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Abstract

Public key cryptography is like magic. It allows two people who have never met
before to communicate privately over any public channel. Since its conception in
the 1970s, public key cryptography has become indispensable for the modern day
connected world. Public key cryptography is essential for the https protocol, e-
commerce, online auctions, online elections and many more. Computational hard-
ness makes public key cryptography work. However, there is only a handful of
hardness assumptions known which suffice for the construction of public key cryp-
tosystems.
Early public key cryptosystems like RSA and ElGamal are based on number-

theoretic problems, such as the factoring problem and discrete logarithm problem.
By their nature, these problems are highly structured. While it is the structure of
these problems that enables the construction of public key cryptosystems in the first
place, this structure also gives rise to highly non-trivial attacks. As a consequence,
all public key cryptosystems based on number-theoretic assumptions can be effi-
ciently broken by quantum computers and there are very few candidates that resist
subexponential-time classical attacks. This fact raised concerns about the hardness
of these problems.
As a promising alternative to number-theoretic hardness assumptions, coding and

lattice-based hardness-assumptions have emerged. Most prominent among these are
the learning parity with noise (LPN) and the learning with errors (LWE) problem.
Such problems appear naturally in coding-theory and have resisted more than 50
years of algorithmic/cryptanalytic efforts, both classically and quantumly.
This thesis provides progress for both LPN- and LWE-based cryptography. As

main contribution of this thesis, we provide two constructions of adaptively se-
cure public key cryptosystems. Adaptive chosen-ciphertext (IND-CCA2) security is
the gold-standard of security definitions for public key cryptography. IND-CCA2
secure cryptosystems must withstand attacks by an adversary having access to
a decryption-oracle that decrypts every ciphertext except for a special challenge-
ciphertext, for which the adversary is tasked with guessing its corresponding plain-
text. Our first proposal is based on the McEliece assumption and the LPN problem.
The second one is based solely based on the hardness of a low noise LPN problem.
This construction was the first of its kind and answered a problem that has been
open for 9 years.
The second contribution of this thesis regards the LWE problem. The most im-

portant feature of the LWE problem is its worst-case hardness guarantee. Simply
put, this means that almost all instances of the problem are as hard as the hard-
est instance of the problem. Such a feature is highly desirable in cryptography, as
it guarantees that a cryptosystem based on this problem has essentially no weak
keys or weak ciphertexts. This worst case guarantee however is established using
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a special gaussian error-distribution. It is thus a natural question to ask whether
gaussians are necessary for security or just a proof-artifact. In this thesis we show
that the latter is true: The hardness guarantees of the LWE problem are preserved
if a uniform error-distribution on a small interval is used instead of a gaussian dis-
tribution. As gaussian sampling usually is the computationally heaviest step in
LWE-based cryptosystems, this contribution can tremendously improve the perfor-
mance of LWE-based cryptosystems while preserving their security-guarantees.



Zusammenfassung

Public Key Kryptographie ist wie Magie. Sie erlaubt zwei Unbekannten über öf-
fentliche Kanäle vertraulich miteinander zu kommunizieren. Seit der Entwicklung
der ersten Public Key Verschlüsselungsverfahren in den 1970er Jahren hat sich Public
Key Kryptographie zu einem essentiellen Bestandteil der vernetzten Welt entwickelt.
Public Key Kryptographie ist die Grundlage für das https Protokoll, E-Commerce,
Onlineauktionen, Onlinewahlen und viele weitere Technologien.
Die Sicherheit kryptographischer Verfahren beruht auf schwierigen Berechnungs-

problemen. Es sind aber nur wenige (vermutlich) schwierige Probleme bekannt mit
welchen die Konstruktion von Public Key Verfahren gelungen ist. Frühe Public Key
Verfahren wie das RSA oder das ElGamal Verfahren basieren auf zahlentheoretis-
chen Problemen, wie beispielsweise dem Faktorisierungsproblem oder dem diskreten
Logarithmen-Problem. Diese Probleme sind naturgemäß hoch strukturiert. Einer-
seits erlaubt es diese Struktur erst Public Key Verfahren zu konstruieren. Anderer-
seits aber führt zu viel Struktur aber auch zu hochgradig nicht-trivialen Angriffen
auf derartige Verfahren. Als negative Konsequenz dieses Zuviels an Struktur sind
alle auf zahlentheoretischen Problemen basierenden Public Key Verfahren effizient
durch Quantencomputer brechbar und für nur wenige von ihnen existieren keine
klassischen Algorithmen mit sub-exponentieller Komplexität. Daher gibt es Zweifel
an der tatsächlichen Schwierigkeit dieser Probleme.
Als eine vielversprechende Alternative zu zahlentheoretischen Problemen haben

sich Probleme aus der Codierungs- und Gittertheorie etabliert. Die bekanntesten
dieser Probleme sind das Learning Parity with Noise (LPN) Problem und das Learn-
ing With Errors (LWE) Problem. Diese Probleme leiten sich aus praktischen Prob-
lemen der Codierungstheorie ab und auch mehr als 50 Jahre Forschung haben bisher
keine effizienten Algorithmen für diese Probleme hervorgebracht, weder klassische
noch quantische Algorithmen.
Diese Dissertation stellt Ergebnisse aus dem Bereich der LPN und LWE basierten

Kryptographie vor. Als Hauptbestandteil dieser Arbeit werden zwei Public Key Ver-
schlüsselungsverfahren vorgestellt welche sicher gegen adaptive Chosen-Ciphertext
Angriffe sicher sind. Adaptive Chosen-Ciphertext Sicherheit (IND-CCA2) ist der
Gold-Standard der Sicherheitsbegriffe für Public Key Verschlüsselung. IND-CCA2
sichere Verfahren müssen Angriffen widerstehen, bei welchen sich ein Angreifer jedes
beliebige Chiffrat, entschlüsseln lassen kann, bis auf ein Ziel-Chiffrat, dessen Inhalt
er erraten soll. Das erste vorgestellte Verfahren beruht auf der sogenannten McEliece
Annahme und dem LPN Problem. Das zweite Verfahren beruht lediglich auf einer
Variante des LPN Problems mit wenigen Fehlern. Die zweite Konstruktion war die
erste ihrer Art und löste ein Problem welches für mindestens 9 Jahre offen war.
Der zweite Beitrag dieser Arbeit beschäftigt sich mit dem LWE Problem. Das

vielleicht wichtigste Merkmal des LWE Problems ist seine garantierte Worst-Case
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Schwierigkeit. Einfach ausgedrückt bedeutet das dass fast alle Instanzen des Prob-
lems so schwer wie die schwierigste Instanz sind. Eine derartige Eigenschaft ist
hochgradig erwünschenswert bei kryptographischen Problemen, denn sie schließt
die Existenz von schwachen Schlüsseln und schwachen Chiffraten aus. Damit diese
Worst-Case Garantie für das LWE Problem beweisbar gilt, muss es allerdings mit
normalverteilten Fehlern instanziert werden. Daher stellt sich die natürliche Frage ob
Normalverteilungen in diesem Zusammenhang wirklich notwendig für die Schwierig-
keit des Problems sind, oder ob es sich bei Ihnen um ein Beweisartefakt handelt.
Diese Arbeit zeigt dass der zweite Fall gilt: Die Schwierigkeit des LWE Prob-
lems bleibt erhalten falls einfachere Fehlerverteilungen als die Normalverteilung ver-
wendet werden, namentlich eine Gleichverteilung auf einem kurzen Intervall. Da
das Ziehen normalverteilter Fehler den berechnungsintensivsten Schritt von LWE
basierten Kryptoverfahren darstellt, hat dieser Beitrag das Potential die Effizienz von
LWE basierten Kryptosystemen enorm zu steigern während gleichzeitig die Worst-
Case Sicherheitsgarantien erhalten bleiben.
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1. Preamble

A large part of mathematics which
becomes useful developed with
absolutely no desire to be useful,
and in a situation where nobody
could possibly know in what area it
would become useful; and there
were no general indications that it
ever would be so. By and large it is
uniformly true in mathematics that
there is a time lapse between a
mathematical discovery and the
moment when it is useful; and that
this lapse of time can be anything
from 30 to 100 years, in some cases
even more; and that the whole
system seems to function without
any direction, without any
reference to usefulness, and
without any desire to do things
which are useful.

John von Neumann

1.1. Motivation
Computational hardness is the foundation of modern cryptography. Since public

key cryptography has been conceived more than 30 years ago, the study of candi-
date sources of computational hardness has been a central purpose of cryptographic
research. A major source of hardness in cryptography are computational problems
located in the realm of number theory. These include problems like the well known
factoring problem or discrete logarithm problems in various cyclic groups. Number
theoretic problems arise genuinely from pure math. They have accompanied public
key cryptography from its very beginning and have highly contributed to the real
world success of public key cryptography. Basically all asymmetric cryptographic
schemes in practical use today, like the RSA cryptosystem [RSA78] or variations

1



2 1. Preamble

of the Diffie-Hellman key exchange protocol [DH76] are based on the hardness of
number theoretic problems.
However, public key cryptography suffered a foundational crisis in 1994, when

Peter Shor [Sho94] discovered that every number theoretic problem used in cryptog-
raphy can be efficiently solved by quantum computers. Conversely, this means that
every cryptographic scheme based on number theoretic problems will be rendered
insecure once scalable quantum computers become reality. This discovery sparked
interest in cryptographic schemes that are based on problems that are not known
to be tractable by quantum computers. The oldest proposal of a public key cryp-
tosystem based on a problem not known to be tractable by quantum computers is
the McEliece cryptosystem [McE78]. Unlike number theoretic problems, which arise
from centuries old questions in pure math, McEliece’s proposal is based on a prob-
lem of highly practical relevance: Recovering signals from noisy observations. In
discrete math, such problems are called decoding problems and are generally posed
as follows.

Given an efficiently computable encoding function and an encoded
message that is corrupted by random noise, recover the uncorrupted
encoding.

The theory of linear codes studies encoding functions f with the algebraic property of
linearity. This theory and its applications are of fundamental importance for every
problem concerned with the reliable transmission of messages through unreliable
channels. Coding theory has found applications way beyond its original purpose
and is maybe the most useful tool in theoretical computer science [BFL90, BFLS91,
AS92, FGL+96, Din06]. So how is it possible that coding theory is relevant for
cryptography?
There has been a paradox in coding theory dating back to the earliest works in the

field [Sha48, Gil52, Var57]. It has been known from the very beginning that almost
every code is good in the sense that it allows the recovery of uncorrupted messages
in principal. However, for arbitrary codes the best strategy known to recover the
message is brute forcing through all the possibilities. Efficient decoding algorithms
are only known for very limited classes of highly structured codes.
And this is where where McEliece’s idea ties in with. Take an efficiently decodable

code and make it appear as if it was an arbitrary or random code. Anyone who
knows which code really conceals itself behind this random looking code will be able
to decode. Anyone else will be faced by an intractable problem.
Linear codes are encoding schemes for discrete channels. Discrete channels are

assumed to inflict errors that destroy certain parts of a message entirely but leave
others intact. The error rate of such a channel bounds the number of locations at
which the error will strike.
Continuous channels, such as radio channels, usually have a different error model.

For continuous channels, the error is usually assumed to be limited in its total power
[Sha48]. The power of an error naturally corresponds to an euclidean metric on the
errors. Linear encoding schemes for continuous channels are called lattices. Thus,
lattices can be seen as the euclidean analogue of linear codes. Interestingly, the
theoretical study of lattices started long before linear codes were conceived. Lattices
date back Minkowski’s geometry of numbers [Min10] which studies convex bodies in
high dimensional euclidean spaces.
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Soon, decoding problems in lattices were also discovered as a source of computa-
tional hardness for cryptography. Decoding problems in lattices have a similar struc-
ture to their analogues in linear codes. However, their algebraically richer structure
provides a much stronger leverage for cryptographic constructions. A unique feature
of (certain) lattice based hardness assumptions is their worst-to-average case con-
nection. For most cryptographic assumptions, including coding based assumptions,
the hardness of an average case problem must be explicitly assumed. For certain
lattice problems however, the hardness of average case problems can be based on the
hardness of natural worst case problems. Among lattice problems with worst case
hardness guarantee, the learning with errors (LWE) problem [Reg05] stands out.
Theoretical cryptography, or provably secure cryptography, claims that a win-win

situation lies at its core. A cryptographic security proof basically states that one
of the following two possibilities must be the case. The first possibility is that a
cryptographic scheme based on a natural computational problem really is secure.
The second possibility is that the scheme is insecure, which however would imply
an efficient algorithm solving the said computational problem. For most problems
used in cryptography this would constitute a major algorithmic breakthrough. In
the case of number theoretic problems such a breakthrough would indeed be highly
surprising.
But otherwise practically irrelevant1. Number theoretic problems basically have

no practical purpose outside of cryptography. Coding based cryptography, on the
other hand, was motivated by practical problems that apparently have no efficient
solution. Thus, successful structural attacks against (provably secure) coding or lat-
tice based cryptosystems will have an actual repercussion on the practical problems
they were motivated by.
Besides number theoretic and lattice/coding based problems, various other prob-

lems have been suggested as sources of hardness for public key cryptography. Men-
tionable proposals were conjugation problems in braid groups [WM84, KLC+00]
and multivariate polynomial equation systems [MI88, Pat96]. However, with very
few exceptions all of these were eventually broken [RST07, KS99]. All remaining
proposals are more or less variations of broken schemes.
From a practical point of view, lattice and coding based cryptography is very

favorable with respect to implementation. Implementations of number theory based
cryptographic schemes, such as the classical example RSA, usually require expensive
long number arithmetic operations, like modular exponentiations. To make things
worse, these operations are mostly resilient to parallelization2. Attempts to speed
up expensive arithmetic operations may even introduce unexpected weaknesses into
implementations. This was, for instance the case with CRT-RSA, where Chinese
remaindering was used to speed up RSA decryption or signing on smart cards. This
infamous performance tweak gave rise to the well known fault induction attacks
[BDL97]. A fault induction attack disrupts the computation of a smartcard. With

1This opinion was not shared by Carl Friedrich Gauß [Gau66, Knu97]: "The problem of distin-
guishing prime numbers from composites, and of resolving composite numbers into their prime
factors, is one of the most important and useful in all of arithmetic. . . The dignity of science
seems to demand that every aid to the solution of such an elegant and celebrated problem be
zealously cultivated."

2Somewhat ironically, in the case of modular exponentiations this fact has even been turned into
a hardness assumption by its own right. A time lock puzzles [RSW96] is a cryptographic bottle
post into the future. Its security is based on the assumption that modular exponentiations
cannot be sped up by parallelization
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some luck, the flawed output of the smartcard then discloses the full secret key.
Coding based cryptography, on the other hand, relies mostly on simple binary

arithmetic. All operations necessary are highly parallelizable. While the implemen-
tations of lattice based cryptosystems do require integer arithmetic and are thus not
as efficient as coding based schemes, they usually do not require long number arith-
metic. An oft mentioned drawback of lattice and coding based cryptography are
the rather large key sizes. Due to the nature of the underlying decoding problems,
the public and secret keys are matrices and their size grows quadratically. While
this was a serious drawback still a few years ago, current technology may very well
handle key sizes of several megabytes.
Chosen ciphertext security is the gold standard of security for public key encryp-

tion. In a nutshell, this security notion guarantees that no adversary may learn the
contents of a specific ciphertext (for a given key), even if he is allowed to learn the
contents of any other ciphertext (for the same key) of his choice. Obtaining efficient
chosen ciphertext secure public key encryption schemes from standard hardness as-
sumptions proved to be a tough nut for cryptographic research. While it was shown
in the late 80s and early 90s that chosen ciphertext secure cryptosystems can be con-
structed from standard assumptions [NY90, RS91, DDN91], all these constructions
involved very heavy theoretical machinery such as non-interactive zero knowledge
proofs [BFM88b, BFM88a]. These results are nowadays considered mostly feasi-
bility results, without relevance for practical applications. Nonetheless, these early
constructions pointed the way ahead to efficient constructions and proved to be a
valuable source of inspiration.

1.2. Contribution and Structure of this Thesis
While coding based cryptography has had major significance in the realm of sym-

metric cryptography, this work exclusively concerned with public key cryptography.
Research in public key cryptography usually proceeds in two (mostly orthogonal)
directions. The first direction seeks to explore new concepts, add new features to
existing concepts and generally provide first instantiations of such concepts. Very
often, new hardness assumptions are conjectured to reach this goal. The second di-
rection tries to find more efficient instantiations of existing concepts and base them
on a wider range of and possibly stronger hardness assumptions. This thesis is in
line with the latter direction.
The better part of this thesis deals with the construction of chosen ciphertext

secure public key encryption schemes. We will develop techniques to construct
efficient chosen ciphertext secure public cryptosystems from coding based hardness
assumptions. The centerpiece of of this thesis is Chapter 6, where we develop a
chosen ciphertext secure public key cryptosystem based on the learning parity with
noise assumption. We will now provide a brief summary of the chapters of this
thesis.

• In Chapter 2 we will provide the technical background for the following Chap-
ters. In particular, we will gather tools and notions from probability, public
key cryptography, coding theory and lattices.

• In Chapter 3 we provide an introduction to coding and lattice based cryptog-
raphy. We will introduce the main objects of study in this thesis, the learning
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parity with noise (LPN) and learning with errors (LWE) problems and pro-
vide basic reductions between different flavors of the problems. As a minor
contribution in this thesis, we present a result in Section 3.5 that provides a
reduction from LPN with unbounded samples to LPN with bounded samples.
Specifically, the result shows that if LPN with a square-root fraction of noise
and a linear number of samples is hard, then LPN with a constant fraction of
noise and unbounded samples is also hard. To the best of our knowledge this
result is novel.

• In Chapter 4, we provide the framework for our results in Chapters 5 and 6. We
discuss the notion of tag-based encryption and its purpose for the construction
of chosen ciphertext secure public key encryption. This chapter contains no
original contribution by the author and serves mostly the purpose of self-
containedness.

• In Chapter 5 we present a public key cryptosystem based on McEliece’s cryp-
tosystem. The cryptosystem we propose is secure against adaptive chosen ci-
phertext attacks in the standard model. The scheme is an improvement of the
scheme of Dowsley, Müller-Quade and Nascimento [DMQN09] and was origi-
nally published in the IEEE Transactions on Information Theory [DDMQN12].

• In Chapter 6 we present a public key cryptosystem based on a low noise learn-
ing parity with noise assumption. The cryptosystem is secure against adaptive
chosen ciphertext attacks in the standard model. This scheme was the first
that achieved this from this assumption and was originally published in Asi-
acrypt 2012 [DMQN12]. The scheme presented here is an improved version
achieving better efficiency.

• In Chapter 7 we present a hardness reduction that bases the learning with er-
rors problem with uniform errors on a standard problem in worst-case lattices.
Prior hardness reductions for this problem needed to assume the hardness of
non-standard worst case lattice assumptions. The result was originally pub-
lished in Eurocrypt 2013 [DMQ13].





2. Prerequisites

If I have seen further it is by
standing on ye sholders of Giants.

Sir Issac Newton

2.1. Pseudocode Notation
We will generally present algorithms and experiments in pseudocode notation. We

will give a brief overview of the notation to be used.

• Assignents: To denote the assignment of a value b to a variable a we will use
the notation a ← b. Moreover, if B() is an algorithm, we will use a ← B() to
indicate that a is being assigned the output of B().

• Random Choices: If B is a distribution or an algorithm that samples a
distribution, we will use the notation a←$ B to denote that a is being assigned
a sample of B. If S is a finite set, we will use the notation a←$ S to indicate
that the value assigned to a was drawn uniformly from S.

• Loops and Conditional Statements We will use For loops and If state-
ments in the standard way. We will allow For loops to run over sets, e.g. we
will use For loops of the form For x ∈ S to denote that x runs through all the
elements in the set S.

• Object-oriented Notation: To denote that a certain algorithm A belongs to
a scheme S (e.g. an encryption or signature scheme), we will use the notation
S.A() for invocations of A.

• Oracle-Access: If A() is an algorithm that requires access to an oracle and
O() is an implementation of such an oracle, we will write AO(·)() to denote
that A can query O with inputs of its choice during execution. If O takes two
(or more) arguments, we will use the notation AO(a1,·)() to denote that A has
access to O with the first argument hardwired to a1.

7
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• Parsing: To denote that a certain object is semantically split into several
components we will use the keyword Parse. For instance, to denote that A is
tuple of elements a, b, c we will write Parse A = (a, b, c).

2.2. Notation and Basic Math
We will denote the finite field with q elements by Fq. Vectors x and matrices A

will be written boldface while scalars y will be written regular. We will use ‖x‖p
to denote the Lp norm of a vector x and 〈x,y〉 to denote the inner product of two
vectors x and y. We will generally assume that elements of the residue class ring Zq
are given in the central residue-class representation, i.e. if x′ ∈ Zq, we will identify
x′ = x mod q with an integer x in {−bq/2c, . . . , dq/2e−1}. We can thus generically
lift x′ from Zq to Z. Moreover, with this we can define a meaningful norm on Zq
by ‖x mod q‖ = ‖x‖. Horizontal concatenations two matrices A and B will be
denoted by (A‖B). To denote the vertical concatenation of A and B we will write
(AT‖BT )T .
The following simple (and commonly known) lemma will provide useful estimates

in many situations.

Lemma 2.1. It holds for all x ≥ 0 that

1− x ≤ e−x.

Moreover, if x ∈ [0, 1
2 ], then

e−2x ≤ 1− x

Proof. By the mean value theorem (see e.g. [Wei]), for every x ≥ 0 there exists an
x′ ∈ [0, x] with

e−x = 1− e−x′x ≥ 1− x
as e−x′ assumes its maximum on [0, x] at x′ = 0. For the second statement, apply
the mean value theorem to ln(1−x) and we get that for every x ∈ [0, 1

2 ] there exists
an x′ ∈ [0, x] such that

ln(1− x) = − 1
1− x′x ≥ −2x,

as − 1
1−x′ assumes its minimum on [0, 1

2 ] at x′ = 1
2 . Consequently,

1− x ≥ e−2x

for x ∈ [0, 1
2 ].

2.3. Probability, Combinatorics and Information
In this section we introduce the stochastic notions needed in this thesis. We will

assume the underlying probability spaces for the random variables we use to be
implicitly given. For an event E we will denote the probability of E as Pr[E]. Dis-
crete random variables X will be defined by the probability mass function Pr[X = x]
corresponding to their distribution. Continuous random variables X will be given by
their probability density function pX(x) of their distribution. For a discrete random
variable X defined over a set X ⊆ R, the expectation of X is defined by

E[X] =
∑
x∈X

Pr[X = x] · x.
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If X is a continuous random variable with density-function pX , then E[X] is defined
as

E[X] =
∫
x∈R

pX(x) · x dx,

if this integral converges. An important property of the expectation is its linearity,
i.e. it holds for arbitrary random variables X and Y and constants α, β ∈ R that
E[αX + βY ] = αE[X] + βE[Y ]. The statistical distance of two discrete random
variables X and Y defined over a common domain X is defined by

∆(X, Y ) = 1
2
∑
t∈X
|Pr[X = t]− Pr[Y = t]|.

We will identify the uniform distribution on sets S with S itself, i.e. we will write

x←$ S

to denote that x is drawn uniformly from S or that the random variable x follows
the uniform distribution on S.
We will now introduce several probability distributions needed in this thesis.

Definition 2.1. Let ρ ∈ [0, 1]. Let X be a random variable with

Pr[X = x] =

1− ρ if x = 0
ρ if x = 1.

We say that X follows the Bernoulli distribution Ber(ρ). If 0 ≤ δ ≤ 1
2 and X follows

Ber(1
2 − δ), we also say that X is a δ-biased coin. If x = (x1, . . . , xn) where the

xi are independent an each xi follows Ber(ρ), then we say that x follows Ber(m, ρ).
Moreover, we denote the component-wise independent Bernoulli distribution onm×n
matrices by Ber(m× n, ρ).

The Bernoulli distribution with parameter ρ models a biased cointoss which takes
outcome 0 with probability 1− ρ and outcome 1 with probability ρ. The following
elementary lemma describes the distribution of the sum of Bernoulli distributed
random variables modulo 2.

Lemma 2.2. Let x, y ∈ F2 be independently distributed where x follows Ber(1
2 − δ1)

and y follows Ber(1
2−δ2). Then x+y follows Ber(1

2−2δ1δ2). Moreover, if x1, . . . , xn ∈
F2 are independently distributed according to Ber(1

2−δ), then the sum ∑n
i=1 xi follows

Ber(1
2 −

1
2(2δ)n).

