coded receive

diversity technique and the scheme from [69] in Section 5.4. We also define the

minimum Hamming distance of the code

dmin(C) � min
s,s′∈S:s 
=s′

dH(c(s), c(s
′))

where dH(·, ·) denotes the Hamming distance metric.

To explain the procedure of the coded receive diversity technique in words, each

receive node i processes âi (which is nothing but a hard-detected version of yi) with

the i-th column of G as in (5.6). With u = [u1 · · · uN ] from all N receive nodes, the

fusion center detects the transmitted symbol by using decoding schemes explained

next.

5.2.2 Decoding schemes at fusion center

For practical reasons, we assume that the i-th node has knowledge only of S,
yi, and hi. Each node passes ui to the fusion center, and the fusion center tries to

detect the transmitted symbol s ∈ S using u = [u1 · · · uN ]. We consider the cases

when the fusion center has knowledge of h and lacks knowledge of h. Note that the

fusion center does not have full access to y in our scenario, which prevents the use of

the linear combiner z = h/‖h‖ to estimate ỹ as in (5.1) even with full knowledge of

h. We discuss three different decoding schemes for distributed reception over fading

channels:
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1) ML decoding with full CSI: If the fusion center has full access to h, it computes

ŝ = argmax
t∈S

Pr (u1, . . . , uN | t,h, ρ)

= argmax
t∈S

N∏
i=1

Pr (ui | t, hi, ρ)

where Pr(·) denotes the probability that is computed as

Pr (ui | t, hi, ρ) = 1

π

∫
Di,ui

e−|yi−√
ρhit|2dyi

with Di,ui
denoting the decision region of node i corresponding to ui.

3

2) Selected subset ML decoding with full CSI: If the number of receive nodes

N is very large, the complexity of ML decoding can be excessive. With our coded

receive diversity framework, however, we can reduce decoding complexity significantly

while obtaining comparable performance with ML decoding.

First, we assume that every L-th receive node shares the same processing rule,

i.e.,

g� = g�+L = · · · = g�+�N−�
L �L, � ∈ {1, . . . , L}

and g� �= gk if � �= k for �, k ∈ {1, . . . , L}. We define the equivalence class of the node

� as

[�]L = {i ∈ {1, . . . , N} : i mod L = � mod L} (5.8)

which denotes the set of nodes that share the same processing rule with node � ∈
{1, . . . , L}. Because the fusion center has full access to h, it can select the node �0

among [�]L as

�0 = argmax
k∈[�]L

|hk|2 (5.9)

3In practice, we can generate empirical probabilities of Pr (ui | s, hi) in advance to perform ML
decoding with full CSI.
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to perform ML decoding using bits from the L selected receive nodes. This selected

subset ML decoding is appropriate for one of our code designs explained in Section

5.3.2.

3) Minimum Hamming distance decoding without CSI: If the fusion center

does not have any knowledge of h, it needs to rely on the simple Hamming distance

decoding. The fusion center then tries to detect the transmitted symbol as

ŝ = argmin
t∈S

dH(c(t),u)

where c(t) is the vector that would be sent from the all N receive nodes if the

transmitted symbol was perfectly decoded at each node and u = [u1 · · · uN ].

5.2.3 Diversity analysis

We present the diversity analyses of the proposed coded receive diversity tech-

nique with three different decoding schemes explained in the previous section in the

following.

Lemma 5.2.1 Using a codeword set C = {c(s1), . . . , c(sM)}, a coded receive diversity

system achieves a diversity order of dmin(C) using ML decoding.

Proof The diversity order of the probability of error Pe,code,ML(ρ) can be obtained

by analyzing the worst case pairwise error probability max
s 
=s′

Pr(s → s′). Instead of

working with the optimal decoder directly, we first upper bound the pairwise error

probability with a suboptimal decoder. The considered suboptimal detector chooses

ŝsub = argmax
t∈S

N∏
i=1

Pr (ui | ci(t), hi, ρ) (5.10)
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Pr

⎛⎝ ∑
i:ci(s)
=ci(s′)

(
log

Pr (ui | ci(s′), hi, ρ)
Pr (ui | ci(s), hi, ρ)

)
≥ 0

∣∣∣∣∣∣ s sent,h, ρ
⎞⎠ ≤ Prsub(s→ s′ | hi0, ρ).

(5.12)

where ci(t) is the i-th entry of c(t). In the event of a tie, it is broken arbitrarily. If

the transmitted symbol is s, using the coding framework with the decoder in (5.10),

the pairwise error s→ s′ occurs when

N∏
i=1

Pr (ui | ci(s′), hi, ρ)−
N∏
i=1

Pr (ui | ci(s), hi, ρ) ≥ 0

which can be converted to

∑
i:ci(s)
=ci(s′)

(
log

Pr (ui | ci(s′), hi, ρ)
Pr (ui | ci(s), hi, ρ)

)
≥ 0. (5.11)

Define

Prsub(s→ s′ | hi, ρ) = Pr

(
log

Pr (ui | ci(s′), hi, ρ)
Pr (ui | ci(s), hi, ρ) ≥ 0

)

as a pairwise error probability at node i with given hi and ρ using the decoder in

(5.10), and let the index i0 be

i0 = argmax
i:ci(s)
=ci(s′)

|hi|2.

Then, we can bound the probability of (5.11) as in (5.12) by only considering the

pairwise error probability of the i0-th receive node which has the strongest channel

gain among {i : ci(s) �= ci(s
′)}. The right-hand side of (5.12) is a pairwise error

probability of single-input single-output communication between the transmitter and
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Pr(s→ s′ | h, ρ)

= Pr

(
N∑
i=1

log

(
Pr(ui | s′, hi, ρ)
Pr(ui | s, hi, ρ)

)
≥ 0

∣∣∣∣∣ s sent,h, ρ
)

(a)

≥ Pr

⎛⎝ ∑
i:ci(s)
=ci(s′)

log

(
Pr(yi | s′, hi, ρ)
Pr(yi | s, hi, ρ)

)

≥
∑

i:ci(s)=ci(s′)

log

(
Pr(ui | s, hi, ρ)
Pr(ui | s′, hi, ρ)

)∣∣∣∣∣∣ s sent,h, ρ

⎞⎠ (5.13)

(b)

≥ Pr

⎛⎝ ∑
i:ci(s)
=ci(s′)

log

(
Pr(yi | s′, hi, ρ)
Pr(yi | s, hi, ρ)

)
≥ α0

∣∣∣∣∣∣ s sent,h, ρ
⎞⎠

(c)
= Pr

⎛⎝ ∑
i:ci(s)
=ci(s′)

(|yi −√
ρhis|2 − |yi −√

ρhis
′|2) ≥ α0

∣∣∣∣∣∣ s sent,h, ρ

⎞⎠ (5.14)

the i0-th receive node. Taking the expectation over hi0 , the pairwise error probability

is bounded as

Pr(s→ s′) ≤ E [(Prsub(s→ s′ | hi0 , ρ)] .

Note that selecting the i0-th receive node is similar to antenna selection. Using the

antenna selection diversity result in [109, 110], we have

− lim
ρ→∞

log (E [Prsub(s→ s′ | hi0 , ρ)])
log ρ

= dH(c(s), c(s
′)),

which results in

− lim
ρ→∞

log

(
max
s 
=s′

Pr(s→ s′)
)

log ρ
≥ dmin(C).
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To obtain a lower bound on Pr(s→ s′) (or an upper bound of the diversity order),

we can use (5.14) where (a) is due to the fact that ui is a degraded version of yi, (b)

is from the maximization over u =
[
u1 u2 . . . uN

]
with4

α0 = max
u

∑
i:ci(s)=ci(s′)

log

(
Pr(ui | s, hi, ρ)
Pr(ui | s′, hi, ρ)

)
,

and (c) comes from the variable substitution

Pr(yi | s, hi, ρ) = 1

π
e−|yi−√

ρhis|2.

Note that (5.14) is a decoding method using maximum ratio combining (MRC) over

dH(c(s), c(s
′)) receive nodes with the threshold α0 when the fusion center has perfect

knowledge of {yi}i:ci(s)
=ci(s′). Because the diversity order is derived in the high SNR

regime, the threshold α0 has no impact on the diversity order of MRC since α0 → 0

as ρ → ∞. Thus, taking the maximum over any pair s �= s′, the diversity order of

ML decoding is upper bounded by dmin(C), which finishes the proof.

Lemma 5.2.2 If L, the number of distinctive processing rules, divides the total

number of receive nodes N , a coded receive diversity system using a codeword set

C = {c(s1), . . . , c(sM)} achieves a diversity order of dmin(C) using selected subset ML

decoding.

Proof The diversity order of selected subset ML is upper bounded by that of ML

decoding, i.e., dmin(C). To obtain the lower bound, we again rely on the pairwise

error probability. First, we let G[1:L] be the generating matrix consists of the first L

columns of G and CL = {cL(s1), . . . , cL(sM)} be the resulting code from G[1:L]. De-

note dmin(CL) the minimum Hamming distance of CL. The pairwise error probability

4α0 is a function of given variables hi, s, and ρ. We intentionally neglect this when defining α0 for
brevity.
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at a group [�]L (defined in (5.8)) that shares the same processing rule with the �-th

node is given as

Pr(s→ s′ | h[�]L, ρ) = Pr(s→ s′ | h�0 , ρ)

where h[�]L is the channel vector consists of channel elements of [�]L and �0 is the

selected node index defined in (5.9). Using the same step as the proof of Lemma

5.2.1, the diversity order lower bound is given as

N

L
dmin(CL) = dmin(C),

where N/L is due to the selection diversity from [�]L.

Remark: In the general N case, the diversity order of selected subset ML would lie

between
⌊
N
L

⌋
dmin(CL) and N

L
dmin(CL).

Lemma 5.2.3 Using a codeword set C = {c(s1), . . . , c(sM)}, a coded receive diversity

system achieves a diversity order of �dmin(C)/2� using minimum Hamming distance

decoding.