Proof. Let x ←$ Ber(1
2 − δ1) and y ←$ Ber(1

2 − δ2) be drawn independently and
interpreted as elements of F2. It holds that

Pr[x+ y = 1] = Pr[x = 1 and y = 0] + Pr[x = 0 and y = 1]
= Pr[x = 1] Pr[y = 0] + Pr[x = 0] Pr[y = 1]

=
(1

2 − δ1

)(1
2 + δ2

)
+
(1

2 + δ1

)(1
2 − δ2

)
= 1

2 − 2δ1δ2.
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Thus x + y follows Ber(1
2 − 2δ1δ2). If x1, . . . , xn are independently distributed by

Ber(1
2 − δ), then applying the first statement inductively yields

Pr[
n∑
i=1

xi = 1] = 1
2 −

1
2(2δ)n

and thus ∑n
i=1 xi follows Ber(1

2 −
1
2(2δ)n).

Binomial distributions model the sum (in Z) of independently distributed Ber-
noulli trials.

Definition 2.2. Let ρ ∈ [0, 1]. Let X1, . . . , Xn be independent Bernoulli trials.
Then X = ∑n

i=1Xi follows the binomial distribution Bin(m, ρ). X has the probability
mass-function

Pr[X = x] =
x∑
i=0

(
n

i

)
ρi(1− ρ)n−i.

for x ∈ {0, . . . , n} and Pr[X = x] = 0 otherwise.

2.3.1. Concentration of Measure
An important tool to bound binomial distributions is the Chernoff-Hoeffding

bound.

Theorem 2.1 (Multiplicative Chernoff-Hoeffding bound [Hoe63]). Let ρ ∈ [0, 1].
Let X1, . . . , Xn be independent Bernoulli trials distributed according to Ber(ρ) and
let X = ∑n

i=1Xi. Then it holds for any β > 0 that

Pr[X ≥ (1 + β)ρn] ≤ e−
β2
3 ρn

and
Pr[X ≤ (1− β)ρn] ≤ e−

β2
2 ρn.

For an elementary proof of Theorem 2.1 see e.g. [Hoe63, MU05].

2.3.2. Combinatorics
Definition 2.3. For x ∈ (0, 1) the binary entropy function is defined by

H(x) = −x log x− (1− x) log(1− x).

We set H(0) = 0 and H(1) = 0. We define the q-ary entropy function by

Hq(x) = x log(q − 1) +H(x)
log(q) .

On the interval [0, 1− 1/q] the q-ary entropy function is injective. Thus, the inverse
q-ary entropy function H−1

q : [0, 1]→ [0, 1− 1/q] is well defined.

When x is very small (i.e. asymptotically converging to 0) it can be useful to
apply the following estimate for H(x), which follows from Lemma 2.1.

Corollary 2.3. For x ∈ [0, 1
2 ] it holds that

x log 1
x
≤ H(x) ≤ x

(
log 1

x
+ 2

ln 2

)
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Lemma 2.4. For every ε > 0 and every x ∈ (0, 1/2) it holds that

H((1 + ε)x) ≤ (1 + ε)H(x).

Proof. Basic calculation shows that

H ′(x) = − log(x) + log(1− x).

By the mean value theorem ([Wei]) it holds that

H((1 + ε)x) = H(x+ εx) = H(x) +H ′(x0)εx

for some x0 ∈ (x, (1 + ε)x). H ′(x0) assumes its maximum at x0 = x in this interval.
Thus it holds that

H((1 + ε)x) = H(x) +H ′(x0)εx
≤ H(x) +H ′(x) · x · ε
= H(x) + (−x log(x) + x log(1− x))ε
= H(x) + (H(x) + log(1− x))ε
= (1 + ε)H(x) + ε log(1− x)
≤ (1 + ε)H(x),

as ε log(1− x) ≤ 0.

The following lemma shows how binomial coefficients can be approximated using
the binary entropy function.

Lemma 2.5. (see e.g. [MU05]) Let n, k be integers with 0 ≤ k ≤ n. It holds that

2n·H( k
n

)

n+ 1 ≤
(
n

k

)
≤ 2n·H( k

n
)

We will need to draw binary matrices uniformly at random and bound the prob-
ability that they have full rank. The following lemma provides a useful estimate.

Lemma 2.6. Let m,n be positive integers with m ≥ n. Let A ←$ Fm×n2 be chosen
uniformly at random. Then it holds that

Pr[A has full rank] =
n−1∏
i=0

(
1− 2i−m

)
≥ 1− 2n−m+1.

Proof. We will count the number of matrices A ∈ Fm×n2 with full rank. For the first
column a1 of A, we can choose any vector in Fm2 \{0}, For the second column a2 of
A, we can choose any vector in Fm2 \span(a1). Inductively, for the i-th column ai
of A, we can choose any vector in Fm2 \span(a1, . . . , ai−1). As span(a1, . . . , ai−1) is a
vector space of dimension i − 1, it holds that |Fm2 \span(a1, . . . , ai−1)| = 2m − 2i−1.
Consequently, there are

n∏
i=1

(
2m − 2i−1

)
= 2mn

n−1∏
i=0

(
1− 2i−m

)
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full rank matrices in Fm×n2 . Therefore, the probability that a uniformly chosen
matrix A←$ Fm×n2 has full rank is

Pr[A has full rank] = 2mn∏n−1
i=0 (1− 2i−m)

2mn =
n−1∏
i=0

(
1− 2i−m

)
,

as |Fm×n2 | = 2mn. We will now provide a lower bound for Pr[A has full rank]. For
i ≤ n − 1, we have that 2i−m ≤ 1

2 , as n ≤ m. Consequently, by Lemma 2.1 we can
bound

1− 2i−m ≥ e−2·2i−m .

This yields

Pr[A has full rank] =
n−1∏
i=0

(
1− 2i−m

)

≥
n−1∏
i=0

e−2·2i−m

= e−2
∑n−1

i=0 2i−m

= e−2·2−m·(2n−1)

≥ 1− 2 · 2−m · (2n − 1)
≥ 1− 2n−m+1

2.3.3. Min-Entropy
The min-entropy of a random variable X measures the amount of worst case

randomness of X. For random variables with high min-entropy, no single outcome
has too high probability, i.e. the probability mass function of such variables is not
pointy.

Definition 2.4. Let χ be a probability distribution with finite support and let X be
distributed according to χ. Define the min-entropy H∞(X) by

H∞(X) = − log(max
ξ

(Pr[X = ξ])).

Let Y be random-variable (possibly correlated with X) and let ỹ be a measurement
or outcome of Y . The conditional min-entropy H∞(X|Y = ỹ) is defined by

H∞(X|Y = ỹ) = − log(max
ξ

(Pr[X = ξ|Y = ỹ])).

2.4. Cryptographic Notions
In this section we will provide the cryptographic notions and fundamental results

required in this thesis.

2.4.1. General
Results in complexity theory and theoretical cryptography are usually stated in

an asymptotic manner. The main parameter that controls the asymptotic security
of cryptographic constructions is called the security parameter. Throughout this
thesis, we will reserve the variable λ to denote a security parameter. We will use
the following standard asymptotic notations to denote the asymptotic behavior of
functions. Let f and g be functions N→ R. Denote
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• f(λ) = O(g(λ)) if there exists a constant c > 0 and an n0 ∈ N such that it
holds for all n > n0 that f(n) ≤ c · g(n).

• f(λ) = Õ(g(λ)) if there exist a constants c1 > 0, c2 ≥ 0 and an n0 ∈ N such
that it holds for all n > n0 that f(n) ≤ c1(log(n))c2 · g(n).

• f(λ) = o(g(λ)) if for every constant c > 0 there exists an n0 ∈ N such that it
holds for all n > n0 that f(n) < c · g(n).

• f(λ) = Ω(g(λ)) if there exists a constant c > 0 and an n0 ∈ N such that it
holds for all n > n0 that f(n) ≥ c · g(n).

• f(λ) = ω(g(λ)) if for every constant c > 0 there exists an n0 ∈ N such that it
holds for all n > n0 that f(n) > c · g(n).

• f(λ) = poly(λ) if there exists a constant c > 0 such that f(λ) = O(λc).

The notion of negligible functions is essential for the definition of the security
of cryptographic schemes. Informally speaking, a function is called negligible if it
vanishes faster than the inverse of any polynomial.

Definition 2.5. We say a function f : N → R is negligible, if for every constant
c > 0 there exists an n0 ∈ N such that for all n > n0 it holds that f(n) < 1

nc
. This

condition can be equivalently expressed as f(λ) = λ−ω(1). We will write shorthand
negl(λ) to denote an unspecified negligible function. We will call functions of the
form 1−negl(λ) overwhelming. Moreover. we will call functions of the form Ω(λ−c)
(for a constant c > 0) substantial or noticeable.

The notions of negligible and noticeable functions are robust under polynomial
changes. More precisely, for any constant c > 0 if f(λ) is negligible, then so is
poly(λ) · (f(λ))c and if f(λ) is noticeable, then so is (f(λ))c/poly(λ).
As is usual in theoretical computer science, we consider machines/algorithms ef-

ficient if they run in probabilistic polynomial time (PPT).
A standard way of defining security for cryptographic schemes are game-based

security definitions [Nao03, Pas11]. Game-based security definitions are modeled as
an interaction between a challenger C and an adversary A. We will represent A
as a multi-stage algorithm, which outputs a state st after each stage and receives
this state as input in its next stage. Both the challenger and the adversary receive
as part of their first input an unary encoding 1λ of the security parameter. Then
several rounds of interaction between the challenger and the adversary may follow,
in which the challenger may provide access to additional resources to the adversary.
After the end of the interaction the challenger computes an output which is either 1
or 0. If the output is 1, we say the adversary wins the game/experiment, if it is 0 he
loses. Let 〈C(1λ),A(1λ)〉 denote C’s output after interacting with A. We consider
a scheme secure if the success probability

SuccC(A) = Pr[〈C(1λ),A(1λ)〉 = 1]

of any PPT adversary A is at most negligibly better than what can be achieved by a
trivial strategy (e.g. guessing the result). In such security definitions, the adversary
is usually given more resources than one would expect a real live adversary to have.
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This is primarily done to model certain parts of the context in which the protocol
is designed to be used as part of the adversary.
A special case of security experiments are indistinguishability experiments. We

say that two distributions A and B depending on the security parameter λ are
statistically close, if

∆(A,B) ≤ negl(λ).

Moreover, we say that A and B are computationally indistinguishable, if for every
PPT algorithm D the advantage

Adv(D) = |Pr[D(A) = 1]− Pr[D(B) = 1]|

is at most negligible, i.e. Adv(D) ≤ negl(λ). We usually call the algorithm D
distinguisher. We say that a distribution A is pseudorandom, if it is computationally
indistinguishable from a uniform distribution U .
Unconditional security proofs for most cryptographic tasks would immediately

imply P 6= NP. Thus, security of cryptographic schemes is usually proven relative
to certain computational hardness assumptions. Such a security proof provides a
reduction from the security property to be proven to an established computational
problem which is conjectured to be hard. In such reductions we show how a successful
adversary against the security of the cryptographic scheme (defined via a security
experiment) can be used to construct an efficient algorithm solving the problem
assumed to be hard. This leads to the desired contradiction and we conclude that
the scheme fulfills the security property.
For more complex proofs, we will use a technique called game transform. The idea

of this technique is to slightly modify the security game on a step-by-step approach,
where we show for each step that the success probability of the adversary differs only
by a negligible amount for successive games. The goal of such a transformation is
usually to transform a complex security game into a simple security game which has
a more or less elementary security proof. To signify differences in successive games
we will highlight the affected parts of the game. In the subsections to follow we
will provide game based security notions for the cryptographic tasks relevant in this
thesis.

2.4.2. The Goldreich Levin Hardcore Predicate
An important tool to establish the pseudorandomness of certain distributions is

the Goldreich Levin [GL89] hardcore predicate.

Theorem 2.2 (Goldreich Levin [GL89]). Let λ be a security parameter. Letm,n, k =
poly(λ). Let f : Fn2 × Fk2 → Fm2 be an efficiently computable injective function. Let
X be a distribution on Fn2 and Y be a distribution on Fm2 . Let x ←$ X, y ←$ Y
and z = f(x,y). Let further r ←$ F n

2 and b = 〈r,x〉. Assume there exists an
efficient algorithm A that computes b given r and z with probability non-negligibly
better than 1

2 . Then there exists an efficient algorithm A′ that computes x given z
with non-negligible probability.

2.4.3. Public Key Encryption
Public Key Cryptography started with the seminal works of Diffie and Hellman

[DH76] and Rivest, Shamir and Adleman [RSA78]. In a public key encryption
scheme, a receiver Bob generates a pair of private and public keys and publishes
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the public key. A sender Alice who wants to securely transmit a message to Bob
can encrypt it using Bob’s public key key. After receiving the encrypted message,
Bob will be able to decrypt the message using his secret key. Before discussing
the security requirements for public key encryption, we will provide the syntactical
definition for public key encryption schemes.

Definition 2.6. A public key encryption scheme PKE consists of three PPT-al-
gorithms PKE.KeyGen, PKE.Enc and PKE.Dec, such that the following syntactical
requirements are met.

• PKE.KeyGen(1λ) is a PPT-algorithm that takes a security-parameter λ and
outputs a pair of public and private keys (pk, sk).

• PKE.Enc(pk,m) is a PPT-algorithm that takes a public key pk, a message m
and outputs a ciphertext c.

• PKE.Dec(sk, c) is a PPT-algorithm taking as input a secret key sk and a ci-
phertext c and outputs a plaintext m.

A standard-requirement for any public key encryption scheme is completeness, i.e.
the receiver Bob will be able to decrypt messages encrypted by a sender Alice.

Definition 2.7. We say that PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is complete,
if it holds for all plaintexts m that

Pr[Dec(sk,Enc(pk,m)) 6= m : (pk, sk)← KeyGen(1λ)] < negl(λ).

The early candidates for public key encryption schemes (such as [RSA78, McE78])
were all constructed to (implicitly) meet the notion of one-way CPA security. This
notion basically requires that encryption is one-way, i.e. it is infeasible to recover
the randomly chosen plaintext entirely given only the ciphertext and public key.
This notion has obvious shortcomings. First, no guarantee is given if the ciphertext
is not chosen from a uniform or almost uniform distribution. Second, an encryption
scheme which does not encrypt parts of the plaintext at all can be considered secure
under this security notion, as this notion only guarantees that no adversary can
recover the entire plaintext message.
Goldwasser and Micali [GM82] were the first authors to come up with a secu-

rity definition for public key encryption which captures the intuition that a cipher-
text should basically reveal nothing about the plaintext it encrypts in a rigorous
manner. They introduced the notion of semantic security, called ciphertext indis-
tinguishability under chosen plaintext attacks (IND-CPA security) in later works
[MRS86, BDPR98]. Semantic security is modeled as the following game between
an experiment and the adversary. The experiment first generates a pair of public
and private keys (pk, sk). After that, the public key pk is given to the adversary
A. The adversary now chooses two messages m0 and m1 and provides them to
the experiment. The experiment flips a coin b ←$ {0, 1} and encrypts mb. This
challenge ciphertext is now given to the adversary, who has to guess whether the
challenge ciphertext contains m0 or m1. The adversary wins if it guesses correctly.
We consider a public encryption scheme secure (under this notion), if the adver-
sary’s chance of winning is not noticeably better than blind guessing. The rationale
behind this notion is that messages sent through a network may be influenced by
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certain adversarial choice, so the adversary might have a-priori information about
the plaintext. If a scheme however fulfills the semantic security notion, then such
a-priori information is of no use to the adversary. Another way to view this is that
encryptions of such a scheme hide all partial information about the plaintext mes-
sage. Notice that no encryption scheme with deterministic encryption algorithm can
fulfill this security notion, as in this case the adversary could just encrypt m0 and m1
by itself and check which one yields the challenge ciphertext. Thus, IND-CPA secure
encryption schemes must necessarily be probabilistic, i.e. the encryption algorithm
must produce a randomized output.

Definition 2.8. We say a public key encryption-scheme PKE is ciphertext indistin-
guishable under chosen message attacks (IND-CPA), if every PPT-adversary A has
success-probability at most negligibly better than 1/2 in the experiment IND-CPA, i.e.
Pr[IND-CPA(A) = 1] ≤ 1

2 + negl(λ).

Experiment IND-CPA
(pk, sk)← PKE.KeyGen(1λ)
(m0,m1, st1)← AODec(sk,τ∗,·,·)(find, st0, pk)
b←$ {0, 1}
c∗ ← PKE.Enc(pk, τ ∗,mb)
b′ ← A(guess, st1, c

∗)
Return 1 iff b = b′.

While IND-CPA security guarantees security against passive or eavesdropping
adversaries, this notion falls short against adversaries that actively manipulate mes-
sages sent through a network. In such a scenario, an adversary may intercept cipher-
texts, manipulate them, and observe whether the receiver accepts this ciphertext or
rejects. Using this feedback, the adversary might learn certain parts of the en-
crypted message, breaking the security of the scheme. Therefore, to deal with active
adversaries, a stronger security notion is needed. Naor and Yung [NY90] defined
chosen ciphertext attacks (CCA1) to model the capabilities of such stronger adver-
saries. The basic idea is to keep the basic IND-CPA experiment, but to provide
the adversary with a decryption oracle, i.e. a black box that decrypts ciphertexts
of the adversary’s choice before he receives the challenge ciphertext. Thereafter,
the experiment continues like the IND-CPA experiment. A common metaphor for
this kind of attack are socalled lunchtime attacks. We imagine that in this kind of
attack the adversary gains control of a decryption resource (e.g. a smartcard) while
its legitimate owner is in lunch break. The adversary may now use the decryption
resource to gain as much knowledge as possible about the secret key, but has to re-
turn the decryption resource and must guess the message encrypted in the challenge
ciphertext without it.

Definition 2.9. We say a public key encryption-scheme PKE is ciphertext indis-
tinguishable under non-adaptively chosen ciphertext attacks (IND-CCA1), if every
PPT-adversary A has success-probability at most negligibly better than 1/2 in the
experiment IND-CCA1, i.e. Pr[IND-CCA1(A) = 1] ≤ 1

2 + negl(λ).

While the notion of IND-CCA1 security comes close to what we expect from a
public key encryption scheme in terms of security, this is still not sufficient for certain
applications. Rackoff and Simon [RS91] proposed the notion of adaptive chosen
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Experiment IND-CCA1
(pk, sk)← PKE.KeyGen(1λ)
(m0,m1, st1)← AODec(sk,·)(find, st0, pk)
b←$ {0, 1}
c∗ ← PKE.Enc(pk, τ ∗,mb)
b′ ← A(guess, st1, c

∗)
Return 1 iff b = b′.

ODec(sk, c)
m← PKE.Dec(sk, τ, c)
Return m

ciphertext security. For this notion the adversary also gets access to a decryption
oracle in its guessing phase, however with the restriction that he cannot use it to
decrypt the challenge ciphertext, i.e. the decryption oracle refuses to decrypt the
challenge ciphertext. This restriction is necessary to make this security notion not
trivially unfulfillable. For several years this stronger security notion was mostly
of theoretical interest, but had no practical impact. This certainly changed when
Bleichenbacher discovered such an adaptive chosen ciphertext attack against the
RSA-based encryption standard PKCS#1 [JK03, Ble98].

Definition 2.10. We say a public key encryption-scheme PKE is ciphertext in-
distinguishable under adaptively chosen ciphertext attacks (IND-CCA2), if every
PPT-adversary A has success-probability at most negligibly better than 1/2 in the
experiment IND-CCA2, i.e. Pr[IND-CCA2(A) = 1] ≤ 1

2 + negl(λ).

Experiment IND-CCA2
(pk, sk)← PKE.KeyGen(1λ)
(m0,m1, st1)← AODec(sk,·)(find, st0, pk)
b←$ {0, 1}
c∗ ← PKE.Enc(pk, τ ∗,mb)
b′ ← A(guess, st1, c

∗)
Return 1 iff b = b′.

ODec1(sk, c)
m← PKE.Dec(sk, τ, c)
Return m

ODec2(sk, c∗, c)
If c = c∗

Return ⊥
Otherwise

m← PKE.Dec(sk, τ, c)
Return m

2.4.4. One-Time Signature Schemes
Since one-time signatures play an important role in the construction of IND-

CCA2 secure encryption schemes, we will give a brief overview over this crypto-
graphic primitive. One-time signatures were first defined and constructed by Lam-
port [Lam79]. The key difference between standard signature schemes and one-time
signature schemes is the following. While a standard signature scheme remains
secure if a signing key is used to sign an arbitrary number of messages, one-time
signature schemes may become insecure if more than one message is signed. We first
provide the syntactical definition of a one-time signature scheme.

Definition 2.11. A one-time signature scheme OTS consists of three algorithms
OTS.Gen, OTS.Sign and OTS.Verify, such that
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• OTS.Gen(1λ) is a PPT-algorithm that takes a security-parameter λ and outputs
a pair of verification and signature keys (vk, sgk).

• OTS.Signsgk(m) is a PPT-algorithm that takes a signature key sgk, a message
m and outputs a signature σ.

• OTS.Verify(vk,m, σ) is a PPT-algorithm taking as input a verification key vk,
a message m and a signature σ and outputs a bit b ∈ {0, 1}.

As with public key encryption, a standard requirement of one-time signatures is
completeness. Completeness basically requires that messages that were legitimately
signed by the owner of the secret key will verify, except with negligible probability.

Definition 2.12. We say that OTS = (OTS.Gen,OTS.Sign,OTS,Verify) is complete,
if it holds for all messages m that

Pr[OTS.Verify(vk,m,OTS.Sign(sgk,m) = 1 : (vk, sgk) = OTS.Gen(1λ)] > 1−negl(λ).

We will now define security for one-time signature schemes. The security property
we need for our constructions is called strong existential unforgeability under one-
time chosen message attacks. As usual, we will define a security experiment. The
experiment first generates a pair of verification and signing keys. The adversary A
then receives the verification key and gets access to a one-time signing oracle that
signs at most one message of his choice and then refuses to sign further messages.
Call the message signature pair A obtains from the oracle (m′, σ′). The adversary
eventually outputs a pair of message and signature (m∗, σ∗). The experiment now
checks if the σ∗ is a valid signature for m∗ and if m∗ 6= m′ or σ∗ 6= σ′. If this check
is passed, the adversary wins the experiment, if not he loses. We consider a one-
time signature scheme secure under this notion if every PPT-adversary A has most
negligible chance of winning this experiment. Notice that it is a perfectly legitimate
strategy for the adversary to output an m∗ with m∗ = m′ but σ∗ 6= σ′. Thus, the
adversary can win the experiment by coming up with a new signature for a message
for which he has already seen a signature. This is what distinguishes the strong
unforgeability property from the standard unforgeability property. The standard
unforgeability property for signature schemes only requires that the adversary fails
to forge a signature for a new message, for which he has not yet seen a valid signature.
In the context of constructing IND-CCA2 secure encryption schemes, the strong
unforgeability property is very important.

Definition 2.13. We say a one-time signature scheme OTS is strongly existentially
unforgeable under chosen one-time chosen message attacks, if every PPT-adversary
A has most negligibly success probability in the experiment sEUF-OTCMA, i.e.
Pr[sEUF-OTCMA(A) = 1] ≤ negl(λ).

Standard EUF-OTCMA secure one-time signature schemes can be constructed
from any one-way function [Lam79]. Using the same construction, sEUF-OTCMA
secure one-time signature schemes can be constructed using universal one-way hash
functions (UOWHF) [NY89, Gol04]. Since UOWHFs in turn can be constructed
from any one-way function [Rom90], this yields a construction of sEUF-OTCMA
secure signatures from any one-way function.
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Experiment sEUF-OTCMA
(vk, sgk)← OTS.Gen(1λ)
(m∗, σ∗)← AOSign(sgk,·)(find, vk)
Parse r = (m′, σ′)
If OTS.Verify(vk,m∗, σ∗) = 1
and (m∗, σ∗) 6= (m′, σ′)

Return 1
Otherwise

Return 0

Initialize r← (⊥,⊥)
OSign(sgk,m)

If r = (⊥,⊥)
σ ← OTS.Sign(sgk,m)
r ← (m, σ)
Return σ

Otherwise
Return ⊥

2.5. Coding Theory
In this section, we provide the coding-theoretic tools and techniques required in

this thesis. Error correcting codes are a central tool in theoretical computer science.
The interesting property of error correcting codes is their geometry. All distinct
codewords of a linear code are well-separated by a minimum distance. This geometric
separation introduces the redundancy necessary to deal with errors inflicted by a
noisy channel or an adversary. Thus, error correcting codes can be equivalently seen
as encodings the amplify distance of messages.