Proof First, we let p = E [Pe(hi, ρ)] to simplify notation where Pe(hi, ρ) is the

conditional symbol error probability defined in (5.4). Note that 0 ≤ p ≤ 1. Now,

consider again the pairwise error probability. If the number of nodes with incorrect

receptions is �dmin(C)/2� or more, the error pattern will fall outside of the Hamming

sphere of radius �(dmin(C)− 1)/2� centered at the correct codeword. Thus, we have

Pe,code,H(ρ) ≤
N∑

i=dmin(C)/2�

(
N

i

)
pi(1− p)N−i

≤ N !
N∑

i=dmin(C)/2�
pi(1− p)N−i

≤ N !
N∑

i=dmin(C)/2�
pi

≤ (N + 1)! pdmin(C)/2�
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and

Pe,code,H(ρ) ≥ pdmin(C)/2�(1− p)N−dmin(C)/2�.

Using the fact that p→ 0 as ρ→ ∞, the diversity order is bounded as

− lim
ρ→∞

log(Pe,code,H(ρ))

log ρ
≥ − lim

ρ→∞
log
(
(N + 1)! pdmin(C)/2�)

log ρ

= �dmin(C)/2�

and

− lim
ρ→∞

log(Pe,code,H(ρ))

log ρ
≤ − lim

ρ→∞
log
(
pdmin(C)/2�(1− p)N−dmin(C)/2�)

log ρ

= �dmin(C)/2�

which finishes the proof.

Note that the diversity order is closely related to the symbol error probability.

Although it is hard to derive the symbol error probability of the proposed coded

receive diversity technique in general, using the upper bound of the symbol error

probability of any linear block code derived in [84], we can upper bound the symbol

error probability of the proposed technique as

Pe(ρ) ≤ (M − 1)�dmin(C)

where � is a constant that is a function of S. This upper bound would be loose

in general; however, the numerical studies in Section 5.4 show that the symbol error

probability of the proposed technique has the slope of dmin(C).

5.3 Code Design and Performance Implications

Lemmas 5.2.1, 5.2.2, and 5.2.3 all show that the coding structure across the receive

nodes dictates system performance, and it is better to have as large of a minimum
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Hamming distance as possible for a code C (or CL for selected subset ML). The coding

structure is heavily dependent on the number of nodes N and the compression ratio

K. In this section we aim to clarify this relationship and look at some simple codes

that can be employed.

5.3.1 Code bounds

Most common technique used to understand codes in coding theory employs metric

ball bounds, e.g., the sphere packing bound and Gilbert-Varshamov bound which are

most useful in understanding code properties when K grows with N, particularly

when K/N converges to a fixed value as N → ∞. However, we are more concerned

with the case where K is fixed and does not scale with N . Moreover, we are interested

in the case when K is relatively small and N is not extremely large.

The most applicable bound to this situation is the Griesmer bound [107,108]. The

Griesmer bound shows that the smallest N of a code C that can achieve a minimum

Hamming distance of dmin(C) must satisfy

N ≥
K−1∑
i=0

⌈
dmin(C)
2iB

⌉

By removing the ceiling function and rearranging terms, we have an upper bound of

dmin(C) as
N2(K−1)B

1 + 2B + · · ·+ 2(K−1)B
≥ dmin(C).

We are interested in codes that can achieve this upper bound.

5.3.2 Code selection

The Griesmer bound gives us insight into code choice for many different scenarios

(e.g., see [108]). The following codes are a few cases that achieve the Griesmer bound

with equality.
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1) Simplex Codes

The simplex code, which is the dual code of the Hamming code, can achieve this

minimum Hamming distance. If we denote GF (2B) as {0, 1, 2, · · · , q−1}, a generator

matrix of the 2B-ary simplex code is given as

Gsimplex =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 · · · 1 1

0 0 · · · 0 q − 1 q − 1
...

...
...

...
...

...

0 1 · · · 1 q − 1 q − 1

1 0 · · · q − 1 · · · q − 2 q − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.15)

In words, the generator matrix Gsimplex is the K × (2KB − 1)/(2B − 1) matrix with

columns chosen to correspond to all non-zero vectors in GF (2B)K with first non-zero

entry fixed to one. Note that if dmin(C) = 2(K−1)B, then the number of receive nodes

becomes

N =
K−1∑
i=0

2(K−1)B

2iB

= 1 + 2B + · · ·+ 2(K−1)B

=
2KB − 1

2B − 1
.

2) First-Order Reed-Muller Codes

A first-order Reed-Muller code exists forN = 2(K−1)B with minimum distance dmin(C) =
2(K−2)B(2B − 1). It also achieves the Griesmer bound with equality [108].

3) Shortened Concatenated Repetition-Simplex (SCRS) Codes

A simple approach to code design when N �= 2(K−1)B and N �= (2KB − 1)/(2B − 1) is

to shorten a concatenated code consisting of a shorter simplex code and a repetition

code. In this case, the outer code is the simplex code and the inner code is a repetition

code.
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To construct our code, we first define two variables

Nout =
(2KB − 1)

(2B − 1)
, Nin =

⌈
N(2B − 1)

(2KB − 1)

⌉
,

and construct the K ×NoutNin, generator matrix

Gconcat = 11×Nin
⊗Gsimplex

= [Gsimplex Gsimplex · · · Gsimplex]

where Gsimplex is the K×Nout simplex code’s generator matrix given in (5.15), 11×Nin

is the Nin row vector of all ones (i.e., 11×Nin
= [1 1 · · · 1]), and ⊗ represents the

Kronecker product. If we let

N
′

= NoutNin −N,

then the extended code uses the shortened generator matrix given by

Gextend = Gconcat

⎡⎣ IN

000N ′×N

⎤⎦
where IN is the N ×N identity matrix and 000N ′×N is the N

′ ×N all zero matrix.

5.3.3 SCRS codes analyses

A SCRS code achieves a minimum distance of

dmin(C) ≥
⌊
N(2B − 1)

(2KB − 1)

⌋
2(K−1)B. (5.16)
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When N = K(2KB − 1)/(2B − 1), the code is optimal with respect to the Griesmer

bound because

K−1∑
i=0

⌈
N(2B − 1)2(K−1)B

2iB(2KB − 1)

⌉
=

K−1∑
i=0

K
2(K−1)B

2iB

= K
K−1∑
i=0

2iB

= K

(
2KB − 1

2B − 1

)
= N.

For arbitrary N , the following lemma states that the SCRS codes are optimal in terms

of the Griesmer bound when K = 2.

Lemma 5.3.1 The length N SCRS code with K = 2 formed from concatenating the

2B-ary simplex code and repetition code has the following properties:

1) The minimum Hamming distance becomes

dmin(C) = α2B + r − 1

where α =
⌊
N/(2B + 1)

⌋
, N = α(2B + 1) + r, and r is the remainder when N is

divided by Nout = (2B + 1).

2) The code achieves the Griesmer bound with equality.

Proof For any length N = αNout + r, the generator matrix can be written as

G = [Gsimplex Gsimplex · · · Gsimplex︸ ︷︷ ︸
α

GK×r]

where Gsimplex is K ×Nout matrix given as

Gsimplex =

⎡⎣ 0 1 1 1 · · · 1

1 0 1 2 · · · q − 1

⎤⎦ ,
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and the matrixGK×r consists of the first r columns ofGsimplex. The minimum distance

of the SCRS code is

dmin(C) = α2B + dK×r

where dK×r is the minimum distance of the code with generator matrix GK×r.

It is obvious that dK×r = 0 if r = 0, 1 and dK×r = 1 if r = 2. For more general r,

the K × r code has a (r −K)× r parity check matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1 1

0 1
. . . 0 1 2

... · · · ...
...

...

0 0 · · · 0 1 r − 3

0 0 · · · 1 1 r − 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By checking the minimum number of columns in the parity check matrix for which a

nontrivial combination gives the all zero out, we can see that dK×r = r− 1 for r > 0.

Therefore, dmin(C) = α2B + r − 1.

The Griesmer bound for K = 2 tells us that to provide a minimum distance of d

requires a code of length at least d + 1 when d = 1, 2, . . . , 2B. This means that our

K × r code is optimal in the sense of achieving equality in the Griesmer bound. For

the entire code, note that

α2B + r − 1 +

⌈
α2B + r − 1

2B

⌉
= α2B + r − 1 + α + 1

= α(2B + 1) + r

= N.

This shows that the SCRS codes are optimal in terms of the Griesmer bound.

Note that the case whenK = 2 is a very practical scenario in distributed reception.

For example, the scenario corresponds to the case when the transmitter sends a

16QAM (or QPSK) symbol and each receive node forwards a QPSK (or BPSK)
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symbol to the fusion center. It would be very unlikely for the receive nodes (which

might consist of cheap sensors) to send a high-order modulation symbol than QPSK

to the fusion center in many distributed reception applications.

Remark: The proposed SCRS codes are suitable for selected subset ML decoding

explained in Section 5.2.2 because every Nout-th receive node shares a common pro-

cessing rule in the SCRS codes.

It is important to point out that maximum distance separable (MDS) codes that

achieve the Singleton bound are not suitable to our system setup. For example, Reed-

Solomon codes, which are the most popular MDS codes, must satisfy N ≤ 2B−1 [108]

where N is the number of receive nodes and B is the number of bits used to quantize

the received signal at each receive node in our system setup. As explained in Section

5.2.1, we focus on the scenario of B ≤ log2(M) whereM is the size of constellation S.
Thus, it is unlikely to satisfy the constraint of Reed-Solomon codes with our system

setup.