2.5.1. Error Models
As their name suggests, the main purpose error-correcting codes is to encode

messages in a way that is resilient against data loss incurred by corruption or loss
of parts of the encoded message. Classically, two different models of how a channel
introduces errors are distinguished. In the first model, due to Shannon [Sha48],
a memoryless channel introduces errors at random. This model is a reasonable
approximation for most physical channels, where the most prominent sources of
errors are thermal noise, multi-path interference or glitches. In the second model,
which is due to Hamming [Ham50], no such assumptions about a more or less benign
or average case behavior of channels are made. In Hamming’s model, errors are
chosen adversarially, i.e. in a worst case manner. In this model channels can be
considered as malicious entities that try to corrupt messages using a certain number
of errors. The goal of the adversarial channel is to inflict a decoding error on the
receivers side. Restricting the number of errors the channel is allowed to introduce
is necessary in order to exclude trivial strategies of the channel, such as erasing
the whole message. Notice that this perspective of a channel fits very well with
the cryptographic view of adversarial behavior detailed in the last section. We will
now discuss certain types of errors. The most prominent types of errors discussed
in literature are symbol errors and erasures. Let F be a finite alphabet over which
messages are defined. We will always assume that F is a finite field, i.e. there are
well defined addition, multiplication and division operations in F.

2.5.1.1. Bit and Symbol Errors
A symbol error is an arbitrary alteration of a symbol or component of a message

x ∈ Fn in an unknown location. We will usually treat symbol errors as additive
offsets of a message, i.e. if x ∈ Fn is the uncorrupted message then x̃ = x + e is a
corrupted version of x which differs from x in the locations/components i for which
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ei 6= 0. We call e ∈ Fn the error vector. In case the code-alphabet is binary, we
refer to symbol errors as bit errors.

2.5.1.2. Erasure Errors
Erasure errors model the detectable loss of information in a transmitted message.

But in contrast to symbol errors, the locations of erasure errors are known. To
indicate that an erasure has occurred, we replace the erased component by an erasure
symbol ⊥. Erasures can be viewed as a puncturing of a codeword, i.e. the effect of
an erasure is the projection of the codeword onto a shorter code.

2.5.1.3. Simultaneous Block Erasure and Bit Errors
Of particular importance in Chapter 6 is an error model in which bit errors and

erasures occur simultaneously. Assume that a message x ∈ Fn1·n2 is partitioned in
n1 blocks of size n2, i.e. x = (xT1 ‖ . . . ‖xTn1)T where all xi are elements of Fn2

2 . We
allow bit errors to occur in each bit of each block xi, but erasure errors only to occur
block-wise, i.e whole blocks xi are erased instead of just single bits of those blocks.
Looking ahead, this error model will occur in a security reduction in which symbol
errors are inflicted by an adversary and erasure errors appear due to incomplete
knowledge of a secret key (by the reduction).

2.5.2. Linear Error Correcting Codes
The most important class of error correcting codes studied in literature are linear

error correcting codes. Linearity allows efficient representation of codes and facili-
tates the analysis of their properties. Basically, linear codes are subspaces of finite
vector spaces.

Definition 2.14 (Linear Codes). Let Fq be the finite field of size q. A q-ary linear
code C of length n and dimension k is a k-dimensional subspace of Fnq . We also say
C is a q-ary [n, k] code.

The interesting aspect of linear codes is their geometry. This geometry is defined
in terms of the Hamming metric. The Hamming metric measures the how different
two given vectors are.

Definition 2.15 (Hamming Metric). Let F be a finite field. The Hamming metric
or Hamming weight of a vector x ∈ Fn is defined by

wgt(x) = |{i | xi 6= 0}|,

i.e. wgt(x) counts the number of nonzero components of x. The Hamming distance
or Hamming metric d(x,y) of two vectors x,y ∈ Fn is defined by d(x,y) = wgt(x−
y).

The following Lemma shows that the Hamming weight fulfills the triangle inequal-
ity and thus establishes that the Hamming metric actually is a metric.

Lemma 2.7. Let F be a finite field. It holds for all x,y ∈ Fn that wgt(x + y) ≤
wgt(x) + wgt(y). Furthermore wgt(x) = 0 if and only if and only if x = 0.
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Proof. It holds that

wgt(x + y) = |{i | xi + yi 6= 0}|
≤ |{i | xi 6= 0 or yi 6= 0}|
≤ |{i | xi 6= 0}|+ |{i | yi 6= 0}|
= wgt(x) + wgt(y).

Moreover, if x 6= 0 then there exists an index i such that xi 6= 0 and therefore
wgt(x) 6= 0.

The minimum distance of a linear code C provides information how different dis-
tinct codewords of C are.

Definition 2.16. The minimum distance d(C) of a linear code C is defined by

d(C) = min
x∈C\{0}

wgt(x)

d(C) is also the minimum distance between to distinct codewords x,y ∈ C, as

d(x,y) = wgt(x− y︸ ︷︷ ︸
∈C\{0}

) ≥ d(C).

If C is a q-ary linear [n, k] code and d(C) = d, then we say C is a q-ary [n, k, d]
code. We will call R = k

n
the rate of C and δ = d

n
the relative minimum distance of

C.

Definition 2.17 (Hamming Sphere and Hamming Ball). Let r ≤ n. We call

Sn(r, q) = {x ∈ Fnq | wgt(x) = r}

the q-ary Hamming sphere of radius r. Moreover, we call

Bn(r, q) = {x ∈ Fnq | wgt(x) ≤ r}

the q-ary Hamming ball of radius r. For q = 2 we will set Sn(r) = Sn(r, 2) and
Bn(r) = Bn(r, 2).

Lemma 2.8. It holds that

|Bn(r, q)| =
r∑
i=0

(
n

i

)
(q − 1)i ≤ |Sn(r, q)| =

(
n

r

)
(q − 1)r ≤ qHq(r/n)·n.

Proof. There are
(
n
r

)
possibilities of choosing the non-zero locations for an x ∈ Fnq

with wgt(x) = r. Each of these locations can be set with one of the q − 1 non-zero
elements of Fq. Thus it holds

|Sn(r, q)| =
(
n

r

)
(q − 1)r.

By Lemma 2.5 it holds that
(
n
r

)
≤ 2H(r/n)·n and thus

|Sn(r, q)| =
(
n

r

)
(q − 1)r ≤ 2H(r/n)·n · 2r·log(q−1) = qHq(r/n)·n.
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Clearly, it holds that

Bn(r, q) =
r⋃
i=0

Sn(i, q)

and therefore

|Bn(r, q)| =
r∑
i=0
|Sn(i, q)| ≤ |Sn(r, q)| ≤ qHq(r/n)·n.

As linear codes are vectors spaces, they can either be expressed in terms of a basis
matrix or by a homogeneous linear equation system.

Definition 2.18 (Generator and Parity Check Matrices, Error Syndromes). Let C
be a q-ary linear [n, k] code. If G ∈ Fn×kq is a basis matrix of C as a vector space,
we also call G a generator matrix of C, i.e. it holds that

C = C(G) = {Gx ∈ Fnq | x ∈ Fkq}.

If C is the kernel of a matrix H ∈ F(n−k)×k
q , we call H a parity check matrix of C,

i.e.
C = C⊥(H) = Ker(H) = {y ∈ Fnq | Hy = 0}.

For an x̃ ∈ Fnq we call s = H · x̃ the error syndrome or just syndrome of x̃.

Clearly, if G is a generator matrix of C and H is a parity check matrix of C, then
H ·G = 0.

Definition 2.19 (Dual Codes). Let C be a q-ary linear [n, k] code. We call

C⊥ = {y ∈ Fnq | ∀x ∈ C : 〈y,x〉 = 0}

the dual code of C.

Clearly, if G is a generator matrix of C and H is a parity check matrix of C, then
HT is a generator matrix of C⊥ and GT is a parity check matrix of C⊥, i.e. it holds
that

C⊥ = C(HT ) = C⊥(GT ).

Two codes are called equivalent if they are structurally the same. This is formal-
ized as follows.

Definition 2.20. We say that two [n, k] codes C1 and C2 are equivalent, if there
exists a permutation matrix P ∈ Fn×nq such that C2 = PC1, i.e. for all x ∈ c1

Px ∈ C2.

If G1 is a generator matrix of a [n, k] code C1, G2 is a generator matrix of a [n, k]
code C2 and C1 and C2 are equivalent, then there exists a permutation matrix P and
an invertible matrix T such that

G2 = PG1T.
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There are no efficient algorithms known that decide whether the codes generated by
two matrices G1 and G2 are equivalent. The McEliece problem (c.f. Section 5.2) is
(in part) based on the intractability of this problem.
We will usually assume that a linear code C is equipped with a standard generator

matrix G. We will use the syntax

C.Encode(x) = Gx

to denote that x is encoded using the generator matrix G. Moreover, if C has an
efficient decoding algorithm for the generator matrix G, we will denote this algorithm
by C.Decode(·). In case there exists an efficient list decoding algorithm for the basis
G, we will denote this algorithm by C.ListDecode(·).

2.5.3. Random Codes and Best Known Codes
An important goal of coding theory is finding codes with optimal parameters, i.e.

with maximum possible rate and relative minimum distance. The Singleton bound
gives an upper bound for the dimension of a code with a desired minimum distance.

Lemma 2.9 (Singleton Bound [Sin64]). Let C be a q-ary [n, k, d] code. Then it holds
that

k ≤ n− d+ 1.

Proof. Let C′ ⊆ F(n−1)×k
q be the code obtained by puncturing C, e.g. by dropping

the last symbol of all codewords in C. C′ has minimum distance at least d − 1, as
if x ∈ C is a vector of minimum weight d in C and x′ ∈ C′ is obtained by dropping
the last symbol of x, then wgt(x′) ≥ d− 1. Thus, the number of codewords of C′ is
the same as of C as long as d > 1. Therefore, we can repeat this procedure at least
d− 1 times without decreasing the number of codewords. It follows that

k ≤ n− d− 1.

Randomly chosen codes are among the best known codes. We will first provide a
version of Shannon’s noisy channel coding theorem for binary symmetric channels. A
binary symmetric channel inflicts errors chosen from a Bernoulli distribution Ber(ρ).

Theorem 2.3 (Noisy Channel Coding Theorem for Binary Symmetric Channels
[Sha48]). Let ρ ∈ [0, 1/2) and let k ≤ (1 −H(ρ) − ε)n for any constant ε > 0. Let
G ←$ Fn×2 be chosen uniformly at random, let x ←$ Fn2 be chosen uniformly at
random and let e←$ Ber(n, ρ). Let y = Gx + e. Then x can be uniquely recovered
from G and y, except with negligible probability over the choice of G and e.

Proof. Since e is chosen by the Bernoulli distribution Ber(n, ρ) it holds by the Cher-
noff inequality (Theorem 2.1) that

wgt(e) ≤ (1 + ε/2)ρn,

except with probability e− ε
2

12ρn. Fix x and an e with wgt(e) ≤ (1 + ε/2)ρn. Clearly,
it holds that

wgt(y−Gx) = wgt(e) ≤ (1 + ε/2)ρn.
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We will consider the probability that there exists an x′ 6= x such that

wgt(y−Gx′) ≤ (1 + ε/2)ρn

holds. Fix any x′ 6= x. It holds that

y−Gx′ = G(x− x′) + e.

Thus if
wgt(y−Gx′) ≤ (1 + ε/2)ρn

then
G(x− x′) + e ∈ Bn((1 + ε/2)ρn).

As x − x′ 6= 0 and G is chosen uniformly at random, it holds that G(x − x′) is
distributed uniformly at random. Thus it holds that

Pr[wgt(y−Gx′) ≤ (1 + ε/2)ρn] = Pr[G(x− x′) + e ∈ Bn((1 + ε/2)ρn)]

≤ |Bn((1 + ε/2)ρn)|
2n

≤ 2−n+H((1+ε/2)ρ))n

≤ 2−n+(1+ε/2)H(ρ)n

where the last inequality follows by Lemma 2.4. By a union bound, it holds that

Pr[∃x′ 6= x : wgt(y−Gx′) ≤ (1 + ε/2)ρn] ≤ 2k · 2−n+(1+ε/2)H(ρ)n

= 2k−n+(1+ε/2)H(ρ)n

≤ 2(−1+H(ρ)/2)εn

≤ 2−εn/2

where we have used that k ≤ (1 − H(ρ) − ε)n and H(ρ) ≤ 1 for x ∈ (0, 1/2). All
together, this yields that x can be recovered from G and y with probability at least

1− eε2ρn/12 − e−εn/2,

which is overwhelming in n.

The noisy channel coding theorem assumes that the error e is chosen at random.
If the error is chosen adversarially, then the following bounds provide the best known
codes.

Theorem 2.4 (Gilbert [Gil52], Varshamov [Var57] (GV)). Let ε > 0 be an arbitrary
constant, and q be a prime power. Let n, k and δ be such that

k ≤ (1−Hq(δ)− ε)n.

Let G ∈ Fn×kq be chosen uniformly at random. Then C = C(G) has minimum
distance at least δn, except with negligible probability in n.
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Proof. We will bound the probability that there is a non-zero vector in C with weight
smaller than δn. Fix an x 6= 0. Then Gx is distributed uniformly at random in Fnq .
Thus it holds that

Pr[wgt(Gx) < δn] = Pr[Gx ∈ Bn(δn)] ≤ |Bn(δn)|
qn

= q−n+Hq(δ)n.

Thus, the probability that there exists an x ∈ Fkq\{0} such that wgt(Gx) < δn can
be bounded by

Pr[∃x : wgt(Gx) < δn] ≤ qkq−n+Hq(δ)n ≤ q−εn.

Thus, all non-zero vectors in C(G) have Hamming weight at least δn, except with
negligible probability.

If q ≥ 49, then there exists a construction of non-random codes that beats the
Gilbert Varshamov bound.
Theorem 2.5 (Tsfasman Vlǎduţ Zink [TVZ82] (TVZ)). Let q be a square. For
every rate R there exists an asymptotically good sequence of codes with rate R and
minimum distance δ given that

R + δ ≥ 1− 1
√
q − 1 .

The proof of Theorem 2.5 is rather involved and requires algebraic geometry. See
for instance [HB98].

2.5.4. Efficient Decoding
We will now discuss several constructions of efficiently decodable codes. There

are two decoding goals for linear codes discussed in literature: minimum distance
decoding and list decoding. The goal of minimum distance decoding is, given a
message x, to find the codeword closest to x in terms of the Hamming distance, i.e.
to find a c ∈ C such that

wgt(c− wgt(x)) = min
y∈C

(wgt(y− x)).

Using minimum distance decoding, one can correct at most (d− 1)/2 errors or d− 1
erasures. If more errors are present, then a decoding error may occur. The notion
of minimum distance decoding was relaxed to the notion of list decoding (implicitly
defined in [GL89]). The goal of list decoding is not to compute the closest codeword
for a given x, but a short list of nearby codewords. In a situation where more than
(d − 1)/2 errors are present, one may still be able to recover the right codeword c
uniquely given some additional information about c.
Definition 2.21. Let C be an [n, k, d]q code.
• We say that an efficient algorithm C.Decode decodes t errors and l erasures, if
given an x ∈ Fnq with distance at most t from C of which at most l components
are erased, then C.Decode(x) outputs c.

• We say that an efficient algorithm C.ListDecode list-decodes t errors and l
erasures, if given an x = c + e, where c ∈ C is a codeword and e is an error
of weight at most t, and x contains at most l erasures, then C.ListDecode(x)
outputs a list L of codewords that has at most polynomial size in n and contains
c.
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2.5.5. Reed Solomon Codes
Reed Solomon codes [RS60] are the most well known class of so-called evalua-

tion codes. Information words are interpreted as low degree polynomials f(X) and
codewords function tables of f(X).
Definition 2.22 (Reed Solomon [RS60]). Let n ≥ k and q be a prime power with
q ≥ n. Let α = (α1, . . . , αn) ∈ Fnq . The q-ary [n, k] Reed Solomon code RSα is
consists of all codewords c = (c1, . . . , cn) for which there exists an f ∈ Fq[X] of
degree k − 1 such that

c1 = f(α1)
...

cn = f(αn).

We will usually omit explicitly stating α.

Theorem 2.6. Let RS be a q-ary [n, k] Reed Solomon code. Then RS has dimension
k and minimum distance d = n−k+1. Furthermore, there exists an efficient decoder
RS.Decode for RS that can decode t errors and l erasures given that

2t+ l ≤ d− 1 = n− k.

A proof of Theorem 2.6 can be found in any coding theory textbook, e.g. [HB98,
vL99]. The following theorem establishes that Reed Solomon codes are list-de-
codable.
Theorem 2.7 (Guruswami Sudan [GS99]). Let RS be a q-ary [n, k] Reed Solomon
code. There exists an efficient list decoder RS.ListDecode for RS that list-decodes t
errors and l erasures given that

t+ l < n−
√

(k + 1)(n− l).

2.5.6. Binary Goppa Codes
Goppa codes are a class of subfield codes that are defined by a parity check matrix

H ∈ F(n−k)×n
qm over an extension field Fqm of Fq. Goppa codes [Ber73] can be defined

as subfield codes of BCH codes [Hoc59, BRC60].
Definition 2.23. Let F2m be the degree m extension field of F2. Let g(X) ∈ F2m [X]
be a polynomial of degree t and let α = (α1, . . . , αn) ∈ (F2m)n, where the αi pairwise
distinct non-zeros of g(X), i.e. for all i g(αi) 6= 0. The binary Goppa-code Γ(α, g)
is the set of all vectors c = (c1, . . . , cn) ∈ Fn2 for which

n∑
i=1

ci
X − αi

= 0 (mod g(X))

holds.

Theorem 2.8. Assume that g(X) ∈ Fm2 [X] has no multiple zeros. Then the binary
Goppa code Γ(α, g) has dimension n−m · t and minimum distance at least 2t + 1.
Moreover, Γ(α, g) has an efficient decoder Γ(α, g).Decode(·) that efficiently decodes
up to t errors.

For a proof of Theorem 2.8 refer to [Ber73]. Since the α1, . . . , αn ∈ F2m need
to be pairwise distinct non-zeros of g(X) (which has degree t), we need to choose
2m > n+ t.
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2.5.7. Concatenated Codes
Concatenated codes are among the most powerful constructions of asymptotically

good codes. Concatenated codes were introduced by Forney [For66] and Justesen
[Jus72]. Binary concatenated codes encode messages in two steps. First a message
is split into large blocks of size log(q) and encoded using an outer q-ary code. In
the second step each component or symbol of this codeword encoded using an inner
binary code.

Definition 2.24. Let n = n1n2, k = k1k2 and q = 2k2. Let Cout be a q-ary [n1, k1]
code and let Cin be a binary [n2, k2] code. Then the concatenated code C = Cin ◦Cout
is defined by the following encoding procedure C.Encode.

C.Encode(x)
Interpret x as an element of Fk1

q

c← Cout.Encode(x)
Parse c = (c1, . . . , cn1) ∈ Fn1

q

For i = 1, . . . , n1
Interpret ci as an element of Fk2

2
c′i ← Cin.Encode(ci)

c′ ← (c′1
T‖ . . . ‖c′n1

T )T
Return c′

...

xk1−1

xk1

x2

x1

...

cn1−2

cn1−1

cn1

c3

c2

c1

Cout

c′1

c′2

c′3

Cin

Cin

Cin

c′n1−2

c′n1−1

c′n1

...

Cin

Cin

Cin

Figure 2.1.: Structure of concatenated codes

Concatenated codes are usually decoded using generalized minimum distance de-
coding (GMD) [For66]. GMD is a soft-decoding procedure which assigns decoding
outputs of the inner decoder certain weights which represent the confidence in the
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correctness of the output. These weights are then used by the decoder of the outer
code to decide whether an erasure should be declared at the corresponding symbol.

Theorem 2.9 (Forney [For66]). Let q = 2k2. Let Cout be a binary [n2, k2] code
with minimum distance at least d2 and assume that there exists an efficient decoder
Cout.Decode that uniquely decodes up to t2 = d2/2 errors. Let Cin be a q-ary [n1, k1]
code that uniquely decodes t1 errors and l1 erasures given that 2t1 + l1 < d1. Then
there exists an efficient decoder for Cout◦Cin that efficiently decodes up to t2d1 errors.

A modern proof of Theorem 2.9 can be found in [Gur01]. A particularly popular
construction of concatenated codes uses as outer code a Reed Solomon code and
as inner code an arbitrary good code. Given that the length of the inner code is
short enough, it can be efficiently decoded by brute force. Thus, one usually aims
to minimize the dimension of the inner code. Since we need q ≥ n1, we can achieve
this by setting k2 = dlog(n1)e.
Concatenated codes carry a natural block structure, i.e. we can consider the

codewords of the inner code as blocks of size n2 of a codeword. It is therefore
reasonable to consider erasures not just on the bit level, but also on the block level.
In the rest of this Section, when we refer to block erasures we mean that entire
codewords of the inner code are erased. Instantiating Theorem 2.9 with an outer
Reed Solomon code yields the following corollary.

Corollary 2.10. Let RS be an outer Reed Solomon code of relative distance δRS and
let Cin be a short binary inner code with relative minimum distance δin. Then there
exists an efficient decoder for C = Cin ◦ RS that can efficiently correct an η fraction
of bit errors and a σ fraction of block erasures given that

η ≤ 1
2δin(δRS − σ).

This bound can be improved asymptotically by turning to list decoding.

Theorem 2.10 (Guruswami [Gur01]). Let RS be an outer Reed Solomon code of
relative distance δRS and Cin be a binary inner code with relative minimum distance
δin. Then there exists an efficient list decoder for Cin ◦ RS that list decodes an η
fraction of bit errors and a σ fraction of block erasures given that

η ≤ 1
2(1− σ) ·

1−
√

1− 2δin − 2
√
δin(1− δRS)

1− σ

 .
If we consider bit erasures instead of block erasure, then we can use the following

theorem.

Theorem 2.11 (Guruswami Sudan [GS99]). Let ε > 0 be an arbitrary constant.
Let RS be an outer Reed Solomon code of relative distance δRS and Cin be a binary
inner code with relative minimum distance δin. Then there exists an efficient list
decoder for Cin ◦ RS that list decodes an η fraction of bit errors and a σ fraction of
bit erasures given that

η ≤ 1
2 ·
1− σ −

√
(1 + ε)(1− 2δin)−

√√√√(1− σ)(1− δRS)
ε · (1− 2δin)

 .
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We will briefly discuss concatenated codes with outer Reed Solomon code in more
detail. For any given rate R ∈ (0, 1), we want to find such a concatenated code
with maximum possible minimum distance. Let therefore RS be an outer Reed
Solomon code with rate Rout and let Cin be an inner code with rate Rin and relative
minimum distance δin that meets the Gilbert Varshamov bound, i.e. it holds that
Rin = 1 − H(δin). For any given rate Rin such a code Cin can be found efficiently
by brute force search given that the length n2 of Cin is at most logarithmic. We
now want to determine the optimal choices for Rout and δin that lead to an optimal
relative minimum distance δ for the concatenated code RS ◦ Cin. The concatenated
code RS ◦ Cin has rate

R = Rout ·Rin = Rout · (1−H(δin)) (2.1)

and relative minimum distance at least

δ = δin · (1−Rout) = δin · (1−Rout). (2.2)

Solving equation 2.1 for Rout yields

Rout = R

1−H(δin) (2.3)

and the constraint 1−H(δin) > R as Rout < 1. This constraint can equivalently be
expressed as δin < H−1(1−R). Substituting 2.3 into 2.2 yields

δ = δin ·
(

1− R

1−H(δin)

)
.

The only undetermined variable on which δ depends on is δin. Maximizing δ as a
function of δin under the constraint δin < H−1(1−R) cannot be solved analytically.
Figure 2.5.7 shows a plot of a numerical solution of this optimization problem. The
maximum possible δ is expressed as a function of R. In Section 6.4 we will formulate
similar optimization problems to find optimal codes for the instantiation of our public
key cryptosystems.

2.5.8. Further Constructions of Efficiently Decodable Codes
We will finally mention other constructions of efficiently decodable asymptotically

good codes. Gallager [Gal63] introduced the notion of low density parity check
(LDPC) codes. LDPC codes are defined by a parity check matrix which is the
adjacency matrix of a sparse bipartite graph. Gallager showed that LDPC codes
meet the Gilbert Varshamov bound. Later, Sipser and Spielman [SS94] showed that
LDPC codes can be efficiently decoded up to a constant fraction of errors given that
the bipartite graph used for the construction is a certain expander graph. More
specifically, the decoding requires only linear time. Sipser and Spielman called such
codes expander codes [SS94]. A large corpus of work has intensified the study in
expander codes [Spi95, LMS+97, LMSS98, RU01].

2.5.9. Additional Definitions
It will be convenient to bound the factor by which the multiplication with a binary

matrix expands the Hamming weight of a binary vector. We will therefore define a
matrix norm induced by the Hamming weight.
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Figure 2.2.: Rate/distance trade-off for Best possible concatenated codes with outer
Reed Solomon code

Definition 2.25. The induced Hamming-norm ‖A‖wgt of a matrix A ∈ Fn×k2 is
defined by

‖A‖wgt = max
x 6=0

wgt(A · x)
wgt(x)

We will now show that matrices chosen from low noise Bernoulli distributions
have a small induced Hamming-norm.