5.3.4 Achievable rate

In most communication systems, the source can be modeled well as uniformly

distributed over the constellation S, which gives the achievable rate (or the mutual

information) with channel realizations contained in the vector h as

Iu(h) =
1

M

∑
s∈S

∑
u∈U

{
Pr(u | s,h) log2

(
Pr(u | s,h)

1
M

∑
s′∈S Pr(u | s′,h)

)}

where U denotes the set of all 2NB possible outputs from the receive nodes. Given

this, the average achievable rate is given by

Ravg = E [Iu(h)] (5.17)

with the expectation taken with respect to h.
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Note that all of these achievable rate expressions are dependent on the quanti-

zation structure used at each receive node. This is implicit because the transition

probabilities between the input symbols and output symbols are dependent on this

quantization structure. However, in general, it is hard to derive transition probabil-

ities analytically, which prevents to have a closed-form expression of the achievable

rate of the proposed coded receive diversity technique. Thus, we numerically study

the achievable rate of the proposed coded receive diversity technique in Section 5.4

and show that the proposed scheme can provide benefits even with respect to the

achievable rate in some scenarios.

5.4 Numerical Studies and Discussions

We perform Monte-Carlo simulations to evaluate the proposed coded receive di-

versity technique in this section. We assume all channel entries are independent,

Rayleigh distributed, i.e., hi ∼ CN (0, 1) for all i, during simulation; however, the

proposed techniques can be applied to any kind of channel models of interest. The

proposed scheme is based on the SCRS codes to simulate different numbers of the

receive node N .

We first compare the proposed coded receive diversity technique to the scheme

from [69]. In [69], the optimized codeword set matrix for local decision and decod-

ing rules using simulated annealing for QPSK constellation data symbols, B = 1

processing at each receive node, and N = 10 nodes is given as

Codeword Set Matrix: (6, 12, 4, 9, 12, 9, 12, 6, 1, 3)

using the notation in [69]. Each integer in the matrix represents a binary column

vector of the matrix, e.g., the integer 12 in column 2 represents [0 0 1 1]T . Each

row and column of the matrix represents one of the QPSK constellation points and
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Fig. 5.2.: SER vs. SNR in dB scale with M = 4 and N = 10. Each receive node of
the proposed scheme and the scheme from [69] forwards B = 1 bit per channel use
to the fusion center while uncoded transmission relies on B = log2M forwarded bits
per channel use from each node.

the decision rule of each receive node, respectively.5 For example, if node 2 (which

corresponds to column 2 in the codeword set matrix) detects the transmitted symbol

as the first or second (third or fourth) QPSK constellation point, it forwards 0 (1)

to the fusion center. If node 3, which corresponds to [0 0 1 0]T in the codeword

set matrix, detects the transmitted symbol as the third QPSK constellation point,

it forwards 1 to the fusion center. Otherwise, 0 is forwarded to the fusion center.

With N binary bits forwarded from all the receive nodes, the fusion center adopts

the same decoding rule with the proposed coded receive diversity technique for the

fair comparison.

The concept of the codeword set matrix is similar to the matrix C in (5.7). Rows

of both matrices represent the constellation points S. However, local decision rules

are completely different, i.e., the local decision rules in [69] are based on the codeword

set matrix explained above while the proposed scheme relies on the generator matrix

5We rely on a hard decision for the local decision rule of the scheme from [69]. The local decision
rule developed in [69] needs global channel knowledge (or the output distribution function of other
nodes assuming a certain input symbol) at each node, which is unrealistic.
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Fig. 5.3.: SER of the proposed coded receive diversity technique with ML and selected
subset ML decoding schemes according to SNR in dB scale with M = 8 and B = 1.
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(a) M = 8 (8PSK) and B = 1.
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Fig. 5.4.: SER vs. SNR in dB scale with different values of M , B, and N .

G. Due to the dependency of the local decision rules, the optimized codeword set

matrix in [69] is not able to maximize the minimum Hamming distance between

codewords, resulting in performance degradation compared to the proposed coded

receive diversity technique, which is shown in Fig. 5.2.

Fig. 5.2 compares the SER of the proposed scheme (using the SCRS codes) and

the scheme in [69] for QPSK symbols according to the transmit SNR ρ with N = 10
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(b) |h1| = |h3| = 1.5 and |h2| = 0.3.

Fig. 5.5.: Achievable rate vs. SNR in dB scale with M = 4, N = 3, and B = 1. The
naive approach is explained in the motivating example in Section 5.1.1.

receive nodes. We also plot the results of centralized combining with z = h/‖h‖ in

(5.1) and uncoded B = log2M bits transmission from each receive node to the fusion

center for comparison purpose. In uncoded transmission, the fusion center performs

majority decoding based on the forwarded N estimated symbols from the receive

nodes.

In both ML decoding and minimum Hamming distance decoding, the proposed

scheme outperforms the scheme in [69].6 These results are expected because the cor-

responding SCRS code has the minimum Hamming distance of 6 while the scheme

in [69] has the minimum Hamming distance of 5. According to Lemma 5.2.1 and

5.2.3, the diversity orders of the SCRS code are 6 and 3 for ML and minimum Ham-

ming distance decoding, respectively, while those of the scheme in [69] are 5 and 3,

respectively. The slopes of the probability of errors for minimum Hamming distance

decoding of the SCRS code and the scheme from [69] in Fig. 5.2 perfectly match

with the diversity order analysis derived in Lemma 5.2.3. We also expect that the

slopes of ML decoding would match with the derivation in Lemma 5.2.1 once the

SNR becomes larger. Because we have an explicit expression of the SCRS code for

6We do not consider selected subset ML in this case because selected subset ML is not suitable to
the scheme in [69].
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an arbitrary number of the receive nodes N , the proposed coded receive diversity

technique is very practical and easy to implement.

We compare the proposed diversity technique with ML and selected subset ML

decoding schemes in Fig. 5.3. We set M = 8 and B = 1 (which gives Nout = 7 for

the SCRS code) with different numbers of receive nodes N . When Nout (or L with

the notation in the selected subset ML decoding section) divides N , it is clear that

selected subset ML has the same diversity order as ML decoding although selected

subset ML suffers from an SNR loss. Note that even when Nout does not divide N

(the case when N = 30 in Fig. 5.3), selected subset ML gives comparable diversity

gain with ML decoding with much less complexity.

In Figs. 5.4a and 5.4b, we plot the SER of the proposed coded receive diversity

technique according to ρ with different values of M , B, and N . We can see from

the figures that as the number of the receive nodes increases, we attain a better SER

with the same ρ. Moreover, the number of the receive nodes N does not need to be

large to achieve a practical SER of 10−2 or 10−3 with moderate ρ for all cases, which

clearly shows the practicality of the proposed coded receive diversity technique.

Finally, we perform Monte-Carlo simulations with 10,000 channel realizations to

verify the average achievable rate of the proposed scheme which is explained in Section

5.3.4. We compare Ravg in (5.17) of the proposed coded receive diversity technique,

centralized combining, and the naive approach which is explained in the motivating

example in Section 5.1.1. To simplify simulations, we set S with QPSK constellation,

B = 1, and N = 3, which is the same setup as the motivating example in Section

5.1. We consider two different scenarios: 1) Rayleigh fading channels for all channels

between the transmitter and the receive nodes and 2) normalized fading channels

such that channel amplitudes are normalized as |h1| = |h3| = 1.5 and |h2| = 0.3 for

all channel realizations. The second scenario would be the case when the second node

is in a deep fade while two other nodes are in stably good channel conditions.

We plot the results of the scenarios 1 and 2 in Figs. 5.5a and 5.5b, respectively. In

the first scenario, the proposed scheme and the naive approach are comparable with
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each other. This is reasonable because the proposed coding structure is not intended

to increase the achievable rate. However, the proposed scheme outperforms the naive

approach in the second scenario. This is because the second node that processes

the imaginary component of the transmitted symbol is in a deep fade in the naive

approach, resulting in significant achievable rate degradation. On the contrary, the

proposed coded receive diversity is even better in the second scenario than the first

since the fusion center can obtain much of mutual information only from nodes 1 and

3 which have good channel conditions.

There can be several different extensions of the proposed coded receive diversity

technique: 1) supporting an arbitrary compression ratio; 2) extending to distributed

space-time code designs with simultaneous transmission from the receive nodes; 3)

accommodating multiple transmit antennas at the transmitter. In the next chapter,

we will discuss the scenario of multiple transmit antennas in distributed reception.
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6. QUANTIZED DISTRIBUTED RECEPTION FOR

MIMO WIRELESS SYSTEMS USING SPATIAL

MULTIPLEXING

In this chapter, we consider distributed reception with multiple transmit antennas.

With the minimal quantization overhead at the receive nodes, i.e., one bit for each of

the real and imaginary parts of the received signal, we develop an optimal ML receiver

and a low-complexity ZF-type receiver at the fusion center. Despite its suboptimality,

the ZF-type receiver is simple to implement and shows comparable performance with

the ML receiver in the low SNR regime but experiences an error rate floor at high

SNR. It is shown that this error floor can be overcome by increasing the number of

receive nodes.

6.1 System Model

We consider a network consisting of a transmitter with Nt antennas, communi-

cating with a receive fusion center that is connected to K geographically separated,

single antenna receive nodes. The transmitter tries to send Nt independent data sym-

bols simultaneously by spatial multiplexing1 to the fusion center via the help of the

receive nodes. The received signal at the k-th receive node is given as

yk =

√
ρ

Nt

hH
k x+ nk, k = 1, · · · , K (6.1)

0J. Choi, D. J. Love, D. R. Brown III, and M. Boutin, “Quantized Distributed Reception for MIMO
Wireless Systems Using Spatial Multiplexing,” submitted to IEEE Transactions on Signal Process-

ing, Dec. 2014.
1The transmitter also can send a number of symbols smaller than Nt by adopting precoding or
antenna selection, which is outside the scope of this paper.
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where ρ is the transmit SNR, hk ∈ CNt is the independent and identically distributed

(i.i.d.) Rayleigh fading channel vector between the transmitter and the k-th receive

node, nk is complex additive white Gaussian noise (AWGN) distributed as CN (0, 1)

at the k-th node, and x = [x1, · · · , xNt
]T is the transmitted signal vector. We assume

xi ∈ S is from a standard M-ary constellation

S = {s1, · · · , sM} ⊂ C

which satisfies E[‖x‖2] = Nt and E[x] = 0Nt
. The input-output relation in (6.1) can

be also written as

y =

√
ρ

Nt
Hx+ n

where

y =
[
y1 y2 · · · yK

]T
,

n =
[
n1 n2 · · · nK

]T
,

H =
[
h1 h2 · · · hK

]H
.

We further assume that the fusion center can access the full knowledge2 of hk for all

k.

If the fusion center has full knowledge of yk for all k, then the optimal receiver is

given as

x̂opt = argmin
x′∈SNt

∥∥∥∥y −
√

ρ

Nt

Hx′
∥∥∥∥2

where Sn is the cartesian product of S of order n. However, we are interested in

the scenario when each receive node quantizes its received signal and conveys the

quantized received signal, ŷk, to the fusion center. Therefore, the fusion center needs

to use other approaches to decode the transmitted symbols in our problem.

2Recently, we developed channel estimation techniques for the scenario of this paper in [111].
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We assume ŷk can be forwarded from the k-th receive node to the fusion center

without any error. This assumption would be reasonable because the receive nodes

and the fusion center are usually connected by a very high-rate link or located near

each other in practice. We further assume that the forward link transmission and

the LAN are operated on different time or frequency resources to prevent interference

between the two.

To make the problem practical, we assume that the receive nodes only can perform

very simple operation, i.e., they do not decode the transmitted vector x but instead

simply quantize yk directly. Moreover, to minimize the data transmission overhead

from the receive nodes to the fusion center, we assume each receive node quantizes

yk using two bits, i.e., one bit for each of the real and imaginary parts of yk. Thus,

the quantized received signal ŷk can be written as

ŷk = sgn(Re(yk)− τRe,k) + j (sgn(Im(yk)− τIm,k))

where sgn(·) is the sign function defined as

sgn(x) =

⎧⎪⎨⎪⎩
1 if x ≥ 0

−1 if x < 0

,

and τRe,k and τIm,k are quantization thresholds of the real and imaginary parts of yk

at user k, respectively.

With a given realization of hk, we consider the simple, yet effective, thresholds

τRe,k = E [Re(yk)] = E

[√
ρ

Nt
Re(hH

k x) + Re(nk)

]
= 0,

τIm,k = E [Im(yk)] = E

[√
ρ

Nt
Im(hH

k x) + Im(nk)

]
= 0,

where equalities are based on the assumption that nk is distributed as CN (0, 1), or

equivalently Re(nk) and Im(nk) are independent and both distributed as N (0, 1
2
), and

the entries of x are independently drawn from SNt with equal probabilities, which
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ŷ1

ŷ2
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Fig. 6.1.: The conceptual figure of distributed reception with multiple antennas at
the transmitter. Each receive node is equipped with a single receive antenna.

gives E[Re(cTx)] = 0 and E[Im(cTx)] = 0 for an arbitrary combining vector c ∈ C
Nt .

Although simple, these thresholds are consistent with the optimal threshold design

studied in [72] in an average sense. We assume the quantization thresholds τRe,k = 0

and τIm,k = 0 for the remainder of this paper.

Once the fusion center receives ŷk from all receive nodes, it attempts to decoded the

transmitted data symbols x using the forwarded information and channel knowledge.

We define

ŷ =
[
ŷ1 ŷ2 · · · ŷK

]T
which is useful in Section 6.2.2. The conceptual explanation of the scenario is depicted

in Fig. 6.1.

6.2 Quantized Distributed Reception Techniques

With the knowledge of H and ŷ at the fusion center, we can implement differ-

ent kinds of receivers considering complexity and performance. We first develop an

optimal ML receiver and low-complexity ZF-type receiver. Then, we discuss the per-
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formance of receivers regarding system parameters such as ρ and K. We also explain

a possible modification of the ZF-type receiver and analyze the achievable rate of

quantized distributed reception.

6.2.1 ML receiver

We convert the problem of interest to the real domain to facilitate analysis. This

can be done by defining HR,k ∈ R2×2Nt , xR ∈ R2Nt and nR,k ∈ R2 as

HR,k =

⎡⎣ Re(hT
k ) Im(hT

k )

−Im(hT
k ) Re(hT

k )

⎤⎦ =

⎡⎣hT
R,k,1

hT
R,k,2

⎤⎦ ,
xR =

⎡⎣Re(x)
Im(x)

⎤⎦ , nR,k =

⎡⎣Re(nk)

Im(nk)

⎤⎦
where

hR,k,1 =

⎡⎣Re(hk)

Im(hk)

⎤⎦ , hR,k,2 =

⎡⎣−Im(hk)

Re(hk)

⎤⎦ .
Then, the received signal yk also can be rewritten in the real domain as

yR,k =

⎡⎣yR,k,1

yR,k,2

⎤⎦ =

⎡⎣Re(yk)
Im(yk)

⎤⎦ =

√
ρ

Nt
HR,kxR + nR,k,

and the vectorized version of the quantized ŷk in the real domain is given as

ŷR,k =

⎡⎣ŷR,k,1

ŷR,k,2

⎤⎦ =

⎡⎣sgn(Re(yk))
sgn(Im(yk))

⎤⎦ . (6.2)

Once the fusion center receives ŷR,k from all receive nodes, it generates the sign-

refined channel matrix H̃R,k according to

H̃R,k =

⎡⎣h̃T
R,k,1

h̃T
R,k,2

⎤⎦
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where h̃R,k,i is defined as

h̃R,k,i = ŷR,k,ihR,k,i. (6.3)

Because ŷR,k,i is ±1, (6.3) can be considered as a sign refinement of hR,k,i. We let SR

be

SR =

⎧⎨⎩
⎡⎣Re(s1)
Im(s1)

⎤⎦ , · · · ,
⎡⎣Re(sM)

Im(sM)

⎤⎦⎫⎬⎭
where M is the size of the constellation S. We also define two sets P and N using

{yR,k,i} for k ∈ {1, · · · , K} and i ∈ {1, 2} as

P = {(k, i) : yR,k,i ≥ 0} , N = {(k, i) : yR,k,i < 0} .

With these definitions, we can define a likelihood function as

L(x′
R) = Pr

(√
ρ

Nt

hT
R,k,ix

′
R + nR,k,i ≥ 0

∣∣∣∣∀(k, i) ∈ P
)

· Pr
(√

ρ

Nt
hT
R,k,ix

′
R + nR,k,i < 0

∣∣∣∣ ∀(k, i) ∈ N
)

(a)
= Pr

(√
ρ

Nt
h̃T
R,k,ix

′
R ≥ −nR,k,i

∣∣∣∣∀(k, i) ∈ P
)

· Pr
(√

ρ

Nt

h̃T
R,k,ix

′
R ≥ nR,k,i

∣∣∣∣ ∀(k, i) ∈ N
)

(b)
= Pr

(√
ρ

Nt
h̃T
R,k,ix

′
R ≥ −nR,k,i

∣∣∣∣ ∀(k, i) ∈ P
)

· Pr
(√

ρ

Nt
h̃T
R,k,ix

′
R ≥ −nR,k,i

∣∣∣∣ ∀(k, i) ∈ N
)

(c)
=

2∏
i=1

K∏
k=1

Φ

(√
2ρ

Nt
h̃T
R,k,ix

′
R

)

where Φ(t) =
∫ t

−∞
1√
2π
e−

τ2

2 dτ , (a) is based on the sign refinement in (6.3), (b) is

because nR,k,i and −nR,k,i have the same distribution (or the same probability density

function) such that Pr (c ≥ nR,k,i) = Pr (c ≥ −nR,k,i) for an arbitrary constant c, and
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(c) comes from the fact that nR,k,i is independent for all k and i and from distribution

N (
0, 1

2

)
. Then, the ML receiver is given as3

x̂R,ML = argmax
x′
R
∈SNt

R

2∏
i=1

K∏
k=1

Φ

(√
2ρ

Nt

h̃T
R,k,ix

′
R

)
. (6.4)

The complexity of the exhaustive search of the ML receiver increases exponentially

with the number of transmit symbols in spatial multiplexing, i.e., we need to search

overMNt elements. Therefore, in practice, it is desired to implement a low complexity

receiver for large numbers of transmit antennas.

Remark 1: If the number of receive nodes K is less than the number of transmit

antennas Nt, then the decoding performance at the fusion center would be very poor.

This situation will likely not hold for our problem setting because we can easily have

K � Nt based on the IoT environment.

Remark 2: Instead of quantizing both the real and imaginary parts of the received

signal at each node, we can have the same performance on average by quantizing

and forwarding only the real or imaginary part of the received signal with twice the

number of receive nodes. This is based on the assumption that the real and imaginary

parts of the noise nk are i.i.d. for all k.

6.2.2 Low-complexity zero-forcing-type receiver

The ML receiver defined in (6.4) has no constraint on the norm of the transmit

vector x. To develop our ZF-type receiver, however, we assume ‖x‖2 = Nt. If S is

a phase shift keying (PSK) constellation with |sm|2 = 1 for all m, this constraint is

trivially satisfied. Even for a quadrature amplitude modulation (QAM) constellation

(that is properly normalized), the constraint can be approximately satisfied because

Nt∑
i=1

|xi|2 ≈ Nt

3A similar ML receiver is also derived in [72].
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when Nt is large and xi is drawn from S with equal probabilities. Simulation results

in Section 6.3 show that our ZF-type receiver works even with not-so-large Nt, e.g.,

Nt = 10.

Before proposing our ZF-type receiver, we first state the following lemma which

establishes the theoretical foundation of our receiver.