Lemma 2.11. Let m,n be integers, ρ ∈ (0, 1) and β > 0 be a constant. Let W
be distributed according to Ber(m × n, ρ). Then ‖W‖wgt ≤ (1 + β)ρm, except with
probability n · e−β

2
3 ρm.

Proof. Let W = (w1‖ . . . ‖wn) with wi ∈ Fm2 . First observe that if the weight of all
columns wi of W is bounded by (1 + β)ρm, then ‖W‖wgt ≤ (1 + β)ρm, as for all
x ∈ Fn2

wgt(Wx) = wgt(
∑

i∈Support(x)
wi) ≤

∑
i∈Support(x)

wgt(wi) ≤ (1 + β)ρm · wgt(x).

Thus
‖W‖wgt = max

x 6=0

wgt(W · x)
wgt(x) ≤ (1 + β)ρm.
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By the Chernoff-bound, it holds for each i ∈ {1, . . . , n} that

Pr[wgt(wi) > (1 + β)ρm] ≤ e−
β2
3 ρm,

thus a union-bound yields

Pr[∃i ∈ {1, . . . , n} : wgt(wi) > t] ≤ n · e−
β2
3 ρm.

2.6. Lattices
A lattice Λ is a discrete subgroubs of (Rn,+). In this context, discrete means

that all elements of Λ are well-separated, i.e. there exists a constant λ1 such that
it holds for all distinct x,x′ ∈ Λ that ‖x − x′‖2 ≥ λ1, where ‖ · ‖2 is the euclidean
norm defined over Rn. Consequently, the definition of lattices is similar in spirit to
the definition of linear codes. While all distinct codewords of linear [n, k, d] code C
are separated at least by Hamming distance d, all lattice points of a lattice Λ are
separated by euclidean distance λ1. Therefore, the defining property of both linear
codes and lattices is their geometry.
Definition 2.26. Let n ≥ k. Let B ∈ Rn×k be a full rank matrix. We call

Λ = Λ(B) = {Bz | z ∈ Zk}

the lattice generated by B.
For a proof that every discrete subgroup of (Rn,+) actually is a lattice in the sense

of Definition 2.26 see Appendix A. The following Lemma provides the existence of
a decomposition which is generally known as QR-decomposition or Gram Schmidt
decomposition.
Lemma 2.12. Let n ≥ k and let A ∈ Rn×k be a full rank matrix. Then there exists
an orthogonal matrix Q ∈ Rn×n (i.e. a QT ·Q = I) and an upper triangular matrix
R ∈ Rn×k such that

A = Q ·R.
For a proof see e.g. [HJ86]. Using Lemma 2.12 it can be established that a lattice

actually is well separated.
Lemma 2.13. Let Λ = Λ(B) be a lattice. Then there exists a λ1 > 0 such that it
holds for every x ∈ Λ\{0} that ‖x‖ > λ1.
Proof. Each x ∈ Λ\{0} can be written as x = B · z for a z ∈ Zk\{0}. By Lemma
2.12 there exists an orthogonal matrix Q and an upper triangular matrix R such
that B = Q ·R. Thus it holds that

‖x‖ = ‖BZ‖ = ‖Q ·Rz‖ = ‖Rz‖,

as Q is an orthogonal matrix (and thus does not change the norm). Assume that

R =



r11 ∗ · · · ∗
0 r11 · · · ∗
0 0 . . . ∗
0 0 · · · rkk
0 0 · · · 0
... ... ...
0 0 · · · 0


.
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If zk 6= 0 then ‖Bz‖ ≥ rkk. If zk = 0 and zk−1 6= 0 then ‖Bz‖ ≥ rk−1,k−1 and
so forth. Consequently, ‖Bz‖ ≥ minj=1,...,k rjj > 0 as z ∈ Zk\{0}. Thus, setting
λ1 = minj=1,...,k rjj the statement of the lemma follows.

The successive minima λ1, . . . , λk of a lattice Λ are defined as the lengths of the
shortest independent vectors of a lattice in ascending order.

Definition 2.27 (Successive Minima). Let Λ ⊆ Rn be a lattice of rank k. We say
that λ1, . . . , λk are successive minima of Λ if

λi = ‖xi‖ = min
x∈Λ\span(x1,...,xi−1)

‖x‖.

for some linearly independent x1, . . . ,xk ∈ Λ.

Notice that there exist lattices with short independent vectors that do not possess
short bases. For instance, consider the lattice generated by the matrix B ∈ Zn×n
with

B =



1 0 · · · 0 1
2

0 1 · · · 0 1
2... . . . ... ...

0 0 · · · 1 1
2

0 0 · · · 0 1
2

 .

A moment of contemplation leads to the insight that this basis is shortest possible
for Λ. However, the last column of B is a vector of length

√
n/2. In turn, as

en = B ·


−1
...
−1
2

 ∈ Λ

it holds that {e1, . . . , en} ⊆ Λ is a full rank set of independent vectors, each with
length 1.
The dual of a lattice is defined in a similar manner to the dual of a code.

Definition 2.28. Let Λ ⊆ Rn be a lattice of rank n. The dual lattice Λ⊥ of Λ is
defined by

Λ⊥ = {x ∈ Rn | ∀y ∈ Λ : 〈x,y〉 ∈ Z},
i.e. Λ⊥ consists of all vectors that have scalar product in Z with all vectors in Λ.

First notice that Λ⊥ actually is a lattice. If B ∈ Rn×n is a basis of Λ, then B has
rank n, thus B has a inverse B−1. Clearly, if x ∈ Λ⊥, then BTx = z ∈ Zk. Therefore
x = (B−1)Tz and therefore x ∈ Λ((B−1)T ). Furthermore, it can easily be seen that
Λ((B−1)T ) ⊆ Λ⊥, thus it holds Λ((B−1)T ) = Λ⊥ and we get that Λ⊥ is a lattice.
We will consider two classes of lattices more closely that will appear in this work:

Integer lattices and q-ary lattices. A lattice Λ is called an integer lattice if Λ ⊆ Zn.
An integer lattice Λ is called a q-ary lattice if Λ = Λ + qZn, i.e. Λ is invariant by
shifts of integer multiples of q.

Definition 2.29. A lattice Λ is called an integer lattice, if Λ = Λ(B) for an integer
matrix B ∈ Zn×k. Let q be an integer. A lattice Λ is called q-ary lattice, if there
exists matrix B ∈ Zn×kq such that Λ = Λq(B) = {y ∈ Zn | ∃x ∈ Zq s.t. y = Bx
mod q}.
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First notice that q-ary lattice Λq(B) ⊂ Zn always have full rank. This can be seen
as q ·Zn ⊂ Λq(B), i.e. the q-multiples of the unit vectors in Zn are always in Λq(B).
The dual of a q-ary lattice Λq(B) has a particularly simple form. For every full rank
B ∈ Zn×kq there exists a full rank H ∈ Z(n−k)

q such that H ·B = 0. Thus it holds for
all x ∈ Λq(B) that H · x = 0 mod q and therefore (Λq(B))⊥ = 1

q
· Λq(HT ).

We will briefly proof an analogue of the Gilbert Varshamov bound for q-ary lat-
tices.

Lemma 2.14. Let ε > 0 and let q be a modulus. Let n, k and r be such that

k ≤ (1− logq(2r)− ε)n.

Let A be chosen uniformly at random from Zm×nq . Then the shortest vector of the
lattice Λq(A) has length (in the ‖ · ‖2-norm) greater than r, except with negligible
probability.

Proof. Let A ∈ Zm×nq be chosen uniformly at random. Fix a vector x 6= 0 ∈ Znq .
Then the vector A · x is distributed uniformly at random in Zmq . The ball

Bn(r) = {x ∈ Rn | ‖x‖ ≤ r}

contains at most (2r)n integer points. Thus it holds that

Pr
A

[‖A · x‖ ≤ r] ≤ Pr
A

[A · x ∈ Bn(r)] ≤
(

2r
q

)n
.

A union-bound yields that

Pr[∃x 6= 0 ∈ Znq : ‖Ax‖ ≤ r] ≤ (2r)n
qn−k

= qk−(1−logq(2r))n ≤ q−εn,

as k ≤ (1− logq(2r)− ε)m. This immediately yields

Pr[∀x 6= 0 ∈ Znq : ‖Ax‖ ≥ r] ≥ 1− q−εn,

which is overwhelming in n.

2.6.1. Discrete Gaussians
Gaussian distributions play an important role in the study of lattices [MR04]. For

a parameter s > 0, the n-dimensional gaussian function ρs : Rn → (0, 1] is defined
by

ρs(x) = e−
π
s2 ‖x‖2

.

In order to obtain a probability density from the gaussian function, we need to
normalize it on the desired support. For instance, to obtain a probabilty distribution
on Rn we need to normalize ρs(x) by∫

Rn
ρ(x)dx = sn.

A particularly useful feature of the gaussian function is its invariance under or-
thogonal operations, i.e. rotary reflections. If T ∈ Rn×n is such that TT · T = I,
then

ρs(Tx) = e−
π
s2 ‖Tx‖2 = e−

π
s2 (Tx)TTx = e−

π
s2 xTTTTx = e−

π
s2 ‖x‖2 = ρs(x)

The gaussian function ρs can also be used to define gaussian distributions on
lattices Λ ⊆ Rn. We define the discrete gaussian DΛ,s as follows.
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Definition 2.30. Let Λ ⊆ Rn be a lattice. The discrete Gaussian distribution DΛ,s
on Λ with parameter s is given by the probility mass function

Pr[x = x̃] = 1
ρs(Λ)ρs(x̃)

where x is distributed according to DΛ,s and x̃ ∈ Λ. ρs(Λ) is defined by ρs(Λ) =∑
z∈Λ ρs(z). For Λ = Z we set Ds = DZ,s.

The following Lemma, due to Micciancio and Peikert [MP12], establishes a con-
venient tail bound for discrete Gaussians.

Lemma 2.15 (Micciancio Peikert [MP12] Lemma 2.8). Let λ be a security param-
eter. Let n = poly(λ), Λ ⊆ Rn be a lattice and s > 0. Let x be distributed according
to DΛ,s. Then it holds that

Pr[‖x‖ ≥ t
√
n] ≤ 2 · n · e−

π
s2 t

2

for any t > 0. In particular, if t =
√
ω(log(λ)), then x is t · s ·

√
n bounded, except

with negligible probability.

Discrete gaussians can be sampled efficiently, given that the parameter s is suf-
ficiently lower bounded. In this work we are only interested in the basic discrete
gaussian distribution DZ,s on Z. The following Lemma due to Gentry, Peikert and
Vaikuntanathan [GPV08] shows that Ds can be sampled efficiently.

Lemma 2.16 (Gentry Peikert Vaikuntanathan [GPV08]). Let λ be a security pa-
rameter. There exists an efficient algorithm sampling a distribution statistically close
to DZ,s, given that s = ω(log(λ)).

2.6.2. Computational Problems in Lattices
The main reason why complexity theory and cryptography are interested in lat-

tices are the natural computational problems that arise in lattices. Classical worst
case problems in lattices are the shortest vector problem (SVP) and the shortest
independent vectors problem (SIVP). The shortest vector problem is usually posed
as a promise problem, for which a gap between the YES and NO instances exists.

Problem 2.1 (GapSVP promise problem). Let γ > 0. Instances of the gap shortest
vector problem GapSVPγ are pairs (B, r), where B ∈ Zn×k is a basis matrix of a
lattice Λ = Λ(B) and r > 0 is a radius. Let λ1 be the length of the shortest vector
of Λ. (B, r) is a YES instance of GapSVPγ if λ1 ≤ r and a NO instance of GapSVPγ
if λ1 > γ · r.

An algorithm that solves GapSVPγ must classify YES instances and NO instances
correctly, while all other instances (i.e. (B, r) with r < λ1(B) ≤ γ · r) may be
classified arbitrarily. Given oracle access to an algorithm that solves GapSVPγ, one
can efficiently approximate the length of the shortest vector of a lattice Λ = Λ(B)
to within a factor of 2γ using binary search in r.
Currently, the best algorithms to solve the GapSVP problem solve the SVP prob-

lem by explicitly computing the shortest vector. These algorithms are usually based
on the classical lattice reduction algorithm of Lenstra, Lenstra and Lovasz (LLL)
[LLL82] and its improvements [NS00, GHGKN06, GN08].
The shortest independent vectors problem is a search problem. Given a basis B

of a lattice Λ = Λ(B), the task is to compute a full rank set of short vectors of Λ.
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Definition 2.31 (Shortest Independent Vectors problem). Let γ > 0. Instances of
the shortest independent vectors problem SIVPγ are given by a basis matrix B ∈ Zn×k
of a lattice Λ = Λ(B). The goal of the problem is to compute a set of linearly
independent vectors {a1, . . . , ak} ⊆ Λ such that maxi ‖ai‖ ≤ γ · λk, where λk is the
k-th successive minimum of Λ.





3. Decoding Problems for
Cryptography

I have developed an encryption
software package that I can best
describe as a ONE-TIME-PAD
GENERATOR.

Anthony Stephen Szopa posting to
sci.crypt, August 8, 1997

Is it time for another one of these
already? Oh, bother.

Bruce Schneier posting to sci.crypt,
August 8, 1997 - in response to the

Szopa quote

3.1. Introduction
In this Chapter we will provide a survey of the Learning Parity with Noise (LPN)

and Learning with Errors (LWE) problems. We will provide basic reductions be-
tween the different flavors of the problems, briefly discuss known attacks and study
parameter sets for which the problems can be conjectured to be hard. We will also
provide a novel result that bases the hardness of an LPN problem with unbounded
samples on LPN with bounded samples, trading samples for noise. The following
outline is not meant to provide a comprehensive overview but a rather a brief intro-
duction in the fields of coding and lattice based cryptography.

3.1.1. Coding Based Cryptography
To the best of our knowledge, the first use of decoding problems in cryptography

is due to McEliece [McE78]. While public key cryptography was still in its early
infant stage, McEliece proposed a public key encryption scheme which is based on the

37
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assumption that for certain codes C it is hard to decode sufficiently noisy codewords,
if the code is not given in a canonic form that allows efficient decoding. However,
someone who knows how the given code can be transformed into its canonic form
will be able to decode noisy codewords efficiently. McEliece’s original proposal is
best explained in terms of trapdoor functions. For a given code C, take a canonical
representation in form of a generator matrix G and scramble G, thereby obtaining
a generator matrix A of a code C′ equivalent to C. The public key of this scheme
is the generator matrix A, while the secret key is the transformation from G to A.
The evaluation of the trapdoor function fA is basically the simulation of a noisy
channel. Given a message s and a noise term e, set

fA(s, e) = As + e.

In terms of communications engineering, the function value fA(s, e) is a message s
encoded by using the generator matrix A and passed through a noisy channel that
introduces the noise e. Now, given y = fA(s, e), the McEliece assumption is that
it is infeasible (for any efficient algorithm) to recover the message s, even though
s is information-theoretically uniquely defined by A and y. Anyone who knows
the secret key however, which is the transformation from the canonical generator
matrix G to the scrambled generator matrix A will be able to recover s from y, by
restating the decoding problem in terms of G, for which the unique solution can be
found efficiently using the efficient decoder of C. McEliece’s original proposal was
to use binary Goppa codes (c.f. Section 2.5.6) for the code C, and scramble them by
choosing an equivalent code at random. In Chapter 5 we will provide more details
on the McEliece assumption and the construction of an IND-CCA2 secure public
key encryption scheme from a somewhat stronger McEliece assumption.
From a contemporary point of view, it is straightforward to construct IND-CPA

public key encryption from any (injective) trapdoor function using hardcore pred-
icates (c.f. Section 2.4.2). The early proposals of the McEliece cryptosystem were
insecure and it took considerable time until a provably secure variant of the McEliece
encryption scheme was found that achieves the same efficiency as the original pro-
posal [NIKM08]. Niederreiter [Nie86] proposed a dual version of the McEliece cryp-
tosystem. In Niederreiter’s proposal, the trapdoor function is formulated in terms
of parity check matrices rather than generator matrices of codes. The secret key is
a parity check matrix H of an efficiently decodable code C and the public key is a
parity check matrix B of a code C′ equivalent to C. The trapdoor function fB is
given by

fB(e) = Be,

i.e. fB(e) is the syndrome of a random error e. To invert fB using the trapdoor
H, the syndrome decoding problem y = Be is restated in terms of H. Niederreiter
also proposed to use binary Goppa codes for this scheme. While many McEliece
and Niederreiter variants proposed later were severely flawed [Nie85, Sid94, JM96,
Gab05, BCGM07], the McEliece and Niederreiter trapdoor functions based on binary
Goppa codes are considered secure to this day.
Both the schemes of McEliece [McE78] and Niederreiter [Nie86], as well as their

refinements [NIKM08, MTSB13], assumed the hardness of decoding specific struc-
tured codes. These schemes rely on the existence of efficient decoding algorithms for
the unscrambled codes in an essential way. In coding theory, it has long been known
that random codes are among the best possible codes. Random linear codes achieve
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both the Shannon limit for binary symmetric channels ([Sha48], also Theorem 2.3)
and the Gilbert-Varshamov bound (Theorem 2.4). Random linear codes carry, be-
sides their linearity, no further structure. However, all known efficient decoding
algorithms for linear codes make use of the codes’ structure in an essential way. It
is generally conjectured that it is infeasible to decode noisy codewords of random
linear codes significantly better than brute force search. While decoding linear codes
is known to be NP-complete in the worst case [BMVT78], the average case hardness
of the problem can, at the current state of knowledge, only be conjectured.
We will take a brief detour to illuminate the connection between cryptography and

computational learning theory [Val84]. Computational learning theory, the theoret-
ical branch of machine learning, is concerned with problems of the following kind:
Given access to an oracle Osamp that generates (possibly noisy) labeled samples1 of
a function f ∈ F , does there exist an efficient algorithm A computing a succinct
description of f? F is a class of boolean functions and a labeled sample is a pair
(a, f(a) + e) where a is a randomly chosen for f input and e a noise term.
The first time the connection between hard learning problems and cryptography

was made explicit was by Blum et al. [BFKL93]. Blum et al. show that certain
hard learning problems imply fundamental cryptographic primitives like one-way
functions, pseudorandom generators and private key encryption 2. In particular,
Blum et al. [BFKL93] introduced the so called learning parity with noise (LPN)
problem. For this problem, the class F is the class of parity functions Fn2 → F. Parity
functions have a particularly simple structure: Given an input a = (a1, . . . , an) ∈ Fn2 ,
the function value of f(a) is the sum modulo 2 (or parity) of a subset of the a1, . . . , an,
i.e.

f(a) =
n∑
i∈S

ai,

for an S ⊆ {1, . . . , n}. Using very little linear algebra, such functions can be more
conveniently expressed as an inner product

f(a) = 〈s, a〉,

where s = (s1, . . . , sn) ∈ Fn2 is the characteristic vector of the set S, i.e. si = 1 iff
i ∈ S and si = 0 otherwise. Thus, the function f can be represented by the vector
s. We will henceforth refer to s as the secret, since the learning algorithms goal is
to learn s. Observe that a linear function f is easy to learn in the noise free case.
A learning algorithm could learn the function f from n (or slightly more) samples,
by computing s using gaussian elimination as soon as it gets a full rank system of
labeled samples {(ai, f(ai))}. Thus, to make the task of learning f non-trivial, the
LPN sample oracle OLPN provides noisy samples to the learning algorithm. The
noise terms e are chosen independently from a Bernoulli distribution Ber(ρ), for some
ρ ∈ (0, 1/2). This means that e = 1 with probability ρ and e = 0 with probability
1− ρ. Thus, OLPN generates samples of the form

(a, 〈a, s〉+ e),

where a is chosen uniformly at random from Fn2 and e follows the Bernoulli distri-
bution Ber(ρ). The LPN problem can be seen as a (discrete analogue of a) linear

1In computational learning theory literature these are usually called examples, while cryptographic
literature usually refers to these as samples

2Though one-way functions are known to imply pseudorandom generators and private key encryp-
tion [ILL89, HILL99], the direct constructions given in [BFKL93] are arguably more efficient.
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curve-fitting problem. Given arbitrarily many noisy observations (ai, 〈s, ai〉 + ei),
where the sample points ai are randomly chosen from Fn2 and the noise terms ei are
chosen from a Ber(ρ), find the best explanation s for these observations.
There are two features of this problem, which were already observed by Blum

et. al [BFKL93], that make this problem particularly interesting for cryptography.
The first feature is random self reducibility of the secret s. This property basically
means that if there exists even one s ∈ Fn2 (equivalently an f ∈ F) such that s is
hard to learn given samples from OLPN , then this must also be the case for all but
a tiny (in fact negligible) fraction of the s′ ∈ Fn2 . Conversely interpreted, this can
be seen as a weak form of worst-to-average case reduction: If there exists a learning
algorithm L that works for a non-negligible fraction of the s ∈ Fn2 , then there exists
a learning algorithm L′ that works for all s ∈ Fn2 . We call this a weak random self
reduction property because we still rely on the fact that the sample points a are
chosen randomly (i.e. average case) and not maliciously (i.e. worst case).
The second outstanding feature of the LPN problem is pseudorandomness. This

basically means that if it is hard to learn a random secret s from samples of OLPN ,
then the samples generated byOLPN must already look random, i.e. it is infeasible to
distinguish OLPN from an oracle Orand that outputs samples (a, u) where u is chosen
randomly and independent of a. This feature of the LPN problem is particularly
useful as yields direct constructions of pseudorandom generators and weakly random
functions [PS08]. A reduction establishing the pseudorandomness of a problem is
usually called search-to-decision reduction. In the case of the LPN problem, a series
of works [BFKL93, HB01, KS06, KSS10, AIK07] have provided increasingly tighter
search-to-decision reductions.
The LPN problem has found numerous applications in symmetric cryptography,

ranging from efficient pseudorandom number generation, private key encryption to
authentication [HB01, DKL09, ACPS09, KPC+11, JKPT12, HKL+12]. What makes
LPN based schemes attractive from a practical viewpoint is their simple structure.
All computations required can usually be performed by simple arithmetic gates such
as AND and XOR. LPN based schemes were thus proposed for use in low power
devices such as RFID tags [DLZW13].
We will now reconsider the learning problem LPN from a coding theoretic perspec-

tive. Assume that the learning algorithm may only learn a (polynomially) bounded
numberm of samples. Then all the samples can be provided in one shot. Given sam-
ples {(ai, yi = 〈ai, s〉+ ei)}, we can arrange the ai as the rows of a matrix A ∈ Fm×n2
and the yi and ei as the components of vectors y ∈ Fm2 and e ∈ Fm2 and write the
samples in the form

(A,y = As + e).

Thus, the task of learning a secret s from noisy samples can be seen as decoding a
noisy codeword y of a random linear code A. Obviously, a learning algorithm that
learns s from a bounded number of samples can also learn s from an unbounded
number of samples. It is unknown if the converse also holds for arbitrary noise
parameters ρ < 1

2 . In Section 3.5 we show that this is the case if one tolerates an
increase in the noise of the unbounded sample instance.
Given this coding theoretic interpretation of the LPN problem, in hindsight the

search-to-decision equivalence of the LPN problem seems natural. This comes as
no surprise, as virtually all constructions of hardcore predicates (e.g. Theorem 2.2)
for arbitrary one-way functions use coding theoretic techniques in an essential way.
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This structural compatibility becomes most evident in the proof of Lemma 3.3.
We have thus far not explicitly discussed the choice of the noise rate ρ. All LPN

applications mentioned thus far are located in the realm of symmetric cryptogra-
phy, thus there is no need to embed trapdoors in LPN instances. Alekhnovich
[Ale03] showed that if the noise rate is chosen sufficiently low, asymptotically less
than constant, then one can construct public key encryption schemes based on the
hardness of LPN. While McEliece [McE78] and Niederreiter [Nie86] needed the ex-
tra assumption that certain structured families of codes are hard to decode, this
requirement is not needed in Alekhnovichs public key encryption scheme. However
in order for Alekhnovich’s trapdoor to work, the noise rate ρ needs to be chosen
as low as O(n− 1

2 ), this means in particular that asymptotically the noise rate tends
towards 0. While Theorem 3.3 shows that this low noise LPN variant implies LPN
with a constant noise rate, the converse is believed to be false. In Chapter 6 we
provide the construction of an IND-CCA2 secure encryption scheme based on such
an Alekhnovich-type LPN assumption.

3.1.2. Lattice Based Cryptography
As described in Section 2.6, lattices can be seen as a euclidean analogue to linear

codes. As decoding problems for linear codes turned out to be a valuable source of
computational hardness, it was natural to extend this study to lattice problems.
The first (published) proposal of a lattice based public key encryption scheme is

due to Goldreich, Goldwasser and Halevi [GGH97b]. The ideas underlying the GGH
scheme follow the blueprint of the McEliece encryption scheme. For simplicity, we
will also describe this scheme in terms of trapdoor functions. The private key of
the scheme is a basis matrix B ∈ Zn×n for a full-rank lattice Λ ⊆ Zn. The basis
B is chosen in a way such that its columns are nearly orthogonal. The public key
of the scheme is another basis matrix A of the lattice Λ which should not have the
nice geometric properties of B. In [GGH97b] several heuristics are discussed how
such a basis A can be computed from B using simple randomization. The trapdoor
function fA has syntatically the same form as the McEliece trapdoor function,

fA(s, e) = As + e

where s is chosen from a distribution on Zn with a sufficient amount of entropy and
e ∈ Zn is chosen from a distribution of short vectors. Thus, similar to the McEliece
cryptosystem, the function value fA(s, e) can be seen as the output of a noisy channel
that received an encoded (or modulated) input As. To invert y = fA(s, e), the
decoding problem is expressed in terms of the basis B. As the column vectors of
B are nearly orthogonal, an efficient lattice decoding algorithm like Babai’s nearest
hyperplane algorithm [Bab85] can be used to find the lattice point closest to y.
The generation of the public basis A in [GGH97b] was highly heuristic. Micciancio

[Mic01] later showed that there is a best possible way of choosing the basis matrix A,
namely by choosing A to be the Hermite normal form (HNF) of the matrix B. The
HNF basis actually is a normal form, i.e. it only depends on the lattice Λ = Λ(B)
and is independent of the specific input basis. Moreover, the HNF of a matrix B can
be computed efficiently. Thus, for A = HNF(B) the decoding problem y = As + e
is as hard as possible for the lattice Λ, as if s could be computed efficiently from
A and y, then one could solve the decoding problem for any other basis A′ of Λ,
simply by computing the HNF A of A′ (which is unique for Λ), and then solving the
decoding problem in terms of A. Micciancio [Mic01] also proposed a dual version
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of the GGH cryptosystem, which might just be considered a lattice analogue of
the (coding based) Niederreiter cryptosystem [Nie86] (described above). We will
describe a slightly modified version of Micciancio’s trapdoor function, to highlight
the similarities to the Niederreiter trapdoor function. Given a full rank matrix
A ∈ Zn×n, we can efficiently compute a matrix H ∈ Zn×n such that H·A = det(H)I.
This basically means that 1

det(H) ·H is a basis matrix of the dual lattice Λ⊥(A). The
trapdoor function fH is then given by

fH(e) = He mod det(H).

Similar to the Niederreiter trapdoor function, fH(e) can be considered as the syn-
drome of the error vector e. To invert fH(e), we proceed similar to the GGH in-
version procedure. Given y = fH(e), express the decoding problem in terms of the
private basis B and recover the error vector e. We’ve omitted all the optimizations
that can be applied given that the matrix A is in Hermite normal form.
Around the same time as Goldreich, Goldwasser and Halevi [GGH97b] published

their lattice based cryptosystem, Hoffstein, Pipher and Silverman [HPS98] published
a public key encryption scheme called NTRU 3 based on similar ideas. From a
modern perspective, NTRU is based on hard problems in ideal lattices. A complete
description of the NTRU cryptosystem is beyond the scope of this outline, we only
mention that recently that there has been a renewed interest in the techniques used
in NTRU, as these can be used to construct multi-key fully homomorphic encryption
[LATV12] and (approximate) multilinear maps [GGH13]. Moreover, recent works
have shown that variants of NTRU can be based on the so called Ring-LWE problem
[LPR10, SS11].
The lattice based trapdoor functions discussed so far all rely on average case as-

sumptions, i.e. we assume that the decoding problem is hard for lattices generated
in a certain (probabilistic) way. Lattice based cryptography received widespread
attention when Ajtai [Ajt96] showed that there exists an efficiently samplable dis-
tribution L of q-ary lattices with guaranteed worst-case hardness. Specifically, any
algorithm that finds short vectors in a lattice Λ chosen from L with non-negligible
probability, can be turned into an algorithm finding short vectors in any integer
lattice. The distribution L has a particularly simple structure. First fix appropriate
m,n and q. To sample a lattice in L, simply choose a parity-check matrix H ∈ Zn×mq

uniformly at random and set

Λ = Λ⊥q (H) = {x ∈ Zm | Hx = 0 mod q}.

Ajtai [Ajt96] then showed how to construct one-way functions based on the hard-
ness of finding short vectors in such lattices Λ. Goldreich, Goldwasser and Halevi
[GGH96] showed that Ajtai’s one-way function is actually collision resistant 4. For
a H ∈ Zn×mq the hash function hH : {0, 1}m → Znq is given by

hH(x) = Hx.

Notice that this hash function actually is compressing if m > n · log(q) (which is
the binary representation size of elements of Znq ). Collision resistance of hH can
now be argued as follows. Assume there exists an efficient algorithm A finding

3An acronym for "n-th truncated polynomials"
4In a black box sense, collision resistance is a stronger property than one-wayness [Sim98]
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with non-negligible probability collisions for hH, i.e. pairs x,y ∈ {0, 1}m such that
hH = hH(y). Since hH is linear, such a collision immediately corresponds to a short
vector z = x− y ∈ Λ⊥q (H), as

Hz = H(x− y) = Hx−Hy = 0.

As x and y are both in {0, 1}m, z is in {−1, 0, 1}m. Thus z is short as ‖z‖2 ≤
√
m.

Therefore, A can be used to find short vectors in Λ⊥q (H). But such an algorithm
implies an algorithm that finds short vectors in any lattice. Thus, finding colli-
sions for hH is as hard as finding short vectors in worst-case lattices. In mod-
ern terminology, the problem of inverting Ajtai’s one-way function [Ajt96, GGH96]
is called short integer solution (SIS) problem and has been studied extensively
[yCN97, Mic04, MR04, MP13].
However, one-way and collision resistant hash functions both belong to the realm

of symmetric cryptography, i.e. they are insufficient for public key cryptography.
Ajtai and Dwork [AD97] proposed the first public encryption scheme based on the
worst case hardness of a lattice problem. Namely, the cryptosystem of [AD97] is
based on the unique shortest vector problem. In the unique shortest vector prob-
lem, it is guaranteed that all vectors that are linearly independent of the shortest
vector are at least by a certain polynomial factor longer. Thus, this problem is
only defined on a restricted class of lattices, while the problem of approximating the
shortest vector can be defined on any lattice. Subsequently, the original construc-
tions were improved [GGH97a] and stronger worst-to-average case connection were
established for lattice problems [Mic98, Ajt99, Reg04, MR04, PR07, LM09]. This
effort culminated in the the work of Regev [Reg05, Reg09], in which the Learning
with Errors (LWE) problem was introduced. The LWE problem can be seen as a
generalization of the LPN problem to larger moduli q ≥ 2 and more general error
distributions. Specifically, in the LWE problem an adversary/learning algorithm A
is given access to an oracle OLWE that generates samples of the form

(a, 〈a, s〉+ e),

where s ∈ Znq is a fixed secret, the vectors a ∈ Znq are chosen uniformly at random
and e is an error term drawn from an error distribution χ. Like in the LPN problem,
the goal of the adversary is to find the secret s. As the LWE problem is similar in
structure to the LPN problem, it also enjoys many of the desirable properties of
the LPN problem. In particular, LWE is random self reducible in the sense that if
LWE is hard for one secret s, then LWE is also hard for a randomly chosen secret
s [Reg05]. Moreover, many instantiations of the LWE problem enjoy searcht-to-
decision equivalences like the LPN problem [Reg05, Pei09, MM11, MP12, MP13].
This means that the distribution generated by the LWE sample oracle OLWE looks
random to any efficient observer.
However, the most remarkable feature of LWE is its strong worst-to-average case

connection if the problem is instantiated with a gaussian error distribution χ. Regev
[Reg05] showed that if there exists an efficient (classical or quantum) algorithm
learning the secret s given only oracle access to OLWE, then there exists an effi-
cient quantum algorithm solving worst case lattice problems. We will provide more
details on this worst-to-average case reduction in Section 3.7. At the current state
of knowledge, assuming that a problem is hard for efficient quantum algorithms is
a stronger assumption than assuming that the same problem is hard for efficient
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classical algorithms. However, currently there are no quantum algorithms for worst
case lattice problems known that outperform the best classical algorithms asymptot-
ically. Basically, the best know quantum algorithm for worst-case lattice problems
is running Grover’s search algorithm [Gro96] combined with the best known classi-
cal algorithm. This yields a square-root speedup over the best classical algorithm.
But as the best known classical algorithms for worst case lattice problems require
exponential time, this speedup is asymptotically irrelevant. Thus, assuming that
worst-case lattice problems are hard for quantum algorithms seems to be a valid
assumption at the current state of knowledge. On the other hand, Regev’s worst-to-
average case reduction yields very strong approximation factors. In particular, the
worst case lattice assumption on which (a particular instantiation of) LWE is based
is that the shortest vector in any lattice is hard to approximate to withing a factor
of Õ(n1.5), while earlier works had approximation factors as large as Õ(n7) [AD97].
The worst-to-average case reduction for LWE was improved by Peikert [Pei09], who
succeeded in removing the quantum part from Regev’s reduction for certain parame-
ter choices. Thus, Peikert could show that certain instantiations of LWE, that suffice
for virtually all applications, are as hard as worst-case lattice problems for efficient
classical algorithms. Building on this result, Brakerski et al. [BLP+13] recently
showed that standard-LWE is as hard as worst case lattice problems.
Regev [Reg05] also provided a conceptually simple public key cryptosystem based

on the hardness of LWE, which will serve as a template for our constructions in
Chapter 6. From a technical point of view, the advantage of LWE over other lat-
tice based hardness assumptions lies in structural simplicity, which hides all the
technical intricacies concerning its worst-to-average case reduction and provides an
easy-to-use assumption. As a consequence, LWE became maybe the biggest crypto-
graphic success story of the last decade, giving rise to a wide range of instantiations
of cryptographic tasks [GPV08, PVW08, PW08]. Many cryptographic primitives
that previously only had instantiations based on specific number-theoretic assump-
tions were instantiated from the LWE problem, such as identity based encryption
[CHKP10, ABB10]. More importantly, several cryptographic primitives that have
no known instantiations from number-theoretic assumptions were instantiated from
LWE, such as fully homomorphic encryption [BV11, BGV12, GSW13, BV14].

3.2. LPN and LWE as Decoding Problems
In this section, we will provide a formal definition of the LPN and LWE problems.

For syntactic reasons, we will define LPN as a special case of LWE, though the LPN
problem has been introduced before the LWE problem. Furthermore, we will provide
treatment of common features of LPN and LWE. While structurally the LPN and
LWE problems are very similar, the main difference between the two problems lies in
the geometric aspects of their error distributions. For the LPN problem, the natural
metric to measure the length of error terms is the hamming metric, while for the
LWE problem a natural metric is the euclidean metric.
The standard formulations of the LPN and LWE problems provide an unbounded

number of samples to the adversary, where the errors on each sample are chosen in-
dependently. Somewhat in abuse of notation we will also refer to decoding problems
with not necessarily independent errors as LPN or LWE if the number of samples
m is a priori fixed.
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Problem 3.1 (Learning With Errors (LWE) and Learning Parity with Noise (LPN)
Search Problems). Let λ be a security parameter, let q ≥ 2 be a modulus and let
n = poly(λ) be a positive integer.

• Unbounded Samples Version: Let χ be an error distribution defined on
Zq. Let s←$ Znq be chosen uniformly at random but then fixed. Let OLWE be
an oracle that generates samples of the form (a, 〈a, s〉+ e), where a ←$ Znq is
chosen uniformly at random and e is chosen according to χ. The goal of the
LWE(n, q, χ) problem is to find s, given only oracle access to OLWE.

• Bounded Samples Version: Let m = poly(λ) be a positive integer and let
χ be an error distribution defined on Zmq . Let s ←$ Znq be chosen uniformly
at random. Let A ∈ Zm×nq be chosen uniformly at random and e be chosen
according to χ. The goal of the LWE(n,m, q,χ) problem is to find s, given
(A,As + e).

We say that LWE(n, q, χ) (resp. LWE(n,m, q,χ)) is hard, if no PPT algorithm solves
the problem with non-negligible probability.
For errors distributions χ defined on F2 and χ defined on Fm2 we define the learn-

ing parity with noise problems by LPN(n, χ) = LWE(n, 2, χ) and LPN(n,m,χ) =
LWE(n,m, 2,χ).

In the case of unbounded samples, the oracle OLWE can be seen as the interface to
an arbitrarily long code A and a noisy codeword As+e. In both the unbounded and
the bounded version of the problem, an adversary/learning algorithm will receive
at most a polynomial number of samples. The difference is however, that in the
unbounded version this polynomial bound may depend on the adversary, while in
the bounded version it is the same for every adversary.
The secret s in Problem 3.1 is chosen uniformly at random. At first glance it

may seem that assuming that LWE/LPN is hard for a uniformly chosen secret is
a stronger assumption than assuming that LWE/LPN is hard for any secret, i.e. a
worst-case secret. It can be shown, however, that this it not that case. If there
exists an efficient algorithm A that solves LWE/LPN for a uniformly chosen secret
s with non-negligible probability, then there exists an efficient algorithm A′ that
solves LWE/LPN for any secret s with non-negligible probability (over the choice
of the instance). The reason for this is that the problem is random self reducible,
i.e. we can convert worst case instances of the problem into average case instances.
This is substantiated in the following lemma.

Lemma 3.1 (e.g. [BFKL93, Reg05, Reg09]). Let λ be a security parameter, let
q ≥ 2 be a modulus, let n = poly(λ) be a positive integer.

1. Let χ be an error distribution on Zq. Assume there exists a PPT algorithm
A that solves LWE(n, q, χ) with non-negligible probability. Then there exists a
PPT algorithm A′ which, for any s ∈ Znq finds s with non-negligible probability,
given only access to an oracle O that generates samples of the form (a, 〈a, s〉+
e) (with uniformly random a ∈ Znq and e chosen from χ).

2. Let m = poly(λ) and χ be an error distribution on Zmq . Assume there exists
a PPT algorithm A that solves LWE(n,m, q, χ) with non-negligible probability.
Then there exists a PPT algorithm A′, which, for any s ∈ Znq finds s with
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non-negligible probability given (A,As + e) (where A is chosen uniformly at
random and e is chosen from χ. The probability includes the choice of A and
e).

In the first case, the success-probability of A′ can be amplified to 1 − negl(λ)
if there is an efficient way to test whether a given solution s is valid. This is for
instance the case if the distribution χ generates short outputs with high probability.
Then, candidate solutions s can be verified by testing whether e = y−As is short,
where (A,y) is a set of test-samples.

Proof. We will only prove item 1, item 2 follows analogously. Assume towards
contradiction that there exists a PPT algorithm A that solves LWE(n, q, χ) with
non-negligible probability ε. A′ is given as follows.

Adversary A′
Setup: Has access to an oracle O()
s′ ←$ Znq
s′′ ← AO′LWE(1λ)
s← s′′ − s′
Return s

Sample Oracle O′LWE()
(a, y)← O()
y′ ← y + 〈a, s′〉
Return (a, y′)

We will analyze the success-probability of A′. Let s be the secret A′ is supposed
to find. Thus, the samples generated by OLWE are of the form (a, 〈a, s〉 + e) with
uniformly chosen a and e chosen from χ. Thus it holds for the samples (a, y′)
generated by O′LWE that

y′ = y + 〈a, s′〉 = 〈a, s〉+ e+ 〈a, s′〉 = 〈a, s + s′〉+ e.

For any fixed s∗, the random variable s∗ = s + s′ is distributed uniformly at random
as s′ is distributed uniformly random. Therefore, O′LWE generates exactly the same
distribution as the sample oracle OLWE in problem 3.1 and consequently A finds
s′′ = s + s′ with probability at least ε. If this is the case, A∗ outputs s = s′′− s′ with
non-negligible probability ε, which concludes the proof.

We will now discuss briefly how many samples m are needed in an information-
theoretical sense to determine the secret s uniquely. Certainly, this depends on the
error distribution. In the LPN case, i.e. q = 2, if the noise terms e are drawn
independently, then χ can only be a Bernoulli distribution, hence χ = Ber(ρ) for
some ρ ∈ [0, 1]. If ρ > 1

2 , then by symmetry we can sample χ by 1 − x, where
x is distributed according to Ber(1 − ρ). Thus, it is sufficient to consider ρ ≤ 1

2 .
Let A ∈ Fm×n2 be chosen uniformly at random and y = As + e, where s is chosen
unformly at random and e is chosen from Ber(m, ρ). So, the question whether s
can be uniquely determined from A and y can be reformulated as whether the code
generated by A can correct errors from Ber(m, ρ). As A is chosen uniformly at
random, Shannon’s coding theorem for binary symmetric channels (Theorem 2.3)
yields that if

n ≤ (1−H(ρ)− ε)m,
for an arbitrary constant ε > 0, then A and y = Ax + e uniquely determine s with
overwhelming probability over the choice of A and e. Thus,

m ≥ n

1−H(ρ)− ε
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samples are, with overwhelming probability, sufficient to determine s uniquely. For
error distributions χ defined on Fm2 which are not necessarily component-wise in-
dependent, the Gilbert-Varshamov bound provides an upper bound on the number
of samples required. Let the error distribution χ be such that for an e distributed
according to χ it holds that wgt(e) ≤ γm, except with negligible probability. If the
code generated by A ∈ Fm×n2 has minimum-distance greater than 2γm, then A and
y = As + e uniquely determine s. The Gilbert Varshamov bound (Theorem 2.4)
states that if

n ≤ (1 +H(2γ)− ε)m

for an arbitrary constant ε > 0, then a matrix A ←$ Fm×n2 chosen uniformly at
random generates a linear code with minimum distance greater than 2γm, except
with negligible probability. Thus, in this case

m ≥ n

1−H(2γ)− ε

samples are sufficient (with overwhelming probability). For the LWE case, i.e. for
larger moduli q, we usually require that the error distribution χ is bounded in its
euclidean norm. Specifically, we require that if e is distributed according to χ,
then ‖e‖2 ≤ B for some bound B, except with negligible probability. By Lemma
2.14 it holds that if n ≤ (1 − logq(4B) − ε)m and A ←$ Zm×nq is chosen uniformly
at random, then the shortest vector of Λq(A) has length at least 2B, except with
negligible probability. We can wrap this up in the following lemma.

Lemma 3.2. Let λ be a security parameter. Let m,n = poly(n) be positive integers.
Let ε > 0 be an arbitrarily small constant.

1. Let ρ = ρ(λ) ∈ [0, 1
2). If m ≥ n

1−H(ρ)−ε , then instances of LPN(n,m,Ber(m, ρ))
possess unique solutions, except with negligible probability.

2. Let χ be a distribution on Fm2 which is γm bounded, except with negligible
probability. If m ≥ n

1−H(2γ)−ε , then instances of LPN(n,m,χ) posses unique
solutions, except with negligible probability.

3. Let q be a modulus. Let χ be a distribution on Zmq , which is B-bounded,
except with negligible probability. If m ≥ n

1−logq(4B)−ε , then instances of the
LWE(n,m, q,χ) problem possess a unique solution, except with negligible prob-
ability.

Finally, we mention that we will refer to LPN with Bernoulli distributed errors as
standard LPN and to LWE with gaussian errors as standard LWE.

3.3. Seach-To-Decision Reductions
The Goldreich-Levin Theorem (Theorem 2.2) states that every search problem

can be converted into a decisional problem. For many cryptographic tasks, espe-
cially pseudorandom generators and public key cryptosystems, this generic approach
however leads to contrived and mostly impractical constructions. For many compu-
tational problems, such as the Diffie-Hellman problem and its variants in bilinear
groups [DH76, Gam84], hardness of the decisional problem is an explicit assumption.
While these assumptions either enable constructions in the first place [CS98, HW10]
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or lead to more elegant and practical constructions, assuming the hardness of de-
cisional problem is, at the current level of knowledge, a stronger assumption then
assuming the hardness of the search problem.
This is different for the decoding problems introduced in the last section. The

LWE and especially the LPN problems are somewhat unique among hardness as-
sumptions in that their natural decisional problems can be proven to be as hard as
the search versions. While the goal of search problems is to recover a secret s, given
either (A,As + e) or oracle access to OLWE, the goal of the decisional version of
the problem is to distinguish (A,As + e) from uniformly random, respectively the
oracle OLWE from an oracle that produces uniformly random output.
Problem 3.2 (Decisional LWE and LPN Problems). Let λ be a security parameter,
let q ≥ 2 be a modulus and let n = poly(λ) be a positive integer.
• Unbounded Samples Version: Let χ be an error distribution defined on
Zq. Let s←$ Znq be chosen uniformly at random but then fixed. Let OLWE be
an oracle that generates samples of the form (a, 〈a, s〉+ e), where a ←$ Znq is
chosen uniformly at random and e is chosen according to χ. Let Orand be an
oracle that generates samples of the form (a, u) with uniformly chosen a←$ Znq
and uniformly chosen u ←$ Zq. Let O be an oracle which is either OLWE or
Orand. The goal of the DLWE(n, q,χ) problem is, given access to the oracle O,
to decide whether O is OLWE or Orand.

• Bounded Samples Version: Let m = poly(λ) be a positive integer and let
χ be an error distribution defined on Zmq . Let s ←$ Znq be chosen uniformly
at random. Let A ∈ Zm×nq be chosen uniformly at random and e be chosen
according to χ. Let u←$ Zmq be chosen uniformly at random. The goal of the
DLWE(n,m, q,χ) problem is, given (A,y), to decide whether y = As + e or
y = u.

We say that DLWE(n, q, χ) (resp. DLWE(n,m, q,χ)) is hard, if no PPT distinguisher
distinguishes between the two distributions with non-negligible advantage.
For error distributions χ defined on F2 and χ defined on Fm2 we define the de-

cisional learning parity with noise problems by DLPN(n, χ) = DLWE(n, 2, χ) and
DLPN(n,m,χ) = DLWE(n,m, 2,χ).
Whenever the error distribution χ is sufficiently bounded (which will be the case

for all error distributions that we explicitly consider) and the distributions (A,As+
e) and (A,u) are not statistically close (which is the case if the criteria in Lemma
3.2 are met), then the hardness of the decisional LWE problem implies the hardness
of the LWE search problem. This can be seen as follows. Given (A,As + e), an
algorithm A solving the LWE search problem can be used to find s and we can test
whether e = y−As is short. On input (A,u), A cannot find such an s, as with high
probability u is far away from the code/lattice generated by A and consequently
no such s exists. Thus, we can distinguish the distributions (A,As + e) and (A,u)
using A, contradicting the hardness of decisional LWE.
For the learning parity with noise problem, a series of works [BFKL93, HB01,

KS06, KSS10, AIK07] have shown that the converse is also true, i.e. the hardness
of LPN implies the hardness of DLPN. While usually such reductions require a
large amount of samples, Applebaum et al. [AIK07] provide a sample preserving
reduction, i.e. they show that the hardness of LPN(m,n,χ) implies the hardness of
DLPN(m,n,χ). Since this reduction is elementary, we will provide it here.
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Lemma 3.3 (Applebaum, Ishai and Kushilevitz [AIK07]). Let λ be a security pa-
rameter. Let m,n = poly(λ) and χ be an error distribution defined on Fm2 . The
problem DLPN(m,n,χ) is hard, given that LPN(m,n,χ) is hard.

Proof. Assume towards contradiction that there exists a PPT-algorithm D that
distinguishes (A,As + e) and (A,u) with non-negligible advantage ε. Assume wlog
that

Pr[D(A,u) = 1]− Pr[D(A,As + e) = 1] ≥ ε.

We will construct an algorithmA′ that computes the Goldreich-Levin hardcore-bit
〈r, s〉 of s, given (A,As + e) with advantage ε/2.
By the Goldreich Levin theorem (Theorem 2.2) this algorithm A′ can be used to

construct an algorithm A′′ that solves the LPN search problem with non-negligible
advantage, contradicting the hardness of LPN(m,n,χ). A′ is given as follows.

Adversary A′
Input: (A,y) ∈ Fm×n2 × Fm2 and r ∈ Fn2
u←$ Fm2
B← A− u · rT
b← D(B,y)
return b

We will now analyze the success probability of A′. Let (A,As + e) and r be
A′’s input. First notice that since A is distributed uniformly at random, so is
B = A − urT , as the uniform distribution is shift invariant. Moreover, since A =
B + u · rT , it holds that y = As + e = Bs + urT s + e = Bs + u〈r, s〉 + e. On one
hand, if 〈r, s〉 = 0, then (B,y) has the distribution (B,Bs + e). On the other hand,
if 〈r, s〉 = 1, then y = Bs + e + u. As u is uniformly distributed (independently
of B, s and e), y is also uniformly distributed. Thus, (B,y) has the distribution
(B,u′), for uniformly chosen u′. We conclude that

Succ(A′) = Pr[A′((A,As + e), r) = 〈r, s〉]

= 1
2 Pr[A′((A,As + e), r) = 0|〈r, s〉 = 0]

+ 1
2 Pr[A′((A,As + e), r) = 1|〈r, s〉 = 1]

= 1
2 Pr[D(B,Bs + e) = 0] + 1

2 Pr[D(B,u′) = 1]

= 1
2 + 1

2 · (Pr[D(B,u′) = 1]− Pr[D(B,Bs + e) = 1])

≥ 1
2 + ε

2 ,

i.e. A′ computes the Goldreich-Levin hardcore bit 〈r, s〉 with probability non-
negligibly better than 1

2 , contradicting the hardness of LPN(m,n,χ).