Lemma 6.2.1 Define a matrix H̃R,S ∈ R2K×2Nt by stacking H̃R,k as

H̃R,S =
[
H̃T

R,1 H̃T
R,2 · · · H̃T

R,K

]T
, (6.5)

and let t(x′
R) be

t(x′
R) =

[
t1(x

′
R) t2(x

′
R) · · · t2K(x

′
R)
]T
,

t�(x
′
R) = h̃T

R,k,ix
′
R

where � = 2(k− 1) + i for k = 1, · · · , K and i = 1, 2. Note that ‖x′
R‖2 = Nt based on

the assumption. Then the likelihood function L(x′
R) is upper bounded as

L(x′
R) =

2∏
i=1

K∏
k=1

Φ

(√
2ρ

Nt
h̃T
R,k,ix

′
R

)

=
2K∏
�=1

Φ

(√
2ρ

Nt

t�(x
′
R)

)

≤
2K∏
�=1

Φ

(√
ρ

K
‖H̃R,S‖A

)

when t�(x
′
R) =

√
Nt

2K
‖H̃R,S‖A for all � where ‖ · ‖A is an arbitrary matrix norm that

is consistent with the vector two-norm.
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Proof To prove Lemma 6.2.1, we derive an upper bound of the maximum of L(x′
R)

with the relaxed constraint x′
R ∈ R2Nt instead of x′

R ∈ SNt

R . Note that the norm

constraint ‖x′
R‖2 = Nt still holds. With the definitions of t�(x

′
R) and t(x′

R), we have

max
x′
R
∈R2Nt ,

‖x′
R
‖2=Nt

L(x′
R) = max

x′
R
∈R2Nt ,

‖x′
R
‖2=Nt

2∏
i=1

K∏
k=1

Φ

(√
2ρ

Nt

h̃T
R,k,ix

′
R

)

≤ max
t(x′

R
)∈R2K ,

‖t(x′
R)‖2≤Nt‖H̃R,S‖2A

2K∏
�=1

Φ

(√
2ρ

Nt
t�(x

′
R)

)
(6.6)

= max
t(x′

R
)∈R2K ,

‖t(x′
R)‖2≤Nt‖H̃R,S‖2A,
t�(x

′
R
)>0,∀�

2K∏
�=1

Φ

(√
2ρ

Nt

t�(x
′
R)

)
(6.7)

= max
t(x′

R
)∈R2K ,

‖t(x′
R)‖2=Nt‖H̃R,S‖2A,
t�(x

′
R
)>0,∀�

2K∏
�=1

Φ

(√
2ρ

Nt
t�(x

′
R)

)
(6.8)

where (6.6) is based on the fact that

‖H̃R,Sx
′
R‖2 ≤ ‖H̃R,S‖2A‖x′

R‖2 = Nt‖H̃R,S‖2A,

and (6.7) is because Φ(a) > Φ(0) for a > 0. Note that the inequality constraint on

‖t(x′
R)‖2 in (6.7) is changed to the equality constraint in (6.8).

The objective function in (6.8) is trivially bounded by one; however, there is a

certain maximum point in our problem because of the norm constraint of ‖t(x′
R)‖2 =

Nt‖H̃R,S‖2A. Let g� =
√

2ρ
Nt
t�(x

′
R) and g =

[
g1 g2 · · · g2K

]T
. Instead of finding

the solution for (6.8) directly, we first find a local extrema of

log

[
2K∏
�=1

Φ

(√
2ρ

Nt
t�(x

′
R)

)]
=

2K∑
�=1

log

[
Φ

(√
2ρ

Nt
t�(x

′
R)

)]

=
2K∑
�=1

log Φ (g�) (6.9)
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by looking at the point at which the tangential derivatives to the circle ‖g‖2 =

2ρ‖H̃R,S‖2A are equal to zero.4 The tangential derivatives of (6.9) are given by

(
gn

∂

∂gm
− gm

∂

∂gn

) 2K∑
�=1

log Φ (g�) = gn
Φ′ (gm)
Φ (gm)

− gm
Φ′ (gn)
Φ (gn)

for n,m = 1, 2, · · · , 2K and n �= m. Setting the tangential derivatives equal to zero,

we obtain the equations

gn
Φ′ (gm)
Φ (gm)

= gm
Φ′ (gn)
Φ (gn)

or equivalently,

1

gm

Φ′ (gm)
Φ (gm)

=
1

gn

Φ′ (gn)
Φ (gn)

(6.10)

for n,m = 1, 2, · · · , 2K and n �= m because g� > 0 for all �. Clearly, this system of

equations is satisfied when gn = gm for all n,m = 1, 2, · · · , 2K. Under the constraint

‖g‖2 = 2ρ‖H̃R,S‖2A, one possible solution point is given as

g� =

√
ρ

K
‖H̃R,S‖A (6.11)

for all �. Note that the point in (6.11) is the only solution for (6.10) because

G(s) =
1

s
Φ′(s)

1

Φ(s)

is a product of three functions that are strictly monotonically decreasing with s ∈
(0,∞), and thus G(s) is also strictly monotonically decreasing with s.

4Because our searching space is restricted to the circle ‖g‖2 = 2ρ‖H̃R,S‖2A, the point where the
tangential derivatives equal to zero is a local extrema of the objective function.
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Because t�(x
′
R) =

√
Nt

2ρ
g�, the point

t�(x
′
R) =

√
Nt

2K
‖H̃R,S‖A

for � = 1, · · · , 2K is the only extreme point of the objective function in (6.8). We

can show that the extreme point is indeed the maximum point of (6.8) by using the

lemma in Appendix A.5.

Lemma 6.2.1 states that when t(x′
R) =

√
Nt

2K
‖H̃R,S‖A12K , it maximizes the like-

lihood function with the norm constraint ‖t(x′
R)‖2 = Nt‖H̃R,S‖2A. From the fact

that

t(x′
R) = H̃R,Sx

′
R,

the vector x̌R, which is given as

x̌R = H̃†
R,St(x

′
R) =

√
Nt

2K
‖H̃R,S‖AH̃†

R,S12K ,

would be a reasonable estimate for the transmitted vector.

To implement this receiver in terms of the quantized received signals, let ŷR be

ŷR =
[
ŷT
R,1 ŷT

R,2 · · · ŷT
R,K

]T
where ŷR,k is defined in (6.2). It is easy to show by using the relation between HR,S

and H̃R,S (or between their rows given in (6.3)) that

H̃†
R,S12K = H†

R,SŷR
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because the i-th row of H̃R,S is the same as that of HR,S with the sign adjustment by

the sign of the i-th element of ŷR. Based on these observations, we propose a ZF-type

receiver at the fusion center, i.e., the fusion center generates x̌R,ZF ∈ R
2Nt as

x̌R,ZF = H†
R,SŷR. (6.12)

With H and ŷ which are defined in Section 6.1, the same receiver with (6.12) can be

implemented in the complex domain as

x̌ZF = H†ŷ (6.13)

where x̌ZF ∈ CNt .

Note that the squared norm of x̌ZF may not be Nt anymore; however, the nor-

malization term does not have any impact on PSK symbol decisions. If xi is from

a QAM constellation, the normalization term is important because the amplitude of

each entry of x̌ZF does matter in the decoding process. Because the fusion center does

not have any knowledge of the squared norm of x, the best way to normalize x̌ZF is

‖x̌ZF‖2 = Nt

assuming the elements of x are uniformly distributed from S.
Finally, the fusion center needs to detect x̂ZF =

[
x̂ZF,1 x̂ZF,2 · · · x̂ZF,Nt

]T
by

selecting the closest constellation point from x̌ZF =
[
x̌ZF,1 x̌ZF,2 · · · x̌ZF,Nt

]T
as

x̂ZF,n = argmin
s′∈S

|x̌ZF,n − s′|2 (6.14)

for n = 1, · · · , Nt. The complexity of the ZF-type receiver is much lower than that

of the ML receiver because each of these minimizations is over a set of M elements.



134

6.2.3 Receiver performance

In this subsection, we analyze the performance of ML and ZF-type estimators

where the entries of the estimates can be arbitrary complex numbers. We assume

‖x‖2 = Nt in this subsection. The following lemma shows the behavior of the ML

estimator in the asymptotic regime of K for arbitrary ρ > 0.

Lemma 6.2.2 Let x̌ML be the outcome of the ML estimator

x̌ML = argmax
x′∈CNt ,
‖x′‖2=Nt

L(x′). (6.15)

For arbitrary ρ > 0, x̌ML converges to the true transmitted vector x in probability,

i.e.,

x̌ML
p−→ x

as K → ∞.

Proof We consider the real domain in the proof to simplify notation. The lemma

can be proved by showing the inequality

L(xR) > L(uR)

in probability for any uR ∈ R2Nt \{xR} with the constraint ‖uR‖2 = Nt when K → ∞
for arbitrary ρ > 0. We take logarithm of the likelihood function and have

logL(x‡) = log

(
2∏

i=1

K∏
k=1

Φ

(√
2ρ

Nt
h̃T
R,k,ix

‡
))

=
2∑

i=1

K∑
k=1

log Φ

(√
2ρ

Nt
h̃T
R,k,ix

‡
)
.
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Because the h̃R,k,i’s are independent for all k,

lim
K→∞

1

K

K∑
k=1

log Φ

(√
2ρ

Nt
h̃T
R,k,ix

‡
)

p−→ E

[
log Φ

(√
2ρ

Nt
h̃T
R,k,ix

‡
)]

by the weak law of large numbers, and we have

1

K
logL(x‡)

p−→ 2E

[
log Φ

(√
2ρ

Nt

h̃T
R,k,ix

‡
)]

as K → ∞ where the expectation is taken over the channel.

Then, we need to show that

E

[
log Φ

(√
ρ

Nt
h̃T
R,k,ixR

)]
> E

[
log Φ

(√
ρ

Nt
h̃T
R,k,iuR

)]

where the expectations are taken over the channel. Because log Φ(·) is a strictly

monotonically increasing concave function, the above inequality is true if h̃T
R,k,ixR

first-order stochastically dominates h̃T
R,k,iuR [112]. In Appendix A.6, we show

h̃T
R,k,ixR

d
> h̃T

R,k,iuR (6.16)

conditioned on the received signal yR,k,i where
d
> denotes strict first-order stochastic

dominance.