For the LWE problem, there exist search-to-decision reductions that apply to
any error distribution and others that only apply to specific error distributions.
The first search-to-decision reduction for LWE, provided by Regev [Reg05], works
for any error distribution, but is rather wasteful regarding the number of sam-
ples required. Specifically, to establish the hardness of the decisional problem
DLWE(n,m, q, χ), the reduction provided in [Reg05] needs to assume the hardness of
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LWE(n, poly(n,m, q), q, χ), i.e. there is a polynomial loss in the number of samples.
Micciancio and Mol [MM11] provided a sample preserving search-to-decision reduc-
tion, i.e. the hardness of DLWE(n,m, q, χ) can be established from the hardness of
LWE(n,m, q, χ). This is a direct LWE-analogue of Lemma 3.3.

Theorem 3.1 (Micciancio and Mol [MM11]). Let λ be a security parameter. Let
m,n = poly(λ), q = poly(λ) be a prime modulus and let χ be any distribution over
Zmq . Assume there exists a PPT-distinguisher D that distinguishes DLWE(n,m, q,χ)
with non-negligible advantage, then there exists a PPT-adversary A that inverts
LWE(n,m, q,χ) with non-negligible success-probability.

Another line of works considered only search-to-decision reductions for LWE with
gaussian errors. The first such reduction was given by Peikert [Pei09]. While Peik-
ert’s reduction only applied to LWE with moduli q that are products of distinct small
primes, this has since been generalized to a wider class of moduli [ACPS09, MP12].
We will state the most general such reduction due to Micciancio and Peikert [MP12]

Theorem 3.2 (Micciancio and Peikert [MP12]). Let λ be a security parameter.
Let n = poly(λ), q = pe1

1 · · · · · pekk for pairwise distinct poly(λ) bounded primes
pi with each e1 ≥ 1. Let 0 < α < 1/ω(

√
log(n)). Let ` be the number of prime

factors pi < ω(
√
n)/α. Let α′ ≥ α be such that α′ ≥ ω(

√
log(n))/peii for every i

and (α′)` ≥ αω(
√

log(n))`+1. Assume there exists a PPT-distinguisher D against
DLWE(n, q,Dα′q), then there exists an efficient algorithm solving DLWE(n, q,Dαq).

In particular, Theorem 3.2 allows to establish the hardness of the decisional LWE
problem for moduli that are powers of 2.

3.4. Variants of LPN and LWE
We will now introduce a several variants of LPN and LWE that will be useful in

the construction of our public key encryption schemes in Chapter 6.

3.4.1. Matrix Version
We first introduce a matrix versions of both the LWE and LPN problems. Roughly

speaking, an instance of the matrix version consists of several LPN instances that
use the same matrix A, but use independent vectors xi and ei. We will directly
state the decisional version of the problem.

Problem 3.3 (Decisional Matrix LPN and LWE). Let λ be a security parameter.
Let m,n, k = poly(λ) be positive integers, let q ≥ 2 be a modulus and let χ be an
error distribution on Zmq . Let A ∈ Zm×nq be chosen uniformly at random, X in Zn×kq

be chosen uniformly at random and E ∈ Zm×kq be chosen according to χk, i.e. each
column ei of E is chosen independently from χ. Let U be distributed uniformly on
Zm×kq . The decisional matrix LWE problem DMLWE(n,m, k, q,χ) is to distinguish
the distributions (A,AX + E) and (A,U). For the modulus q = 2, the decisional
matrix LPN problem is defined as DMLPN(n,m, k,χ) = DMLWE(n,m, k, 2,χ).

We will now show that DMLWE(n,m, k, q,χ) is at least as hard as DLWE(n,m, q,χ).
This follows by a simple hybrid argument.
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Lemma 3.4. Let λ be a security parameter. Let m,n, k = poly(λ) be positive in-
tegers, let q ≥ 2 be a modulus and let χ be an error distribution on Zmq . Assume
there exists a PPT distinguisher D against DMLWE(n,m, k, q,χ) with non-negligible
advantage ε. Then there exists a PPT distinguisher D′ that has has non-negligible
advantage ε/k against DLWE(n,m, q,χ).

Proof. We will first provide a description of the distinguisher D′.

Distinguisher D′
Input: An Instance (A,y) of DLWE(n,m, q,χ)
i←$ {1, . . . , k}
For j = 1, . . . , i− 1

yj ←$ Zmq
yi ← y
For j = i+ 1, . . . , k

xj ←$ Znq
ej ←$ χ
yj ← Axi + ei

Y← (y1‖ . . . ‖yk)
b← D(A,Y)
return b

We will now analyze the distinguishing advantage of D′. By assumption, it holds
that

Adv(D) = |Pr[D(A,AX + E) = 1]− Pr[D(A,U) = 1]| ≥ ε.

For a fixed t ∈ {0, . . . , k} and A ∈ Zm×nq define the random variable Y(t) ∈ Zm×kq as
follows. The first t columns y1, . . . ,yt of Y(t) are chosen uniformly at random, while
the remaining k− t columns yt+1, . . . ,yk are computed by yj ← Asj +ej, where the
sj ←$ Znq are chosen uniformly at random and ej ←$ χ are chosen according to χ.
We will first analyze what happens when D′’s input is distributed by (A,As + e).

Fix a t ∈ {1, . . . , k}. Then, conditioned to i = t, the matrix Y assembled by D′ is
distributed according identical to Y(t−1). Thus it holds that

Pr[D′(A,As + e) = 1|i = t] = Pr[D(A,Y(t−1)) = 1].

As i is chosen uniformly at random from {1, . . . , k}, it holds that

Pr[D′(A,As + e) = 1] =
k∑
t=1

Pr[i = t] Pr[D′(A,As + e) = 1|i = t]

=
k∑
t=1

1
k

Pr[D(A,Y(t−1)) = 1].

Now assume that D′’s input is distributed by (A,u) for a uniformly random
u ∈ Zmq . Again fix a t ∈ {1, . . . , k}. Then, conditioned to i = t, the matrix Y
assembled by D′ is distributed according identical to Y(t). Thus we have

Pr[D′(A,u|i = t] = Pr[D(A,Y(t)) = 1]
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and

Pr[D′(A,u) = 1] =
k∑
t=1

Pr[i = t] Pr[D′(A,u) = 1|i = t]

=
k∑
t=1

1
k

Pr[D(A,Y(t)) = 1].

Putting all together yields

Adv(D′) = |Pr[D′(A,As + e) = 1]− Pr[D′(A,u) = 1]|

=
∣∣∣∣∣
k∑
t=1

1
k

Pr[D(A,Y(t−1)) = 1]−
k∑
t=1

1
k

Pr[D(A,Y(t)) = 1]
∣∣∣∣∣

= 1
k
|Pr[D(A,Y(0)) = 1]− Pr[D(A,Y(k)) = 1]|

= 1
k
|Pr[D(A,AX + E) = 1]− Pr[D(A,U) = 1]|

= 1
k

Adv(D) ≥ ε

k
.

Thus, D′ has advantage ε/k against DLWE(n,m, q,χ), which concludes the proof.

3.4.2. Dual Matrix Version
From a coding theoretic view point, in the formulation of Problems 3.1 and 3.2

the task is, given a generator matrix and a noisy codeword, to decode the noisy
codeword or distinguish the noisy codeword from uniform random respectively. We
will now solely focus on the LPN case. We will provide a variant of the LPN problem
that reformulates the problem in dual or parity check terms. In this formulation
one is given a parity check matrix and a syndrome and has to find a short error
corresponding to this syndrome or distinguish from random respectively. We will
only formulate this problem for the decisional version of the problem, as the hardness
of the search version follows instantly. Sometimes this version is also referred to a
knapsack version in literature [ACPS09, KMP14]
Problem 3.4 (Decisional Dual Matrix LPN). Let λ be a security parameter. Let
k, l,m = poly(λ) be positive integers with l < m and let χ be an error distribution de-
fined on Fm2 . Let H ∈ Fl×m2 be chosen uniformly at random and E ∈ Fm×k2 be chosen
according to χk. Let U be distributed uniformly on Fl×k2 . The DDMLPN(l,m, k,χ)
problem is to distinguish the distributions (H,HE) and (H,U). For k = 1 we define
DDLPN(l,m,χ) = DDMLPN(l,m, 1,χ)
We will now establish that the DDMLPN problem is at least as hard as the

DMLPN problem, in fact the two problems are equivalent. This basically follows
from that fact that if the generator matrix A ∈ Fm×n2 is chosen uniformly at random,
then we can sample a dual matrix H ∈ F(m−n)×m

2 with H·A = 0 which has a marginal
distribution statistically close to uniform.
Lemma 3.5. Let λ be a security parameter. Let k,m, n = poly(λ) be positive integers
with m ≥ n+ω(log(λ)). Let χ be an error distribution defined on Fm2 . If there exists
a PPT distinguisher D1 that distinguishes DDMLPN(m−n,m, k,χ) with advantage
ε, then there exists a distinguisher D2 that distinguishes DMLPN(n,m, k,χ) with
advantage ε− negl(λ).
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Proof. Let A ←$ Fm×n2 be chosen uniformly at random. By Lemma 2.6 the prob-
ability that the matrix A has full rank is at least 1 − 2n−m+1 ≥ 1 − negl(λ), as
m ≥ n+ω(log(λ)). Conditioned that A has full rank, ker(AT ) is a uniformly chosen
m−n dimensional subspace of Fn2 . Now let HT be a random basis matrix of ker(AT ).
Then H is uniformly random among all full rank matrices in F(m−n)×n

2 . However,
since (again by Lemma 2.6) a uniformly chosen matrix H′ ∈ F(m−n)×m

2 is full rank
with probability at least 1 − 2m−n−m+1 = 1 − 2−n+1 ≥ 1 − negl(λ), we get that H
is statistically close to uniform in F(m−n)×m

2 . As HT is a basis matrix of ker(AT ), it
holds that AT ·HT = 0 and thus H ·A = 0. Thus, H is a dual of A and its marginal
distribution is statistically close to uniform. Observe that we can obtain a random
A from H in the same way. We can now construct the distingisher D2.

Distinguisher D2
Input: (A,Y) ∈ Fm×n2 × Fm×k2
Choose a basis matrix HT of ker(A) uniformly at random
C← HY
b← D1(H,C)
return b

We will now analyze the distinguishing advantage of D2. By the above the matrix
H is distributed statistically close to uniform from the view of D2. First assume
that D2’s input is of the form (A,AS + E). Then it holds that

C = HY = H(AS + E) = HAS + HE = HE

Now assume that (H,y) is of the form (H,U) with uniformly random U. Then
C = HY = HU is also uniformly random, as H has full rank. It follows that

Adv(D2) = |Pr[D2(A,AS + E) = 1]− Pr[D2(A,U) = 1]|
≥ |Pr[D1(H,HE) = 1]− Pr[D1(H,U) = 1]| − negl(λ)
= Adv(D2)− negl(λ)
≥ ε− negl(λ).

Thus, D2 has advantage at least ε− negl(λ) against DMLPN(n,m, k,χ), which con-
cludes the proof.

3.4.3. Fixed Weight Errors
Next, we will consider a variant of the LPN problem where the error vector e is

chosen from a fixed weight distribution. In the original proposal of the McEliece
cryptosystem [McE78] the error vector e is chosen uniformly with a fixed weight. We
will now show that the hardness of the LPN search problem for Bernoulli distributed
errors implies the hardness of LPN with fixed weight errors. More specifically, let c
be a positive integer constant and let m = (m1, . . . ,mc) be such that m = ∑c

i=1mi.
Define the set

Mm,ρ = Sm1(bρm1c)× · · · × Smc(bρmcc) ⊆ Fm2 .

We show that LPN with errors chosen uniformly from Mm,ρ is at least as hard
as standard LPN with error distribution Ber(m, ρ). The hardness of the decisional
problem DLPN(n,m,Mm,ρ) then follows by Lemma 3.3. The idea behind Lemma 3.6
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is as follows. We may think of m being partitioned in c buckets m1, . . . ,mc. Now,
taking a Bernoulli distributed error e ←$ Ber(m, ρ) and partitioning e in c sub-
strings yields c independently distributed vectors e1, . . . , ec, where ei is distributed
according to Ber(m1, ρ). Then, each ei has weight ρmi with substantial probability,
and since c is constant all ei are such that that wgt(ei) = bρmic simultaneously with
substantial probability.

Lemma 3.6. Let λ be a security parameter. Let c > 0 be a constant integer,
let m,n = poly(λ) be positive integers, let ρ = ρ(λ) ∈ ( 1

poly(λ) ,
1
2) and let m =

(m1, . . . ,mc) be a partition of m, i.e. ∑c
i=1mi = m. Assume there exists an adver-

sary A against LPN(n,m,Mm,ρ) with non-negligible success probability ε. Then A
has non-negligible success probability ε′ against LPN(n,m,Ber(m, ρ)).

Proof. Let e be distributed according to Ber(m, ρ). We will show that

1. e is in Mm,ρ with substantial probability p ≥ 1
poly(λ) .

2. Conditioned to the event that e is in Mm,ρ, the conditional distribution of e
is the uniform distribution on Mm,ρ.

Thus, with probability p a sample of Ber(m, ρ) is also a sample of the uniform
distribution onMm,ρ. Consequently an instance (A,As+e) of LPN(n,m,Ber(m, ρ))
is also an instance of LPN(n,m,Mm,ρ) with probability p. Thus, any algorithm A
with success probability ε against LPN(n,m,Mm,ρ) must have non-negligible success
probability ε′ = p · ε against LPN(n,m,Ber(m, ρ)). The main lever to prove the
two assertions is that all components ei of e are chosen independently. Let e =
(eT1 ‖ . . . ‖eTc )T be distributed according to Ber(m, ρ). Then each ei is distributed
according to Ber(mi, ρ). Assertion 2 holds because each v ∈ Fmi2 with wgt(v) =
bρmic the has probability of occurrence

Pr[ei = v] = ρbρmic(1− ρ)mi−bρmic,

i.e. all v ∈ Fmi2 with wgt(v) = bρmic have the same probability of occurrence. It
follows that, conditioned to wgt(ei) = bρmic, Ber(m, ρ) is the uniform distribution
on Smi(bρmic). By the independence of the ei assertion 2 follows. We will now turn
to assertion 1. The hamming weight wgt(ei) is distributed according to Bin(mi, ρ),
i.e.

Pr[wgt(ei) = t] =
t∑

j=0

(
mi

j

)
ρj(1− ρ)mi−j.

It holds that

Pr[wgt(ei) = bρmic] ≥
(

mi

bρmic

)
ρbρmic(1− ρ)mi−bρmic

≥ 2H(ρ)mi

mi + 1 ρ
bρmic(1− ρ)mi−bρmic

≥ ρ(1− ρ)
mi + 1 2H(ρ)miρρmi(1− ρ)(1−ρ)mi

= ρ(1− ρ)
mi + 1 .
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The last equality holds as 2−H(ρ)mi = ρρmi(1−ρ)(1−ρ)mi . As the ei are independently
distributed, it holds that

Pr[∀i ∈ {i, . . . , c} : wgt(ei) = bρmic] =
c∏
i=1

Pr[wgt(ei) = bρmic]

≥
(
ρ(1− ρ)
m+ 1

)c
.

This last expression is substantial in λ, as c is a constant and 1
poly(λ) ≤ ρ ≤ 1

2 . Thus
assertion 1 also holds. This concludes the proof.

3.4.4. Extended Dual Version
In order to establish the hardness of LPN with unbounded samples from LPN with

bounded samples, we will use the following intermediate problem called extended
decisional dual LPN (EDDLPN). The definition is a direct analogue of the extended
LWE problem defined in [ASP12, KMP14]. In the EDDLPN problem, the adversary
obtains an extra advice (z, 〈z, e〉) about the error vector e, where z is chosen from
a low weight distribution (rather than uniform).

Problem 3.5 (Extended Decisional Dual LPN). Let λ be a security parameter. Let
l,m = poly(λ) be positive integers with l < m and let χ, ψ be distributions defined
on Fm2 . Let H ∈ Fk×m2 be chosen uniformly at random, e be chosen according to χ
and z be chosen according to ψ. Let u be distributed uniformly on Fm2 . The goal of
the extended decisional dual LPN problem EDDLPN(k,m,χ,ψ) is to distinguish the
distributions (H,He, z, 〈z, e〉) and (H,u, z, 〈z, e〉).

The following Lemma, which is a direct adaption of Theorem 3.1 from [ASP12],
establishes that EDDLPN is at least as hard as DDLPN.

Lemma 3.7. Assume there exists a distinguisher D that distinguishes the problem
EDDLPN(k,m,Ber(m, ρ), Sm(bρmc)) with non-negligible advantage ε. Then there
exists a distinguisher D′ against DDLPN(k,m,Ber(m, ρ)) with advantage ε/2.

The proof of Lemma is identical to the proof given in [ASP12], except for a small
detail. We provide it here for the sake of completeness.

Proof. We will first provide the description of the distinguisher D′.

Distinguisher D′
Input: DDLPN(k,m,Ber(m, ρ)) Instance (H,y)
z←$ Sm(bρmc)
e′ ←$ χ
v←$ Fm2
H′ ← H− vzT
y′ ← y− v〈z, e′〉
b← D(H′,y′, z, 〈z, e′〉)
return b

We will now analyze the advantage of D′. Assume first the D′’s input is of the form
(H,u) with uniformly random u. Then clearly H′ = H−vzT , y′ = u−〈z, e′〉·v =: u′
are also uniformly random, independent of z and e′. Thus it holds that

Pr[D′(H,u) = 1] = Pr[D(H′,u′, z, 〈z, e′〉) = 1].
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Now assume that D′’s input is of the form (H,He). Then H′ = H − vzT is inde-
pendently uniformly distributed. Moreover, it holds that

y′ = y− v〈z, e′〉 = He− v〈z, e′〉 = H′e + v〈z, e− e′〉.

Consequently, if 〈z, e−e′〉 = 0, which happens with probability ≥ 1
2 , it immediately

follows that 〈z, e〉 = 〈z, e′〉 and thus

(H′,y′, z, 〈z, e′〉) = (H′,H′e, z, 〈z, e〉).

On the other hand, if 〈z, e− e′〉 = 1, then y′ = y− v =: u′ is uniformly random, as
v is uniformly random. Thus, in this case

(H′,y′, z, 〈z, e′〉) = (H′,u′, z, 〈z, e′〉).

Let α = Pr[〈z, e− e′〉 = 0]. Then it holds that

Pr[D′(H,He) = 1] = αPr[D(H′,H′e, z, 〈z, e〉) = 1]+(1−α) Pr[D(H′,u′, z, 〈z, e′〉) = 1].

All together, this yields that

AdvDDLPN(D′) = |Pr[D′(H,He) = 1]− Pr[D′(H,u) = 1]|
= |αPr[D(H′,H′e, z, 〈z, e〉) = 1]

+ (1− α) Pr[D(H′,u′, z, 〈z, e′〉) = 1]
− Pr[D(H′,u′, z, 〈z, e′〉) = 1]|

= α|Pr[D(H′,H′e, z, 〈z, e〉) = 1]− Pr[D(H′,u′, z, 〈z, e′〉) = 1]|
= αAdvEDDLPN(D) ≥ ε/2.

This concludes the proof.

3.5. Getting More LPN Samples
In this Section we consider the following question:

Assume that bounded samples LPN problem LPN(n,m,Ber(m, ρ)) is
hard. Can we make any conclusions about the hardness of an unbounded
sample LPN problem LPN(n,Ber(ρ′)) for some ρ′ ≥ ρ?

To the best of our knowledge, there are no prior results on this question in the
LPN case. In the LWE case, a random self reduction using the generalized leftover
hash lemma [DORS08] can be used to generate arbitrarily more samples from a
given set of m ≈ n log(q) samples, while the noise in the new samples rises only
slightly. Specifically, if (A,y = As + z) is such a given set of seed samples, then we
can generate new samples by drawing e ∈ Zmq from a discrete gaussian and setting
a′ = ATe and y′ = eTy. Now it holds a′ = ATe and

y′ = eTy = eTAs + eTz = a′T s + 〈e, z〉.

The error term 〈e, z〉 follows a discrete gaussian distribution [Pei10, AGHS13]. Thus
(a′, y′) is a proper LWE sample, as by the generalized leftover hash lemma [DORS08]
it holds that a′ is statistically close to uniform even given the additional informa-
tion 〈e, z〉 about e. However, this approach cannot be directly transferred to the
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LPN setting. For the vector a′ = ATe to be statistically close to uniform, e must
have min-entropy ≈ n, and thus high weight. But this in turn means that 〈e, z〉
will only have a small bias. In Section 3.6.3, we discuss a LPN algorithm due to
Lyubashevsky [Lyu05], which basically uses this approach to attack LPN. Unsur-
prisingly, the algorithm has super-polynomial complexity and this technique is not
applicable for a reduction. However, in the last section we have seen the EDDLPN
problem, which remains pseudorandom even if a distinguisher is given some extra
advice 〈e, z〉, which is just what we need for this type of random self reduction. The
following theorem can be considered a pseudorandom self reduction, as we effectively
substitute the leftover hash lemma by a pseudorandom analogue.

Theorem 3.3. Let λ be a security parameter. Let m,n = poly(λ) be positive integers
and let ρ′ ≥ ρ2m. If DLPN(n,m,Ber(m, ρ)) are DDLPN(n + 1,m,Ber(m, ρ)) hard,
then DLPN(n,Ber(ρ′)) is also hard.

Theorem 3.3 is basically a trade-off between noise and extra samples. We tolerate
that the amount of noise required gets squared, while in turn we get an arbitrary
polynomial amount of samples.

Proof. Let for simplicity ρ′ be such that if z is any fixed vector of weight bρmc and
e is chosen according to Ber(m, ρ), then 〈z, e〉 is distributed according to Ber(ρ′).
Clearly, by Lemma 2.2 it holds that

ρ′ = 1
2(1− (1− 2ρ)bρmc) ≤ ρbρmc ≤ ρ2m.

Thus, if the statement of the Theorem holds for this particular ρ′, it also holds for
any bigger value of ρ′ as we can just add the noise difference accordingly.
Let D be a PPT distinguisher against DLPN(n,Ber(ρ′)). We will provide a series

of hybrid experiments Exp1,Exp2,Exp3,Exp4 and show that from the view of D any
two of experiments the are indistinguishable. We will provide the experiments by
defining the sample oracles O the distinguisher D gets access to.
Clearly, experiment Exp1 provides samples from the LPN distribution while ex-

periment Exp4 provides uniformly random samples. Thus, we need to establish that
from the view of D the experiments Exp1 and Exp4 are indistinguishable. We will
start with the indistinguishability of Exp1 and Exp2. Assume towards contradiction
that D distinguishes with non-negligible advantage ε1 between Exp1 and Exp2, i.e.

|Pr[Exp1(D) = 1]− Pr[Exp2(D) = 1]| ≥ ε1.

Assume further that k = poly(λ) is an upper bound on the number of samples D
queries. We will construct a PPT distinguisher D1 that distinguishes the problem
EDDLPN(n,m,Ber(m, ρ), Sm(bρmc)) with advantage ≥ ε/k. We will now provide
D1.
Notice that D1 answers the first i− 1 oracle queries of D exactly like Exp1, while

it answers the last k− i− 1 queries like Exp2. In the i-th query however, D1 embeds
its own challenge. Moreover, notice that D1 is efficient as D is efficient. To analyze
the distinguishing advantage of D1, we will define a sequence of hybrid experiments
H0, . . . ,Hk. Hi is crafted to answer the first i queries like Exp1, while it answers the
last k − i queries like Exp2.
We are now ready to analyze the distinguishing advantage of D1. First assume

that D1’s input is of the form (H,He, z, 〈z, e〉). Fix the random choice i∗ = i. Then
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Experiment Exp1
Initialization:

s←$ Fn2
Sample Oracle OExp1()

a←$ Fn2
e←$ Ber(ρ′)
y ← 〈a, s〉+ e
Return (a, y)

Experiment Exp2
Initialization:

A←$ Fm×n2
s←$ Fn2
z←$ Sm(bρmc)
r← As + z

Sample Oracle OExp2()
e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉
Return (a, y)

Experiment Exp3
Initialization:

A←$ Fm×n2
r←$ Fm2

Sample Oracle OExp3()
e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉
Return (a, y)

Experiment Exp4
Initialization:

-
Sample Oracle OExp4()

a←$ Fn2
y ←$ F2
Return (a, y)

the sample oracle OD1() implemented by D1 behaves identical to the sample oracle
of Hi−1. Consequently, it holds that

Pr[D1(H,He, z, 〈z, e〉) = 1|i∗ = i] = Pr[Hi−1(D) = 1]

and thus, as i∗ is uniformly chosen from {1, . . . , k}

Pr[D1(H,He, z, 〈z, e〉) = 1] =
k∑
i=1

1
k
· Pr[D1(H,He, z, 〈z, e〉) = 1|i∗ = i]

=
k∑
i=1

1
k
· Pr[Hi−1(D) = 1].

Next assume that D1’s input is of the form (H,u, z, 〈z, e〉). Again, fix the random
choice of i∗ to i∗ = i. Then the sample oracle OD1() implemented by D1 behaves
identical to the sample oracle of Hi, as 〈z, e〉 is distributed according to Ber(ρ′).
Consequently,

Pr[D1(H,u, z, 〈z, e〉) = 1|i∗ = i] = Pr[Hi(D) = 1]

and thus

Pr[D1(H,u, z, 〈z, e〉) = 1] =
k∑
i=1

1
k
· Pr[D1(H,u, z, 〈z, e〉) = 1|i∗ = i]

=
k∑
i=1

1
k
· Pr[Hi(D) = 1].
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Distinguisher D1
Input: (H, c, z, t)
i∗ ←$ {1, . . . , k}
A← HT

s←$ Fn2
r = As + z
cnt = 1
b← DOD1 ()

return b

Sample Oracle OD1()
If cnt < i∗

a←$ Fn2
e←$ Ber(ρ′)
y ← 〈a, s〉+ e

If cnt = i∗

a← c
y ← 〈c, s〉+ t

If cnt > i∗

e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉

cnt← cnt+ 1
Return (a, y)

Experiment Hi

Initialization:
A←$ Fm×n2
s←$ Fn2
z←$ Sm(bρmc)
r← As + z
cnt← 1

Sample Oracle OHi()
If cnt ≤ i

a←$ Fn2
e←$ Ber(ρ′)
y ← 〈a, s〉+ e

If cnt > i
e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉

cnt← cnt+ 1
Return (a, y)

Together, this yields

AdvEDDLPN(D1) = |Pr[D1(H,He, z, 〈z, e〉) = 1]− Pr[D1(H,u, z, 〈z, e〉) = 1]|

=
∣∣∣∣∣
k∑
i=1

1
k
· Pr[Hi−1(D) = 1]−

k∑
i=1

1
k
· Pr[Hi(D) = 1]

∣∣∣∣∣
= 1
k
|Pr[H0(D) = 1]− Pr[Hk(D) = 1]|

= 1
k
|Pr[Exp2(D) = 1]− Pr[Exp1(D) = 1]|

≥ ε1/k.

Thus, D1 distinguishes EDDLPN(n,m,Ber(m, ρ), Sm(bρmc)) with non-negligible ad-
vantage ε1/k, contradicting the hardness of EDDLPN(n,m,Ber(m, ρ), Sm(bρmc). By
Lemma 3.7, this contradicts the hardness of DDLPN(n,m,Ber(m, ρ)).
Next, we turn to the indistinguishability of Exp2 and Exp3. Assume towards con-

tradiction that D distinguishes between Exp2 and Exp3 with non-negligible advantage
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ε2, i.e.
|Pr[Exp2(D) = 1]− Pr[Exp3(D) = 1]| ≥ ε2.

We will construct a PPT distinguisher D2 against DLPN(n,m, Sm(bρmc)). D2 is
given as follows

Distinguisher D2
Input: (A, r)
b← DOD2 ()

return b

Sample Oracle OD2()
e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉
Return (a, y)

The distinguisher D2 is efficient, as D is efficient. First, assume that D2’s input is
of the form (A,As+z), where s is chosen uniformly from Fn2 and z is chosen uniformly
from Sm(bρmc). Then clearly the sample oracle OD2 behaves just as in Exp2. On
the other hand, if D2’s input is of the form (A,u) with u chosen uniformly random
from Fm2 , then the sample OD2 simulated by D2 behaves like the sample oracle in
Exp3. Consequently, it holds that

AdvDLPN(D2) = |Pr[D2(A,As + z) = 1]− Pr[D2(A,u) = 1]|
= |Pr[Exp2(D) = 1]− Pr[Exp3(D) = 1]|
≥ ε2.

Thus, the distinguishing advantage of D2 against DLPN(n,m, Sm(bρmc)) is at least
ε2, which by Lemma 3.6 contradicts the hardness of DLPN(n,m,Ber(m, ρ)).
We will finally turn to showing that from the view of D, Exp3 and Exp4 are

indistinguishable. Assume towards contradiction that D distinguishes between Exp3
and Exp4 with non-negligible advantage ε3, i.e.

|Pr[Exp3(D) = 1]− Pr[Exp4(D) = 1]| ≥ ε2.

Assume further D makes at most k = poly(λ) queries to its sample oracle. We will
construct a PPT distinguisher D3 that distinguishes DDLPN(n + 1,m,Ber(m, ρ))
with non-negligible advantage ε/k. The distinguisher D3 is given as follows.
We will first explain the first two operations of D3. Its input is (H, c) ∈ F(n+1)×m

2 ×
Fn+1

2 . The matrix HT is then split in its first n columns, which we call A ∈ Fm×n2 ,
and its last column, which we call r ∈ Fn2 . We also split the vector c accordingly. Its
first n elements form the vector a∗ ∈ Fn2 , while its last element is the scalar y∗ ∈ F2.
The reason why this is done becomes evident in a moment. It is clear that D3 is
efficient, once D is efficient.
Again, to analyze the distinguishing advantage of D3, we will define a sequence of

hybrid experiments H′0, . . . ,H′k. H′i is crafted to answer the first i queries like Exp3,
while it answers the last k − i queries like Exp4.
Clearly, in H′i the first i queries to OH′i() are answered like in Exp3, while the

remaining k − i queries are answered like in Exp4.
First assume that D3’s input in of the form (H,He). Then it holds for the

decomposed components A, r, a′ and y′ that
a∗ = eTA
y∗ = eT r = 〈e, r〉



3.5. Getting More LPN Samples 61

Distinguisher D3
Input: (H, c)
Parse HT = (A‖r)
Parse cT = (a∗T‖y∗)T
i∗ ←$ {1, . . . , k}
cnt = 1
b← DOD3 ()

return b

Sample Oracle OD3()
If cnt < i∗

e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉

If cnt = i∗

a← a∗
y ← y∗

If cnt > i∗

a←$ Fm2
y ←$ F2

cnt← cnt+ 1
Return (a, y)

Experiment H′i
Initialization:

A←$ Fm×n2
r←$ Fm2
cnt← 1

Sample Oracle OH′i()
If cnt ≤ i

e←$ Ber(m, ρ)
a← eTA
y ← 〈e, r〉

If cnt > i
a←$ Fm2
y ←$ F2

cnt← cnt+ 1
Return (a, y)

Now fix a random choice i∗ = i. Then OD3() in D3’s simulation behaves identically
to the sample oracle in H′i. Thus it holds that

Pr[D3(H,He) = 1|i∗ = i] = Pr[H′i(D) = 1],

and consequently

Pr[D3(H,He) = 1] =
k∑
i=1

1
k

Pr[D3(H,He) = 1|i∗ = i]

=
k∑
i=1

1
k

Pr[H′i(D) = 1].

Now suppose that D3’s input is of the form (H,u), where u is chosen uniformly at
random from Fn+1

2 . Then it holds for the decomposed components A, r, a′ and y′

that

a∗ = u′

y∗ = u′′
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where u′ is the vector of the first n components of u and u′′ is the last component
of u. Again, fix a random choice i′ = i. Then OD3() in D3’s simulation behaves
identically to the sample oracle in H′i−1. Thus it holds that

Pr[D3(H,u) = 1|i∗ = i] = Pr[H′i−1(D) = 1],

and consequently

Pr[D3(H,u) = 1] =
k∑
i=1

1
k

Pr[D3(H,u) = 1|i∗ = i]

=
k∑
i=1

1
k

Pr[H′i−1(D) = 1].

Putting all together, we get

AdvDDLPN(D3) = |Pr[D3(H,He) = 1]− Pr[D3(H,u) = 1]|

=
∣∣∣∣∣
k∑
i=1

1
k
· Pr[H′i(D) = 1]−

k∑
i=1

1
k
· Pr[H′i−1(D) = 1]

∣∣∣∣∣
= 1
k
|Pr[H′k(D) = 1]− Pr[H′0(D) = 1]|

= 1
k
|Pr[Exp3(D) = 1]− Pr[Exp4(D) = 1]|

≥ ε3/k.

Thus, D3 distinguishes DDLPN(n + 1,m,Ber(m, ρ)) with non-negligible advantage
ε3/k, contradicting the hardness of DDLPN(n+ 1,m,Ber(m, ρ)) (Lemma 3.5).

3.6. Attacks and Assumed Hardness of LPN
We will now survey for which parameters the LPN problem is known to be easy,

or conversely, for which parameters the LPN problem can be conjectured to be hard.
In the last paragraph, we have seen that the central hub on which all LPN variants
are based is the LPN(n,m,Ber(m, ρ)) problem. Thus, it suffices to investigate the
hardness of LPN(n,m,Ber(m, ρ)), as any attack on one of the variants implies an
attack on this standard version of the problem. There are several (non-asymptotical)
improvements to the attacks presented here discussed in literature [LF06, Kir11,
BL12]. Moreover, Arora and Ge [AG11] provided an attack on LPN with structured
noise, where the error terms obey a strong correlation. A variant of this algorithm
is among the most efficient attacks against LWE with low noise (c.f. Section 3.8.2).

3.6.1. Brute Force Search
We will first examine the complexity of brute force search against the standard

LPN problem LPN(n,m,Ber(m, ρ)). Brute force search can either be mounted
against the secret s or the error term e. Let (A,y) be an instance of the problem
LPN(n,m,Ber(m, ρ)), i.e. y = As + e for a uniformly chosen s and an e distributed
according to Ber(m, ρ). If we run a brute force search for the secret s, then 2Ω(n)

vectors s′ need to be enumerated. For each s′ we test if wgt(y − As) ≈ ρm and
output s′ if it meets this condition. Thus, the overall overhead for brute force search
for the secret s is 2O(n). Things are slightly different when we run a brute force
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search for the error term. Due to concentration of mass, in this case the Chernoff
Hoeffding bound (Theorem 2.1), an error term e chosen from Ber(m, ρ) has Ham-
ming weight at most O(ρm), except with negligible probability. Therefore, we need
to enumerate at most 2O(H(ρ)m) error vectors e′ and test whether there exists an s′
such that y = As′ + e′. Thus, the overall complexity of brute force search for the
error term is 2O(H(ρ)m).
All together, the complexity of brute force search against LPN(n,m,Ber(m, ρ)) is

2O(min(n,H(ρ)m)). If ρ is a constant, then this becomes 2O(n). However, if ρ is sub-
constant, thenH(ρ)m can be significantly smaller than n. For instance if ρ = O(n− 1

2 )
andm = O(n), then by Corollary 2.3 it holds that H(ρ)m = O(

√
n·log n). Thus, for

this parameter set the complexity of brute force search is 2O(
√
n logn). Consequently,

in order to achieve 2λ security we need to choose n = Ω
((

λ
log λ

)2
)
. For this particular

parameter set, brute force is the best known attack.

3.6.2. The Algorithm of Blum, Kalai and Wasserman
We will now provide an outline of the algorithm of Blum, Kalai and Wasserman

[BKW03]. This algorithm attacks LPN in the high noise regime, i.e. ρ = 1
2 − ε for

some ε = ε(λ). The main theorem of [BKW03] can be stated as follows.

Theorem 3.4 (Blum Kalai Wasserman [BKW03]). Let λ be a security parame-
ter. Let n = poly(λ), ε = ε(λ) ∈ (0, 1) and let a, b be such that a · b ≥ n. Let
m = poly((2ε)−2a , 2b). There exists an algorithm solving LPN(n,m, 1

2 − ε) in time
O(poly(m)).

For a constant ε, setting a = 1
2 log(n) and b = 2n/ log(n) yields m = 2O(n/ log(n)),

as
(2ε)2a = (2ε)

√
n = 2O(n/ log(n))

and
2b = 22n/ log(n).

Thus, the algorithm runs in time 2O(n/ log(n)) and needs 2O(n/ log(n)) samples. We will
briefly outline a few ideas that lead to this algorithm. Let (A,y = As + e) be an
LPN instance. Assume that we want to find the first bit s1 of the secret vector s.
All other bits can be recovered analogously. The basic strategy is to try to find a
vector h ∈ Fm2 of weight 2a such that hTA = eT1 , where e1 = (1, 0, . . . , 0)T ∈ Fn2 is
the first unit vector. Once we found such a h, it holds that

hTy = hT (As + e) = eT1 s + hTy = s1 + hTe.

By Lemma 2.2, for a fixed h the bias of hTy is

1
2(1− 2(1

2 − ε))
wgt(h) = 1

2 · (2ε)
wgt(h) = 1

2(2ε)2a .

To amplify the success probability, this procedure is repeated O(1
2(2ε)2a) times with

fresh sets of samples and a majority vote is taken. By the Chernoff bound (Theorem
2.1), the majority vote is identical to s1, except with negligible probability.
Such a vector h is found using a rather sophisticated recursive technique. The

computation only uses A. This ensures that e is independent of e and hence hTe
has the right distribution. For details refer to [BKW03].
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3.6.3. The Algorithm of Lyubashevsky
Lyubashevsky [Lyu05] noticed that the BKW algorithm can be used to solve

LPN given a small polynomial amount of samples, if a random self reduction is
used to amplify the amount of samples. Specifically, let m = n1+α for some α > 0
and let (A,y = As + e) be an instance of LPN(n,m,Ber(m, 1

2 − ε)) for a constant
ε > 0. Let h ∈ Fm2 be chosen uniformly from Sm(d 2n

log(m)e). Then we can argue that
(a′ = ATh, y′ = hTy) is a sample from LPN(n,Ber(1

2 −
1
2(2ε)

2n
log(m) )). First notice

that
y′ = hT (As + e) = hTAs + hTe.

By Lemma 2.2, it holds that the bias of e′ = hTe is

ε′ = 1
2(2ε)wgt(h) = (2ε)

2n
log(m) .

Moreover, by the generalized leftover hash lemma [DORS08], AhT is statistically
close to uniform, even given e′. Thus, (a′, y′) is statistically close to a correct sam-
ple of LPN(n,Ber(1

2 −
1
2(2ε)

2n
log(m) )). Using this technique, we can generate an ar-

bitrary number of fresh samples and use the BKW algorithm to find s. Setting
a = 1

2 log(log(n)) and b = 2n/ log(log(n)) yields

(2ε′)2a = (4ε2n/ log(m))
√

log(n) = (4ε
2n

(1+α) log(n) )
√

log(n) = 2O(n/
√

log(n)) = 2O(n/ log log(n))

and
2b = 22n/ log log(n).

Thus, Theorem 3.4 provides an algorithm that runs in time 2O(n/ log(log(n))) using
2O(n/ log(log(n))) samples. These samples can be efficiently generated from (A,y) as
sketched above.

3.6.4. Overview of Attacks
Table 3.1 provides a summary of the reviewed attacks.

Attack noise bound required Samples Runtime
Brute Force Secret - - 2Θ(n)

Brute Force Error - - 2Θ(H(ρ)m)

BKW [BKW03] 1
2 − ε 2O(n/ log(n)) 2O(n/ log(n))

Lyubashevsky [Lyu05] 1
2 − ε n1+ε 2O(n/ log log(n))

Figure 3.1.: Comparison of LPN attacks

3.7. Worst-Case Hardness of LWE with Gaussian
Errors

The hardness of the LWE problem might be conjectured as an assumption in its
own right. However, by now the gold standard in lattice based cryptography is
worst-case hardness. For the case of LWE, this means that any efficient algorithm
that solves LWE on average can be used to construct an efficient algorithm that
solves all instances of certain lattice problems. To the best of our knowledge, such
strong hardness guarantees only exists for lattice based hardness assumptions.
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The first such worst-to-average case connection for LWE was provided by Regev
[Reg05]. Regev showed that any efficient algorithm solving the LWE search problem
can be used to construct efficient quantum algorithms solving either the shortest
independent vectors (SIVP) problem or approximate shortest vectors (GapSVP)
problem (c.f. Section 2.6.2).

Theorem 3.5 (Worst-to-Average Case Reduction [Reg05]). Let λ be a security pa-
rameter. Let n = poly(λ) and q = q(λ) be a modulus, let α = α(λ) ∈ (0, 1) be
such that αq > 2

√
n. If there exists a PPT-algorithm solving LWE(n, q,Dαq) with

non-negligible probability, then there exists an efficient quantum-algorithm that ap-
proximates the decision-version of the shortest vector problem GapSVPÕ(n/α) and the
shortest independent vectors problem SIVPÕ(n/α) in the worst case.

Regev’s worst-to-average case reduction relies crucially on specific properties of
gaussian distributions. Assume that A is an efficient algorithm solving LWE. The
reduction consists of two parts. In the first part, the adversary A is used to construct
an bounded-distance decoding algorithm B. B’s input is a basis B of a lattice Λ⊥
and a point point x sufficiently close to Λ⊥. Moreover, B gets access to an oracle
providing samples from a gaussian distribution DΛ,r. B’s task is to compute the
unique point z ∈ Λ⊥ closest to x. We omit the details how B is constructed from
A and only mention that B uses the gaussian distribution DΛ,r to simulate LWE
samples who’s secret corresponds to the error on x. Regev’s insight was that such a
B can be used to sample a gaussian distribution with an even shorter r′ < r using
the power of quantum computation. We omit the details but notice that B can
be used to self-improve the gaussian sampler iteratively. We finally end up with a
gaussian sampler that samples very short vectors in Λ that allow us to solve either
the SIVP or GapSVP problem.
The natural question that arises from this result is whether quantum power is es-

sential for such a reduction. Peikert [Pei09] showed that under certain circumstances
the quantum part of the reduction can be avoided.

Theorem 3.6 (Worst-to-Average Case Reduction [Pei09]). Let λ be a security pa-
rameter. Let n = poly(λ), α = α(λ) ∈ (0, 1) and q = q(λ) ≥ 2n/2. Assume there
exists an efficient algorithm A solving LWE(n, q,Dαq). Then there exists an efficient
classical algorithm solving GapSVPÕ(n/α) in the worst case.

The price one has to pay for the classical hardness of LWE are very large moduli
q. The idea behind Peikert’s theorem is essentially this. Again, A can be used to
construct a bounded distance decoding algorithm B using the same construction as
Regev [Reg05]. As discrete gaussian sampler [GPV08, Pei10] is used to provide B
with gaussian samples from DΛ,r for a reasonably small (yet exponentially large) s.
The algorithm B is now used in an entirely different way than in Regev’s reduction.

Recall that the goal of the GapSVPγ problem is to decide whether a lattice Λ (given
by a basis B) has a non-zero vector shorter than d or whether all non-zero vectors
in Λ are longer than γ · d, i.e. if (B, d) is a YES or at NO instance of GapSVPγ. In
case of a NO instance, we can think of Λ as a good code, one for which all codewords
(i.e. lattice points) are well separated. More specifically, if x ∈ Λ and e is a random
error of length shorter than γd/2, then x can be uniquely recovered from y = x + e,
as x is the unique vector in Λ closest to y. Thus, if we run the decoding algorithm
B on y it is guaranteed to output x.
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If we do the same for a YES instance however, adding a random error e will
destroy information about x. In this case, Λ is a bad code, i.e. the spheres around
codewords have large intersections. Precisely, given the error y = x + e, there is,
with substantial probability over the choice of e, at least one x′ ∈ Λ distinct from x
such that ‖y− x′‖2 ≤ γd/2. But this means that if we run the decoding algorithm
B on y, it cannot know for sure whether x or x′ is the point we used to compute y.
Thus, with substantial probability D will output something different from x.
We can therefore use the algorithm B to decide GapSVPγ. In Chapter 7, we will

use a conceptually very similar technique to switch the error distribution in LWE.
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x

x + e

Figure 3.2.: A NO instance of GapSVP: The spheres are well separated

x

x′ x + e
x′ + e′

Figure 3.3.: A YES instance of GapSVP: The spheres are overlapping
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3.8. Attacks on LWE
In this section, we will provide a brief overview of attacks against the LWE prob-

lem. We will only sketch the ideas underlying the attacks and omit parameter
choices, as these are generally very subtle for lattice problems.

3.8.1. Attacks using Lattice Reduction
The standard way of attacking the LWE problem in literature is by using classical

lattice reduction techniques. Let (A,y = As + e) be an LWE instance.

Decoding Attack
We will start by sketching an attack due to Lindner and Peikert [LP11]. The idea

of the attack is to first use lattice reduction [LLL82] to compute a nearly orthogonal
basis B of Λq(A), then use a decoding algorithm like Babai’s nearest hyperplane
algorithm [Bab85] to decode y. This attack works best if the number of samples m
is large, as in this case the reduced basis B will be nearly orthogonal. The complexity
of this attack is dominated by the lattice reduction step, i.e. the computation of B.
For standard parameter choices, this requires exponential time.

Distinguishing Attack
Variants of this attacks were described by Micciancio and Regev [MR08] as well

as Rückert and Schneider [RS10]. The idea of this attack is to try to find a short
dual vector h of Λq(A), i.e. a h for which it holds hTA = 0. Such a h can then be
used to solve the decisional LWE problem for short error distributions. Given that
the error vector e is sufficiently short, it holds that

〈h,y〉 = hTAs + 〈h, e〉 = 〈h, e〉,

is small. On the other hand, for a uniformly random u, 〈h,u〉 is also uniformly
random and thus with high probability not small. For instantiations of LWE with
search-to-decision equivalence (Theorems 3.1 and 3.2), such a distinguishing attack
also yields an attack on search LWE.

3.8.2. Attacks using Linearization
Arora and Ge [AG11] provide a subexponential time algorithm that attacks LWE

in the low noise case. Specifically, assume that αq < nε for some ε ∈ (0, 1/2)5. The
algorithm attacks the decisional problem DLWE(n, q,Dαq). Let (a, y = 〈a, s〉+ e) be
an LWE sample. By the tail bound for the discrete gaussian distribution (Lemma
2.15), we know that the error terms e ←$ Dαq are smaller than a bound B with
overwhelming probability. Thus, e suffices the condition |e| ≤ B, which can be
expressed by as a polynomial equation

P (e) = 0,

where P is a polynomial of degree 2B + 1. As e = y − 〈a, s〉, this gives rise to a
polynomial equation

Qa,y(s) = P (y − 〈a, s〉) = 0
for the secret s. Qa,y is a multivariate polynomial of degree 2B + 1 in n unknowns.
Thus, there are at most N =

(
n+2B+1

n

)
different monomials in Qa,y. The strategy of

Arora and Ge is then to replace each monomial be a new variable. This technique
5Notice that the worst-to-average case reductions in Theorems 3.5 and 3.6 require ε ≥ 1

2
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is commonly known as linearization [KS99]. Thus, each LWE sample gives rise to a
linear equation in N unknowns. Such a linear equation system clearly has a solution,
as we know that s exists. Such a solution can be found using linear algebra. However,
this solution will not necessarily be one that corresponds to s, as the linearization
step may introduce many new solutions to the equation system.
However, Arora and Ge show that if y was chosen uniformly random instead,

then with high probability the equation system does not possess a solution. Thus,
we can distinguish (a, 〈a, s〉 + e) from uniformly random. The time complexity of
the algorithm is

poly(N) = poly
((

n+ 2B + 1
n

))

= poly
((

n+ 2B + 1
2B + 1

))
≤ poly

(
(n+ 2B + 1)2B+1

)
= 2O(nε log(n)),

which is subexponential. By the search-to-decision equivalence of LWE (Theorems
3.1 and 3.2), this also implies an attack on LWE(n, q,Dαq) with essentially the same
complexity.





4. IND-CCA2 secure Public Key
Encryption from Tag-Based
Encryption

Every innovation scraps its
immediate predecessor and
retrieves still older figures – it
causes floods of antiques or
nostalgic art forms and stimulates
the search for museum pieces

Marshall McLuhan and Barrington
Nevitt [MN73]

4.1. Introduction
In this intermediate chapter, we will provide the technical foundations necessary

for Chapters 5 and 6. This chapter contains no original contributions by the au-
thor. We will start by providing a brief overview of the history of IND-CCA secure
encryption.