We define the MSE between x and x̌ as

MSE =
1

Nt
E
[‖x− x̌‖2]

where the expectation is taken over the realizations of channel and noise. The fol-

lowing corollary shows the MSE performance of the ML estimator in the asymptotic

regime of K for arbitrary ρ > 0.
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Corollary 6.2.1 The MSE of the ML estimator converges to zero, i.e.,

lim
K→∞

MSEML → 0

for arbitrary ρ > 0.

Proof Note that the norm of x is bounded, i.e.,

‖x‖2 = Nt <∞.

The convergence in probability of a random variable with a bounded norm implies

the convergence in mean-square sense [113]. Thus, we have

lim
K→∞

E
[∥∥x− x̌ML‖

∥∥2]
which finishes the proof.

This analytical derivation for the ML estimator shows that the proposed ML

receiver can perfectly decode the transmitted vector in the limit as K grows large

with fixed ρ. Moreover, numerical studies in Section 6.3 show that increasing ρ would

be sufficient for the ML receiver to decode the transmitted vector correctly with fixed,

but sufficiently large, K.

We now analyze the MSE of the ZF-type estimator. Although it is difficult to

derive the MSE of the ZF-type estimator in general, we are able to have a closed-

form expression for MSEZF by approximating quantization loss as additional Gaussian

noise where the approximation is frequently adopted in many frame expansion works,

e.g., [75, 76, 114].

Lemma 6.2.3 If we approximate the quantization error using an additional Gaussian

noise w as

ŷ =

√
ρ

Nt
Hx+ n+w (6.17)
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with5 w ∼ CN (0K , σ
2
q

ρ
Nt
IK) and assume HHH = KINt

, the MSE of the ZF-type

estimator is given as6

MSEZF = E

[∥∥∥∥x−
√
Nt

x̌ZF

‖x̌ZF‖
∥∥∥∥2
]
=
Ntρ

−1 + σ2
q

K

where x̌ZF is defined in (6.13).

Proof Because n and w are independent, (6.17) can be rewritten as

ŷ =

√
ρ

Nt
Hx+ n′

with n′ ∼ CN
(
0K ,

(
1 + σ2

q
ρ
Nt

)
IK

)
. Applying Proposition 1 in [75] with appropriate

normalization, MSEZF can be bounded as

K
(
Ntρ

−1 + σ2
q

)
B2

≤ MSEZF ≤ K
(
Ntρ

−1 + σ2
q

)
A2

(6.18)

where A and B are fixed constants that satisfy

AINt
≤ HHH ≤ BINt

.

The matrix inequality AINt
≤ HHH means that the matrix HHH−AINt

is a positive

semidefinite matrix. Due to the assumption on the channel matrix, we have

A = B = K,

and the lower and upper bounds in (6.18) both become
Ntρ−1+σ2

q

K
, which finishes the

proof.

5The constant ρ

Nt

in the variance of w is to reflect the effect of SNR in the quantization error.
6x̌ZF is normalized to have the same norm as x.



138

Remark 3: Note that the assumption HHH = KINt
in Lemma 6.2.3 can be satisfied

in the limit as the number of receive nodes grows large because

HHH
p−→ KINt

as K → ∞ under our CN (0, 1) i.i.d. channel assumption [2].

Remark 4: It is well known that the Gaussian approximation is the worst case

additive noise and gives a lower bound on the mutual information [13]. Due to the

inversely proportional (although implicit) relation between the mutual information

and the MSE, we expect that the derivation in Lemma 6.2.3 would give an upper

bound on the MSE of the ZF-type estimator. This is verified in Section 6.3 with

numerically obtained σ2
q .

We also have the following corollary when ρ becomes large.

Corollary 6.2.2 With the same assumptions used in Lemma 6.2.3, the MSE of the

ZF-type estimator is given as

MSEZF =
σ2
q

K

when ρ goes to infinity.

Proof The proof of Corollary 6.2.2 is a direct consequence of taking the limit ρ→ ∞
on the result of Lemma 6.2.3.

Lemma 6.2.3 and Corollary 6.2.2 show that we can make MSEZF arbitrarily small

by increasing K regardless of the effect of noise or quantization error. However, due

to the quantization process at each receive node, we have σ2
q > 0, and MSEZF never

goes to zero with fixed K even when ρ → ∞, which gives an error rate floor in the

high SNR regime. These MSE analyses are based on the ZF-type estimator and the

approximation of the quantization process in (6.17); however, the numerical results in

Section 6.3 show that the analyses also hold for the SER case with actual quantization

process using the proposed ZF-type receiver.
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6.2.4 Modified zero-forcing-type receiver

As mentioned in the previous subsection, the ZF-type receiver suffers from an

error rate floor when ρ goes to infinity with fixed K. Although the error rate floor is

indeed inevitable with the ZF-type receiver, we can improve the SER of the ZF-type

receiver in the high SNR regime by performing post-processing for x̂ZF given in (6.14).

When ρ→ ∞, the effect of noise disappears, and we have

H̃R,SxR � 02K

by the sign adjustment, where H̃R,S is defined in (6.5), xR is the transmitted vector in

the real domain, and � represents element-wise inequality. This fact also recalls the

positive constraint on t�(x
′
R) in (6.7) used to upper bound the maximum of L(x′

R).

Even in the high SNR regime, however, the x̂ZF that is estimated from the ZF-type

receiver may not satisfy the inequality constraints, which would cause an error rate

floor. Thus, we formulate a linear program as

max
x̂R∈R2Nt

x̂T
ZFx̂R

s.t. H̃R,Sx̂R � 02K

to force the estimate x̂R to satisfy the inequality constraints. The estimate x̂R should

be mapped to S as in (6.14) before decoding.

It was shown in [75] that in the context of frame expansion without any noise, the

reconstruction method by linear programming can give a MSE proportional to 1
K2 ,

which is much better than the ZF-type receiver which results in a MSE proportional

to 1
K
. However, if ρ is not large enough, this post-processing by linear programming

can cause performance degradation because the sign refinement may not be perfect,

resulting in incorrect inequality constraints for the linear programming. Moreover, in

this case, having more receive nodes may cause more errors due to the higher chance

of having wrong inequality constraints. Note that more receive nodes corresponds to
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more rows in H̃R,S that force more inequality constraints. We numerically evaluate

the modified ZF-type receiver in Section 6.3.

6.2.5 Achievable rate analysis

We can obtain the achievable rate of quantized distributed reception by evaluating

the mutual information between the transmitted vector x and the quantized received

signal ŷ given channel realization H. If we assume x is uniformly distributed, i.e.,

Pr(x) = 1
MNt

, then the mutual information can be written as7

I(H) =
1

MNt

∑
x∈SNt

∑
ŷ∈Y

Pr (ŷ | H,x) log2
(

Pr (ŷ | H,x)
1

MNt

∑
x′∈SNt Pr (ŷ | H,x′)

)

where Y is the set of all (22)K possible outcomes of the quantized received signal.

Then, the average achievable rate is given as

Rach = E [I(H)] (6.19)

where the expectation is taken over H.

In general, it is difficult to obtain I(H) analytically [115]. However, we are able

to calculate I(H) using the quantization structure in our problem. With the real

domain notation in Section 6.2.1, we have

Pr (ŷ | H,x) =
2∏

i=1

K∏
k=1

Pr (ŷR,k,i | hR,k,i,xR) .

Moreover, the probability of ŷR,k,i = 1 can be derived as

Pr (ŷR,k,i = 1 | hR,k,i,xR) = Pr

(√
ρ

Nt
hT
R,k,ixR ≥ −nR,k,i

)
= Φ

(√
2ρ

Nt
hT
R,k,ixR

)
.

7Although the mutual information also depends on ρ and Nt, we omit them for brevity.
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(b) K = 100.

Fig. 6.2.: The MSE of the ZF-type estimator and its approximation in Lemma 6.2.3
with increasing either of K or ρ. We set M = 8 (8PSK) and Nt = 4 for both figures.

Similarly, we have

Pr (ŷR,k,i = −1 | hR,k,i,xR) = 1− Φ

(√
2ρ

Nt
hT
R,k,ixR

)
.

Using these probabilities, we can calculate I(H) analytically for given H and x.

6.3 Numerical Results

In this section, we evaluate the proposed techniques with Monte Carlo simulations.

We first evaluate the MSE of the ZF-type estimator and its analytical approximation

derived in Lemma 6.2.3 where σ2
q in Lemma 6.2.3 is obtained numerically by averaging

the empirical variance of the distribution8 (y − ŷ) with different values of SNRs.

The ML estimator is not considered in this simulation because it is computationally

impractical to search over the (norm-constrained) Nt-dimensional complex space for

the ML estimator. In Fig. 6.2a, we increase K with fixed ρ = 10 (i.e., an SNR of

10 dB9) while we increase ρ with fixed K = 100 in Fig. 6.2b. We set Nt = 4 and

8ŷ is the actual quantized received signal, not the approximation in (6.17).
9Recall that ρ is related to total transmit power, not per antenna transmit power, in our system
setup.
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(a) M = 4 (QPSK) and Nt = 6.
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(b) M = 8 (8PSK) and Nt = 4.

Fig. 6.3.: SER vs. SNR in dB scale with different values of Nt and M for the
constellation S. Both figures are the case of 12 bits transmission per channel use.

M = 8 (8PSK) in both figures. It is clear that the MSE of the ZF-type estimator is

certainly bounded with fixed K as ρ becomes larger. However, if K becomes larger,

the MSE of the ZF-type estimator decreases without bound. As mentioned in Remark

4, the additive Gaussian noise approximation for the quantization error gives an upper

bound for the MSE of the ZF-type estimator.

To see the diversity gain of each receiver, we consider the average SER which is

defined as

SER =
1

Nt

Nt∑
n=1

E [Pr (x̂n �= xn | x sent,H,n, ρ, Nt, K,S)]

where the expectation is taken over x, H, and n. We compare the SERs of ML and

ZF-type (without the modification by the linear programming) receivers regarding

the transmit SNR ρ in dB scale with different values of Nt and M in Fig. 6.3. Note

that both figures are for the case of 12 bits transmission per channel use because the

total number of bits transmitted per channel use is given as

Btot = Nt log2M.
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Fig. 6.4.: SER vs. SNR in dB scale using the ZF-type receiver withM = 16 (16QAM)
for the constellation S and Nt = 10.

It is clear from the figures that as ρ or K increase, the SER of the ML receiver

becomes smaller without any bound while that of the ZF-type receiver is certainly

bounded in the high SNR regime. However, the SER of the ZF-type receiver can be

improved by increasing K, which is the same as the MSE results. The results show

that the ZF-type receiver would be a good option for quantized distributed reception

with a large number of receive nodes in the IoT environment.

Comparing these figures, if the number of transmit antennas Nt at the transmitter

is large, it is desirable to simultaneously transmit more symbols chosen from a smaller

sized constellation to get better SER results when the number of transmitted bits per

channel use, Btot, is fixed for both the ML and ZF-type receivers. This result is

suitable to massive MIMO systems where the transmitter is equipped with a large

number of antennas.

We also plot the SERs of the ZF-type receiver10 with a 16QAM constellation for

S and Nt = 10 in Fig. 6.4. The figure shows that the proposed receivers also work

for a non-PSK constellation even with not-so-large Nt. Thus, the norm constraint

‖x‖2 = Nt is not critical for the ZF-type receiver.

10We do not consider the ML receiver due to its excessive complexity.
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Fig. 6.5.: Required SNR vs. K for the ZF-type receiver to achieve the target SER of
0.01 with Nt = 4 and M = 8 (8PSK) for the constellation S.
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Fig. 6.6.: SER vs. SNR in dB scale for the ZF-type and modified ZF-type receivers
with Nt = 4 and M = 8 (8PSK) for the constellation S.

To numerically evaluate the array gain, we plot the required SNR (in dB) for

the ZF-type receiver to achieve the target SER of 0.01 against K in Fig. 6.5. As

the number of receive nodes increases, the required SNR to achieve the target SER

decreases. Therefore, if we can exploit a large number of receive nodes, the transmitter

may be able to rely on cost efficient power amplifiers with small transmit power.
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Fig. 6.7.: Average achievable rates of quantized distributed reception vs. SNR with
Nt = 2 and different values of K and M .

In Fig. 6.6, we plot the SERs of the ZF-type receiver and a ZF-type receiver

modified to use linear programming explained in Section 6.2.4. We only consider

the high SNR regime because the modified ZF-type receiver is aimed to increase

the performance of the ZF-type receiver when the SNR is high. The figure clearly

shows that the modified ZF-type receiver performs much better than the ZF-type

receiver when the effect of noise becomes negligible; however, it performs worse than

the ZF-type receiver when the SNR is not sufficiently high. Moreover, having more

receive nodes deteriorates the performance of the modified ZF-type receiver in this

case, which is explained in Section 6.2.4.

In Fig. 6.7, we plot the average achievable rate defined in (6.19) to evaluate the

benefit of spatial multiplexing in distributed reception. Due to the computational

complexity, we only consider Nt = 2 with K = 3 and 5 receive nodes.11 Moreover, we

limit the minimum value of Pr (ŷR,k,i | hR,k,i,xR) to 0.0001 to avoid numerical errors

on I(H). The figure shows that the achievable rates of quantized distributed reception

for both M = 2 (BPSK) and 4 (QPSK) cases become close to its maximum value

as ρ increases even with small numbers of K. It is expected that we can achieve the

11Because the size of Y is (22)K , it quickly becomes computationally impractical as K increases.
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maximum achievable rate with a not-so-large number of receive nodes, e.g., K = 10,

with moderate SNR values.

To make the scenario more practical, the fusion center may decode the transmitted

symbols with limited or no global channel knowledge, which is an interesting future

research topic.
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7. CONCLUSIONS

In this dissertation, we proposed efficient downlink training and CSI quantization

techniques to design practical FDD massive MIMO systems. We also studied dis-

tributed reception scenarios and proposed superior quantization and decoding meth-

ods for the cases of single and multiple transmit antennas.

In Chapter 2, we proposed open and closed-loop training frameworks using suc-

cessive channel prediction/estimation at the user for FDD massive MIMO systems.

By exploiting prior channel information such as the long-term channel statistics and

previous received training signals at the user, channel estimation performance can

be significantly improved with only small length of training signals in each fading

block compared to open-loop/single-shot training. Moreover, with a small amount of

feedback, which indicates the best training signal to be sent for the next fading block,

from the user to the base station, the downlink training overhead can be further re-

duced even when the transmitter lacks any kind of side information, e.g., statistics of

the channel.

In Chapter 3, we proposed an efficient channel quantization method, dubbed

NTCQ, for massive MIMO systems employing limited feedback beamforming. While

the quantization criterion (maximization of beamforming gain or minimization of

chordal distance) is associated with the Grassmann manifold, the key to the pro-

posed NTCQ approach is to leverage efficient encoding (via the Viterbi algorithm)

and codebook design (via TCQ) in Euclidean space. Efficient encoding relies on the

mapping of quantization on the Grassmann manifold to noncoherent sequence detec-

tion and the near-optimal implementation of noncoherent detection using a bank of

coherent detectors (i.e., Euclidean space quantizers). Standard rate-distortion theory

and asymptotic results for RVQ tell us that good Euclidean codebooks should work
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well in Grassmannian space. Our numerical results show that the NTCQ provides

better performance than uncoded schemes such as those considered in [91].

The advantages of NTCQ include flexibility and scalability in the number of chan-

nel coefficients: additional coefficients can be accommodated simply by increasing the

blocklength, and the encoding complexity is linear in the number of transmit anten-

nas. It can also be easily modified to take advantage of channel conditions such as

temporal and spatial correlations. Our numerical results show that these advanced

schemes can improve the performance significantly or reduce feedback overhead con-

siderably depending on the system requirement.

In Chapter 4, we proposed TEC and TE-SPA which are efficient channel quan-

tization techniques for FDD massive MIMO systems. The proposed TEC exploits a

trellis quantizer combined with VQ codebooks to achieve a practical feedback over-

head and complexity. TEC can easily satisfy backward compatibility by exploting

standardized codebooks such as LTE or LTE-Advanced codebooks. We proposed a

codeword-to-branch mapping and codebook design criteria to maximize the perfor-

mance of TEC. TEC also can support multiple receive antennas making a unified CSI

quantization framework possible. It has been shown using simulations that TEC can

maintain a constant performance gap with RVQ which is known to be asymptotically

optimal.

For TE-SPA, we incorporated a trellis structure to quantize temporally correlated

channels in a successive manner. TE-SPA also can be adapted to spatially correlated

channels without any difficulty. TEC and TE-SPA can be thought of as an evolution of

the LTE-Advanced dual codebooks for long-term/wideband and short-term/subband

CSI quantization. The numerical results confirmed that the proposed TE-SPA can

reduce quantization loss even with reduced feedback overhead.

In Chapter 5, we proposed a unified framework for coded receive diversity dis-

tributed reception. We consider distributed reception for the case when a transmitter

broadcasts a signal to multiple geographically separated receive nodes through fading

channels, and each receive node processes and forwards the received signal to a fusion
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center. The fusion center then tries to detect the transmitted signal exploiting the

forwarded data from all the receive nodes and channel state information if available.

The proposed coded receive diversity technique is based on the strong connection

between the distributed reception problem and coding theory. By leveraging this

connection, we are able to adopt appropriate linear block codes, e.g., simplex and

first-order Reed-Muller codes that achieve the Griesmer bound with equality, to de-

sign processing rules at the receive nodes and maximize the diversity gain. We also

developed novel shortened concatenated repetition-simplex (SCRS) codes to support

an arbitrary number of the receive nodes. We analytically proved that the SCRS

codes are optimal with respect to the Griesmer bound in many practical scenarios.

We evaluated the proposed coded receive diversity technique by numerical studies.

Because of its simple and flexible structure, the proposed technique can be applied

to various scenarios including cellular systems, wireless sensor networks, and radar

systems.

In the last chapter, we studied a distributed reception scenario where the transmit-

ter is equipped with multiple transmit antennas and broadcasts multiple independent

data symbols by spatial multiplexing to a set of geographically separated receive nodes

through fading channels. Each receive node then processes its received signal and for-

wards it to the fusion center, and the fusion center tries to decode the transmitted

data symbols by exploiting the forwarded information and global channel knowledge.

We implemented an optimal ML receiver and a low-complexity ZF-type receiver for

this scenario. The SER of the ML receiver can be made arbitrarily small by increasing

SNR and the number of receive nodes. The ZF-type receiver suffers from an error

rate floor as the SNR increases. This floor can be lowered by increasing the number

of receive nodes.
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A. APPENDIX

A.1 Proof of Lemma 2.2.1

Because R is fixed, minimizing the MSE problem can be converted to

argmin
X∈X

MSE (X) = argmax
X∈X

tr
(
RX

(
IT +XHRX

)−1
XHR

)
(a)
= argmax

X∈X
tr
((

IT +XHRX
)−1

XHR2X
)
, (A.1)

where (a) is from the fact that tr(ABC) = tr(BCA). Using the eigen-decomposition

of R = UΛUH , we can rewrite (A.1) as

argmin
X∈X

MSE (X) = argmax
X∈X

tr
((

IT +XHUΛUHX
)−1

XHUΛ2UHX
)

(a)
= argmax

X̃∈X
tr

((
IT + X̃HΛX̃

)−1

X̃HΛ2X̃

)
(b)
= argmax

X̃∈X
tr

((
X̃H

(
1

ρ
INt

+Λ

)
X̃

)−1

X̃HΛ2X̃

)

where (a) comes from the change of the variable X̃ = UHX, and (b) is from X̃HX̃ =

ρIT . Because ρ−1INt
+ Λ and Λ2 are all real diagonal matrices with strictly posi-

tive entries in decreasing order, from the property of the block generalized Rayleigh

quotient [116], the optimal solution for single-shot training is given as

X̃ss,opt =
√
ρINt[1:T ].

Thus, Xss,opt becomes

Xss,opt = UX̃ss,opt =
√
ρUINt[1:T ] =

√
ρU[1:T ],
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which finishes the proof.

A.2 Proof of Lemma 2.2.2

The basic concept of majorization theory which is used to prove Lemma 2.2.2 is

from [35, 117].

Let the real-valued function f : R
T → R as

f(x) =

T∑
t=1

ρx2t
ρxt + 1

with a vector x = [x1, x2, · · · , xT ]T and a constant ρ > 0. Note that f(x) is the

same as the second term in (2.8), which should be maximized to minimize the MSE.

It is easy to show that f(x) is Schur-convex because f(x) is symmetric and
ρx2

t

ρxt+1
is

convex. By majorization theory and the property of Schur-convexity, we have

x 	 y ⇒ f(x) ≥ f(y)

with arbitrary two vectors x,y ∈ RT . Because we assume λ (RH) 	 λ (RL), we have

MSE (XH) ≤ MSE (XL).

A.3 Proof of Lemma 2.2.3

First, we decompose h = ĥ + r where ĥ and r are independent because of the

orthogonality of the MMSE estimator [81]. Note that the covariance of r is given as

Rr = R−RX
(
IT +XHRX

)−1
XHR.
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R1|0 = η2R0|0 + (1− η2)R

= R− η2RX0,opt

(
IT +XH

0,optRX0,opt

)−1
XH

0,optR

(a)
= U0Λ0U

H
0 − η2

(
U0Λ0[1:T ] (IT + ρ diag ([λ0,1, · · · , λ0,T ]))−1ΛH

0[1:T ]U
H
0

)
= U0 diag

([
λ0,1 − η2

ρλ20,1
ρλ0,1 + 1

, · · · , λ0,T − η2
ρλ20,T

ρλ0,T + 1
, λ0,T+1, · · · , λ0,Nt

])
UH

0

= U1Λ1U
H
1 (A.2)

We let Rr = UrΛrUr where Ur and Λr = diag ([λr,1, · · · , λr,Nt
]) are the eigenvector

matrix and the eigenvalue matrices (in decreasing order) of Rr, respectively. Now,

we expand Γss,opt as

Γss,opt
(a)
= E

[
E
[|hw|2 |h]]

= E
[
wH

(
ĥĥH +Rr

)
w
]

(b)
= tr

(
R

ĥ

)
+ E

⎡⎢⎣ ĥHRrĥ∥∥∥ĥ∥∥∥2
⎤⎥⎦

(c)

≤ tr
(
R

ĥ

)
+ λr,1

≤ tr
(
R

ĥ

)
+ λ1

(d)
=

T∑
t=1

ρλ2t
ρλt + 1

+ λ1

where the inner expectation is over r (or noise n) and the outer expectation is over

h in (a), (b) comes from w = ĥ

‖ĥ‖ , (c) is because ‖Rrx‖2 ≤ λr,1 for any unit vector

x, and (d) can be easily derived similar to (2.8) with Xss,opt =
√
ρU[1:T ].

A.4 Proof of Lemma 2.3.1

At i = 1, R1|0 is given as in (A.2) where (a) comes from X0,opt =
√
ρU0[1:T ].

Note that U1 and U0 have the same columns with a different order based on the
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MSE (X1,opt) =
1

Nt

tr
(
R1|0 −R1|0X1,opt

(
IT +XH

1,optR1|0X1,opt

)−1
XH

1,optR1|0
)

=
1

Nt

tr
(
R1|0 −

(
IT +XH

1,optR1|0X1,opt

)−1
XH

1,optR
2
1|0X1,opt

)
=

1

Nt

(
Nt∑
t=1

λ0,t − η2
T∑
t=1

ρλ20,t
ρλ0,t + 1

−
T∑
t=1

ρλ21,t
ρλ1,t + 1

)

= 1− 1

Nt

(
η2

T∑
t=1

ρλ20,t
ρλ0,t + 1

+
T∑
t=1

ρλ21,t
ρλ1,t + 1

)
(A.3)

eigenvalues of Λ1. Because X1,opt = U1[1:T ], the MSE of the block i = 1 is given as in

(A.3). We can generalize (A.3) for i > 1 with recursive derivation, which finishes the

proof.

A.5 Lemma to Prove Lemma 6.2.1

Lemma A.5.1 For arbitrary s and c that satisfy s > c > 0, we have

(Φ(s))2 > Φ(s+ c)Φ(s− c).

Proof With s > c > 0, we have the inequality

Φ(s)− Φ(s− c) > Φ(s+ c)− Φ(s).

Then, we have

2Φ(s) > Φ(s+ c) + Φ(s− c)
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which is equivalent to

4 (Φ(s))2 > (Φ(s+ c) + Φ(s− c))2

= (Φ(s+ c))2 + (Φ(s− c))2 + 2Φ(s+ c)Φ(s− c)

(a)

≥ 4Φ(s + c)Φ(s− c)

where (a) is because

(Φ(s+ c)− Φ(s− c))2 ≥ 0,

which finishes the proof.

A.6 Proof of First-Order Stochastic Dominance in Lemma 6.2.2

We drop unnecessary subscripts to simplify notation. Recall that

y =

√
ρ

Nt

hTx+ n,

h̃ = ŷh

where ŷ = sgn(y). Using the fact that h is rotationally invariant, we assume the

transmitted vector is given as1 x =
[√

Nt 0 · · · 0
]T

. Then, we have

y =
√
ρh1 + n.

Because y ∼ N (0, ρ+1
2
) and n ∼ N (0, 1

2
), the distribution of

√
ρh1 conditioned on y

is N (μ, γ2) where

μ =
ρ

ρ+ 1
y, γ2 =

ρ

2(ρ+ 1)
.

1In this proof, we do not have to restrict the elements of x from an M -ary constellation S because
we consider the ML estimator not receiver.
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Let c = ρ
ρ+1

. Then, we can write
√
ρh1 = cy + w where w ∼ N (0, γ2). Moreover, we

have

√
ρ

Nt
h̃Tx =

√
ρŷh1 = c|y|+ ŷw

d
= |cy|+ w

conditioned on y where the third equality comes from the independence of ŷ and w.

Note that
d
= denotes stochastic equivalence.

Now we want to compute the distribution of
√

ρ
Nt
h̃Tu for a fixed u given y. Note

that

hTu =
2Nt∑
i=1

hiui
d
= u1h1 + z

√
Nt − u21

where z ∼ N (0, 1
2
). Then, we have

√
ρ

Nt
h̃Tu

d
=

u1√
Nt

(c|y|+ w) + ŷz

√
ρ

(
1− u21

Nt

)
d
=

u1√
Nt

(c|y|+ w) + z

√
ρ

(
1− u21

Nt

)
= u(c|y|+ w) + z

√
ρ (1− u2)

where the second equality is due to the independence of ŷ and z and the third equality

comes from the variable substitution u = u1√
Nt
. Note that −1 ≤ u < 1. If u = 1, then

u becomes x, which violates our assumption.

We now break up uw + z
√
ρ (1− u2) into two independent zero-mean Gaussian

random variables v1 and v2 where

v1 ∼ N
(
0, (1− u2)

ρ2

2(ρ+ 1)

)
, v2 ∼ N (0, γ2).
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Finally, for a given y, we have

√
ρ

Nt

h̃Tu
d
= u(c|y|+ w) + z

√
ρ (1− u2)

= uc|y|+ v1 + v2

d
< |uc|y|+ v1|+ v2 (A.4)

= |ucy + ŷv1|+ v2

d
= |ucy + v1|+ v2 (A.5)

d
= |cy|+ w (A.6)

d
=

√
ρ

Nt
h̃Tx.

To show the strict stochastic dominance in (A.4), recall that uc|y| is a fixed number

given y, and v1 is a Gaussian random variable. Thus, the complementary cumulative

distribution function of |uc|y|+ v1| should be strictly greater than that of uc|y|+ v1.

The stochastic equivalence in (A.5) is because ŷ and v1 are independent and (A.6) is

due to the facts that

ucy + v1 ∼ N
(
0,

ρ2

2(ρ+ 1)

)
, cy ∼ N

(
0,

ρ2

2(ρ+ 1)

)

and v2
d
= w. Thus, (6.16) holds, and we have the claim.



VITA



166

VITA

Junil Choi received the B.S. (with honors) and M.S. degrees from Seoul National

University, Seoul, Korea, in 2005 and 2007, respectively. He is currently working to-

ward the Ph.D. degree with the School of Electrical and Computer Engineering, Pur-

due University, West Lafayette, IN, USA. From 2007 to 2011, he was a member of the

technical staff at Samsung Electronics, Korea, where he contributed advanced code-

book and feedback framework designs to 3GPP LTE-Advanced and IEEE 802.16m

standards. His research interests are in the design and analysis of massive MIMO and

distributed communication systems.

He was a co-recipient of the 2013 IEEE Globecom Signal Processing for Com-

munications Symposium Best Paper Award and the 2008 Global Samsung Technical

Conference Best Paper Award. He was a recipient of the Michael and Katherine

Birck Fellowship from Purdue University in 2011; the Korean Government Scholar-

ship Program for Study Overseas in 2011-2013; the Purdue ECE Graduate Student

Association Outstanding Graduate Student Award in 2013; and the Purdue College

of Engineering Outstanding Student Research Award in 2014. He was recognized as

an Exemplary Reviewer of the IEEE WIRELESS COMMUNICATIONS LETTERS

in 2013.


	Purdue University
	Purdue e-Pubs
	Winter 2015

	Advanced wireless communications using large numbers of transmit antennas and receive nodes
	Junil Choi
	Recommended Citation


	Blank Page