4.2. A Brief History of Chosen Ciphertext Security
As mentioned in [Dam91], it was noted in a discussion after the presentation of

Rabin’s public key cryptosystem [Rab79], that the very same property that enables
proving security against passive adversaries leads to a complete break of the sys-
tem if the adversary is not entirely passive. Thus, the standard security notion for
public key cryptography, semantic security [GM82], falls short against active adver-
saries. Recall that semantic security, or security against chosen plaintext attacks
(IND-CPA security) [MRS86, BDPR98] only guarantees that an eavesdropping (or
passive) adversary will not learn any information about the message in an intercepted
ciphertext beyond the a-priori information she already has. Once the adversary is
given an additional resource, which for instance allows to probe the decryption func-
tion, IND-CPA security no longer provides any security guarantees. When a public

71
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key encryption scheme is used for any task more complex than securely transmitting
messages between two parties who otherwise do not interact, IND-CPA security is
insufficient. This is especially the case if the adversary gets some feedback about
whether the receiver is able to decrypt a given ciphertext. In some cases, such a
feedback may be used to effectively implement a decryption oracle [Ble98].
The precise definition of IND-CCA security is given is Section 2.4.3. Just recall

that in the IND-CCA1 security experiment the adversary is given a decryption
oracle before it sees the challenge ciphertext, while in the IND-CCA2 experiment
the adversary also gets access to the decryption oracle after seeing the challenge
ciphertext, with the restriction that this decryption oracle decrypts only ciphertexts
different from the challenge ciphertext.
The construction of IND-CPA secure public key encryption can usually be ach-

ieved in some natural and elegant way from a given decisional assumption [GM82,
Gam84, Ale03, Reg05] and there exist generic and simple black-box constructions
from any given injective trapdoor function [Yao82]. Roughly speaking, security
reductions for IND-CPA security mostly just pass along their own challenge to the
adversary in a simulated security experiment. Even more, the secret key sk is
never used in the IND-CPA experiment and is, so to say, discarded right after its
generation.
On the other hand, achieving (provable) IND-CCA security usually represents a

tougher challenge. The reason for this is rooted in the fact that an IND-CCA ad-
versary demands a decryption oracle. On one hand side, a security reduction must
use the adversary’s ability to break the IND-CCA security of a given scheme in an
essential way to solve a hard computational problem. This means in particular that
the reduction cannot use a fully functional secret key to simulate the decryption
oracle. Otherwise, the reduction could just replace the adversaries ability to break
the security by using its own secret key. Such a reduction would, of course, ba-
sically falsify the hardness of the problem it attacks, since it solves this problem
unconditionally, i.e. independent of the adversary. Thus, a scheme we want to prove
IND-CCA secure needs to be tailored in a way that enables a reduction to decrypt
most ciphertexts, while still being able to use the adversary’s ability to break the
IND-CCA security to solve a hard problem.

4.2.1. Constructions from General Assumptions
Blum, Feldman and Micali [BFM88b] suggested to use non-interactive zero-know-

ledge proofs of knowledge (NIZKPoK) [BFM88a] to achieve IND-CCA1 security, but
did not provide a construction. A similar approach was taken by Naor and Yung
[NY90], who provided the first construction of an IND-CCA1 secure public key
encryption scheme, based on the hardness of standard computational assumptions.
Their enhanced scheme is composed of two instances of a standard IND-CPA secure
scheme and a non-interactive zero-knowledge proof (NIZK) system. The public key
of the enhanced scheme consists of two public keys of the standard scheme and a
common reference string for the NIZK. Messages are encrypted twice, under each
public key, and this pair of ciphertexts is augmented by a NIZK proving that both
ciphertexts encrypt the same message. Decryption only decrypts valid ciphertexts,
i.e. ciphertexts that contain a valid NIZK proof. Omitting many details, we will
briefly explain why this trick allows for the simulation of a proper decryption oracle.
Observe that it is sufficient to know one of the secret keys to simulate a decryption
oracle, as the soundness of the NIZK guarantees that both ciphertexts encrypt the
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same message. Thus, one of the two public keys may be chosen by the reduction,
together with a corresponding secret key. This allows the reduction to faithfully
simulate a decryption oracle. To embed its own challenge, the reduction uses the
simulator of the NIZK to forge a consistency proof for the challenge ciphertext. If
the inconsistency is detected by the adversary, it can either break the zero-knowledge
property of the NIZK or the IND-CPA security of the public key encryption scheme.
Rackoff and Simon [RS91] observed that the notion of IND-CCA1 security is

potentially insufficient for certain applications, as it excludes a so-called playback
attack. In a playback attack the adversary tries to use its decryption oracle to attack
its own challenge ciphertext. Clearly, one cannot allow the crudest playback attack,
namely allowing the adversary to use its decryption oracle to directly decrypt the
challenge ciphertext. Trivially, every scheme is insecure against this kind of attack.
However, Rackoff and Simon [RS91] proposed to allow any other playback attack, i.e.
the decryption oracle must decrypt every ciphertext that differs from the challenge
ciphertext. This is exactly the security notion of adaptive chosen ciphertext security
(IND-CCA2). Rackoff and Simon [RS91] also provided a construction of an IND-
CCA2 secure public key encryption scheme, implementing the NIZKPoK approach
of [BFM88b]. However, they required that every party (also the adversary) has their
respective keys generated by a trusted third party.
Dolev, Dwork and Naor [DDN91] provided the first construction of an adaptive

chosen ciphertext secure public key encryption scheme in the standard model. The
central insight of [DDN91] is that ciphertexts of such an encryption scheme should be
non-malleable. Roughly speaking, a public key encryption scheme is non-malleable
if valid ciphertexts cannot be mauled into different valid ciphertexts, such that the
corresponding plaintexts are related in a certain way. Put differently, this means
that the only way of creating a new ciphertext is by encrypting a plaintext. While
in [DDN91] it was conjectured that non-malleability is a stronger notion than ci-
phertext indistinguishability, it was later shown that for the case of adaptive chosen
ciphertext attacks, the two notions are equivalent [BDPR98, DDN00]. The key idea
behind the construction of [DDN91] is the following. While Naor and Yung [NY90]
provide double encryptions of plaintext messages, Dolev, Dwork and Naor encrypt
the plaintext under many public keys and use a NIZK proof to prove that all cipher-
texts encrypt the same message. The main lever that allows proving this scheme
IND-CCA2 secure is that each ciphertext is encrypted using a different subset of
public keys selected from a master public key. On one hand side, knowing a single
secret key for the public keys used to encrypt a message is sufficient to decrypt the
message. Moreover, one can verify that all the other ciphertexts encrypt the same
message by checking the NIZK proof. On the other hand, a simulator can construct
a master public key such that it knows at least one (partial) secret key for every
derived public key except for one. It will then be able to embed its own decryption
challenge in the challenge ciphertext, using the NIZK simulator to forge a consis-
tency proof. The techniques of [DDN91] have been a great source of inspiration
for subsequent constructions, which focused at implementing ciphertext consistency
checks without resorting to NIZK proofs. Specifically, subsequent works identified
and abstracted the main technical components of [DDN91], which, for instance gave
rise to the notion of tag-based encryption discussed in the next section.
At the heart of all constructions discussed so far are non-interactive zero-know-

ledge proofs. A series of works [Sah99, SCO+01, Lin03] showed how the construction
of Naor and Yung [NY90] can be proven IND-CCA2 secure, if instantiated with an
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appropriate NIZK system. Non-interactive zero-knowledge is amongst the heaviest
machinery theoretical cryptography has to offer. Consequently, all these results
should be considered as feasibility results, as trying to instantiate them in the real
world would lead to astronomical key and ciphertext sizes.

4.2.2. Efficient Constructions in the Random Oracle Model
Thus, the question arose whether IND-CCA2 secure schemes can be constructed

that are efficient in a practical sense, with the intention of using such schemes in
real world cryptographic applications. Bellare and Rogaway [BR93, BR94] provided
a simple and efficient construction of an IND-CCA2 secure public key encryption
scheme based on any trapdoor permutation in the random oracle model (ROM)
[FS86]. In the ROM, each party has access to a random oracle, which models an
idealized hash function. In short, a random oracle is a random function that can be
queried on arbitrary inputs. The critical point is that, even for adversarial parties
the random oracle is like a black box. Its input-output behavior can be probed,
but its implementation details are inaccessible. As a consequence, the only way of
obtaining function values of a random oracle is by using it, i.e. providing input to the
black box and receiving the output. In a way, this gives security reductions an unfair
advantage. The construction of Bellare and Rogaway [BR93] is crafted in a way such
that a valid ciphertext cannot be created without using the random oracle. This is
of immense help when basing the security of the construction on the one-wayness of
the trapdoor permutation. Whenever the adversary uses the random oracle in the
(simulated) IND-CCA2 experiment, it reveals its input and random coins it uses for
encryption. Put differently, its shows awareness of the plaintext corresponding to
a ciphertext. This provides the security reduction an advantage in simulating the
decryption oracle. As valid ciphertexts can only be created by using the random
oracle, the security reduction simply eavesdrops every query the adversary asks the
random oracle and checks if a ciphertext the adversary queries its decryption oracle
with can be constructed from the random oracle queries of the adversary. Thus,
the security reduction does not need the secret key of the trapdoor perimutation to
simulate the decryption oracle.
The obvious concern with proofs in the random oracle model is what their im-

plications for the real world are. Bellare and Rogaway [BR93] suggest to use a
sufficiently complicated cryptographic hash function instead of the random oracle
in a real world implementation 1. However, unlike a random oracle a hash function
has a short and explicit description in the form of its algorithm. Thus, a real world
adversary may find other ways of obtaining function values of the hash function
than just evaluating it. Consequently, the random oracle methodology is a heuristic
at best. Concerns against proofs in the random oracle model grew when a series of
works demonstrated that there are constructions in the random oracle model that
are uninstantiatable [CGH98, Nie02, GK03, CGH04, BBP04].

4.2.3. Efficient Constructions in the Standard Model
The first step towards an efficient standard model IND-CCA secure public key

encryption scheme was taken by Damgård [Dam91]. Damgård constructed a variant
of the ElGamal scheme which is IND-CCA1 secure under the so-called knowledge
of exponent assumption in cyclic groups. In a nutshell, if G is a cyclic group in

1An instantiation of [BR93] using the RSA trapdoor function [RSA78], called RSA-ES-OAEP, is
described in the standard PKCS #11
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which the Diffie-Hellman problem is hard and g, h←$ G are randomly chosen, then
this assumption states that the only way of computing (ga, ha) given (g, h) is by
knowing a. This is formalized in terms of an knowledge extractor : For any efficient
randomized algorithm A computing (ga, ha) given (g, h), there exists an efficient
randomized algorithm E computing a given (g, h) which uses the same random coins
as A. Such an extractor can be used in a similar way to extract like the random
oracle in the construction of [BR93], i.e. it gives a security reduction the extra
edge to simulate a decryption oracle without having to know the trapdoor of the
scheme. However, by now such knowledge assumptions [Nao03] are also considered
highly nonstandard and there is evidence that they cannot be based on standard
computational problems [GW11].
In a celebrated work, Cramer and Shoup [CS98] provided a very efficient IND-

CCA2 secure public key encryption scheme in the standard model, based on standard
computational assumptions. The key technical ingredient for this construction are
hash proof systems. Omitting details, hash proof systems, as generalized in [CS02],
are private coin proof systems for hard subset membership problems L ∈ NP . The
private key of a hash proof system can be used to both verify the correctness of
a proof and fake proofs for false statements. Hash proof systems can be used to
construct public key encryption schemes in a way, such that a successful IND-CCA2
adversary can be used to decided the problem L, contradicting its hardness. Follow-
ing works have shown that hash proof systems can be constructed from a large variety
of decisional number theoretic hardness assumptions [CS02, Luc02, KD04, CKS08].
Moreover, hash proof systems have found applications beyond chosen ciphertext
security, for instance in the context of leakage resilience [NS09, HLAWW13].
Canetti, Halevi and Katz [CHK04] provided a generic and efficient construction

of IND-CCA2 secure encryption schemes from any selective identity secure identity
based encryption scheme. This will be discussed in more detail in the next section.
Hofheinz and Kiltz [HK09] provided an efficient construction of an IND-CCA2 secure
public key encryption scheme based on the hardness of factoring. Their scheme is
a modification of the Blum Goldwasser [BG84] encryption scheme, which in turn
relies on the Blum Blum Shub pseudorandom generator [BBS82]. The approach
of Hofheinz and Kiltz deviates significantly from previous techniques, but borrows
concepts from tag-based encryption explained in the next section.
Peikert and Waters [PW08] introduced the notion of lossy trapdoor functions. In

a nutshell, lossy trapdoor functions can be operated in two different modes: An
injective mode and a lossy mode. The injective mode allows efficient inversion given
a trapdoor, while the lossy mode cannot be inverted information theoretically, i.e.
each image of the function corresponds to a vast (i.e. superpolynomial) number of
preimages. Lossy trapdoor functions give rise to natural and efficient constructions
of IND-CCA2 secure encryption schemes following the tag-based encryption frame-
work. Peikert and Waters [PW08] provided constructions of lossy trapdoor functions
from the decisional Diffie Hellman and LWE problems. Thus, [PW08] provided the
first efficient standard model construction of an IND-CCA2 secure scheme from a
lattice assumption. Freeman et al. [FGK+09] provided constructions of lossy trap-
door functions from further assumptions. Later, Peikert [Pei09] and Micciancio and
Peikert [MP12] provided more efficient constructions of IND-CCA2 secure public key
encryption schemes from LWE, also following the tag-based encryption paradigm.
Rosen and Segev [RS09] generalized the techniques of Peikert and Waters [PW08].
Rosen and Segev identified that a weaker notion than lossiness, called correlation se-
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curity, is sufficient for the Peikert and Waters’ construction of an IND-CCA2 secure
scheme.

4.3. Tag-Based Encryption
The constructions of IND-CCA secure schemes presented in Chapters 5 and 6

will be based on the notion of tag-based encryption. This notion was introduced by
MacKenzie, Reiter and Yang [MRY04], later refined by Kiltz [Kil06]. The purpose
of this notion is to provide a general class of schemes for which the transformation-
technique of Canetti, Halevi and Katz [CHK04] can be applied. Canetti et al.
[CHK04] show how any identity based encryption scheme (IBE) can be transformed
into an IND-CCA2 secure scheme using simple black-box techniques. We will refer
to this technique as CHK-transformation henceforth.
In a tag-based encryption scheme, each ciphertext is associated with a tag, which

is generally an unstructured bit string of sufficient length. The tag is provided as
an additional input to the encryption and decryption algorithms. The security ex-
periment for tag-based encryption is identical to the IND-CCA experiment, with
the exception that the adversary announces a target-tag τ ∗ before seeing the public
key of the scheme. Consequently, the challenge-ciphertext will be encrypted us-
ing the target-tag τ ∗. Moreover, the adversary’s decryption oracle will not answer
decryption-queries for ciphertexts associated with the target-tag.
The notion of tag-based encryption is particularly useful (and originally intended)

as an intermediate stage in the construction of IND-CCA secure public key encryp-
tion. The construction of IND-CCA1 secure public key encryption from tag-based
encryption is particularly simple. Given that the tag-space has super-polynomial
size, we obtain an IND-CCA1 secure scheme from a tag-based scheme by letting a
modified encryption algorithm sample tags uniformly at random and append the tag
to the ciphertext. The CCA1 security experiment now coincides with the security
experiment for tag-based encryption.
We will now provide the definitions for tag-based encryptions, as taken from

[Kil06]. We start by providing the syntactic definition of tag-based encryption
schemes.

Definition 4.1. A tag-based encryption scheme TBE consists of three PPT-al-
gorithms TBE.KeyGen, TBE.Enc and TBE.Dec

• TBE.KeyGen(1λ): Takes as input a security-parameter 1λ and outputs a pair
of public and secret keys (pk, sk).

• TBE.Enc(pk, τ,m): Takes as input a public key pk, a tag τ and a plaintext m
and outputs a ciphertext c.

• TBE.Dec(sk, τ, c): Takes as input a secret key sk, a tag τ and a ciphertext c
and outputs a plaintext m or ⊥.

We will assume that the plaintext-space Mλ and the tag-space Tλ of TBE only depend
on the security parameter λ.

A standard requirement for encryption schemes is completeness. The definition is
analogous to the completeness definition for public key encryption schemes (Defini-
tion 2.7), except that the tags τ have to be taken into account.
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Definition 4.2. We say that TBE = (TBE.KeyGen,TBE.Enc,TBE.Dec) is complete,
if it holds for all plaintexts m ∈Mλ and all tags τ ∈ Tλ that

Pr[TBE.Dec(sk, τ,TBE.Enc(pk, τ,m)) 6= m : (pk, sk)← TBE.KeyGen(1k)] < negl(λ).

MacKenzie et al. [MRY04] provide a definition of ciphertext indistinguishability
for tag-based encryption where the adversary is allowed to choose the target-tag
adaptively. More precisely, the adversary first learns the public key pk and is only
allowed to query the decryption oracle before it has to announce a target tag τ ∗ to-
gether with the challenge-messages m0 and m1. Kiltz [Kil06] observed that adaptive
security is not necessary for the CHK-transformation and introduced the notion of
selective IND-CCA security for tag-based encryption. This security-notion requires
the adversary to announce the target-tag both before seeing the public key and being
allowed to query the decryption oracle.

Definition 4.3. We say a tag-based encryption-scheme TBE is ciphertext-indist-
inguishable under selective tag and adaptively chosen ciphertext attacks (IND-STAG-
CCA2), if every PPT-adversary A has success-probability at most negligibly better
than 1/2 in the experiment IND-STAG-CCA2, i.e. Pr[IND-STAG-CCA2(A) = 1] ≤
1
2 + negl(λ).

Experiment IND-STAG-CCA2
(τ ∗, st0)← A(init, 1λ)
(pk, sk)← TBE.KeyGen(1λ)
(m0,m1, st1)← AODec(sk,τ∗,·,·)(find, st0, pk)
b←$ {0, 1}
c∗ ← TBE.Enc(pk, τ ∗,mb)
b′ ← AODec(sk,τ∗,·,·)(guess, st1, c

∗)
Return 1 iff b = b′.

ODec(sk, τ ∗, τ, c)
If τ = τ ∗

Return ⊥
m← TBE.Dec(sk, τ, c)
Return m

Observe that, unlike in the definiton of the IND-CCA2 experiment, the decryption
oracle is the same in the find- and guess-stage. In both stages, A is not allowed to
query its decryption-oracle ODec(sk, τ ∗, ·, ·) with the tag τ ∗.
From a technical perspective, the usefulness of the notion of tag-based encryption

stems from the fact that in the IND-STAG-CCA2 experiment, the decision whether
the decryption-oracle decrypts its query or not does not depend on the ciphertext
c, but only on the tag τ . Contrast this to the notion of IND-CCA2 security, where
the adversary may query its decryption-oracle in the guess-phase on any ciphertext
but the challenge-ciphertext c∗.

4.4. The Canetti-Halevi-Katz Transformation
We will now show how to transform an IND-STAG-CCA2 secure tag-based en-

cryption scheme TBE into an IND-CCA secure public key encryption scheme PKE
via the CHK transformation. The proof follows [CHK04, MRY04, Kil06].

Construction 4.1 (CHK Transformation [CHK04, MRY04, Kil06]). Let TBE =
(TBE.KeyGen,TBE.Enc,TBE.Dec) be a tag-based encryption scheme with tag-space
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Tλ. Let OTS = (OTS.Gen,OTS.Sign,OTS.Verify) be a one-time signature scheme
for which the verification keys vk generated by OTS.Gen(1λ) can be embedded into
Tλ. The public key encryption scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is
given as follows.

• PKE.KeyGen(1λ):
(pk, sk)← TBE.KeyGen(1λ)
Return (pk, sk)

• PKE.Enc(pk,m):
(vk, sgk)← OTS.Gen(1λ)
τ ← vk
c′ ← TBE.Enc(pk, τ,m)
σ ← OTS.Sign(sgk, c′)
c← (c′, vk, σ)
Return c

• PKE.Dec(sk, c):
Parse c = (c′, vk, σ)
τ ← vk
If OTS.Verify(vk, c′, σ) = 0

Return ⊥
m← TBE.Dec(sk, τ, c′)
Return m

Before showing that this construction actually yields an IND-CCA2 secure en-
cryption scheme, we will first comment on the requirement that the verification keys
output by OTS.Gen(1λ) can be embedded into the tag-space Tλ.
While this requirement seems like a restriction for the choice of the one-time

signature scheme OTS at first, standard techniques can be employed to increase the
size of the tag-space Tλ such that the verification keys vk fit into it. Given that the
size of the tag-space Tλ is at least sub-exponential, i.e. |Tλ| = 2Ω(poly(λ)), one may
pursue one of the following approaches.
The first approach is to choose different security-parameters λ1 for TBE and λ2 for

OTS to ensure that verification keys vk output by OTS.Gen(1λ2) can be embedded
into Tλ1 . Assume that Tλ1 = {0, 1}p1(λ1) and that the verification keys vk can be
described by p2(λ2) bits, for some polynomials p1 and p2. Then we can always
find a polynomial p3 such that p1(p3(λ2)) ≥ p2(λ2). Thus, choosing λ1 ≥ p3(λ2)
ensures that the tag-space Tλ1 is large enough such that verification keys vk can be
represented as elements of Tλ1 .
While this parameter-tweak is sound in theory, it may lead to impractical and

unnecessarily large security parameters λ1. As an alternative, we can artificially
increase the size of the tag-space Tλ by taking a collision-resistant hash-function
(CRHF) and hash tags of size poly(λ) down to size λ. While this would introduce
further hardness assumption (i.e. the existence of CRHFs), we note that full collision
resistance is not necessary here. Instead, target collision resistance, as provided by
universal one way hash functions (UOWHF) is sufficient, as observed in [DDN91].
This holds because in the IND-STAG-CCA2 experiment the adversary must an-
nounce a target-tag τ ∗ before getting to see the public key. Thus, we can include a
key for a UOWHF in the public key and compress tags using the UOWHF. Unlike
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CRHFs, UOWHFs are known to be constructible from one-way functions [Rom90].
Thus, this transformation will not introduce new complexity assumptions.
We will now show that Construction 4.1 actually yields an IND-CCA2 secure

public key cryptosystem, given that the underlying tag-based encryption scheme is
IND-STAG-CCA2 secure.

Theorem 4.1 ([CHK04, MRY04, Kil06]). Assume that TBE is an IND-STAG-CCA2
secure tag-based encryption scheme and that the size of the tag-space Tλ is at least
subexponential, i.e. |Tλ| ≥ 2poly(λ). Assume further that OTS is a strongly one-time
unforgeable signature scheme. Then the public key encryption scheme PKE given in
Construction 4.1 is IND-CCA2 secure.

Proof. Assume towards contradiction that there exists a PPT-adversary A with
non-negligible advantage ε against the IND-CCA2 security of PKE. Consider the
experiments Game 0, Game 1 and Game 2.

Game 0
(pk, sk)← TBE.KeyGen(1λ)
(m0,m1, st)← AODec1(sk,·)(find, pk)
b←$ {0, 1}
(vk∗, sgk∗)← OTS.Gen(1λ)
τ ∗ ← vk
c′∗ ← TBE.Enc(pk, τ ∗,mb)
σ∗ ← OTS.Sign(sgk∗, c′∗)
c∗ ← (c′∗, vk∗, σ∗)
b′ ← AODec2(sk,c∗,·)(guess, st, c∗)
Return 1 iff b = b′.

ODec1(sk, c)
Parse c = (c′, vk, σ)
τ ← vk
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

ODec2(sk, c∗, c)
Parse c = (c′, vk, σ)
If c = c∗ return ⊥
τ ← vk
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

Clearly, Game 0 is the IND-CCA2 experiment for PKE, for which we have sub-
stituted the algorithms PKE.KeyGen, PKE.Enc and PKE.Dec with their implementa-
tions according to Construction 4.1.
In Game 1 we have changed two aspects. First, the generation of the keys vk∗

and sgk∗ and the assignment of the tag τ ∗ has been moved to the beginning of
the experiment. Second, the find-stage decryption oracle ODec1 now receives the
challenge tag τ ∗ as additional input and returns⊥ if the adversary sends a decryption
query with tag τ = τ ∗.
In Game 2 we make the implementation of the decryption oracle ODec2 identical

to ODec1. More specifically, instead of receiving additional input c∗, ODec2 now
receives additional input τ ∗ and the check whether c = c∗ is replaced by the check
τ = τ ∗.
We will first show that Game 0, Game 1 and Game 2 are computationally

indistinguishable from the view of A. We will subdivide this into two claims. A
third claim will assert that A has only-negligible success-probability in Game 2
given that TBE is IND-STAG-CCA2 secure. This will conclude the proof.
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Game 1
(vk∗, sgk∗)← OTS.Gen(1λ)
τ ∗ ← vk
(pk, sk)← TBE.KeyGen(1λ)
(m0,m1, st)← AODec1(sk,τ∗,·)(find, pk)
b←$ {0, 1}
c′∗ ← TBE.Enc(pk, τ ∗,mb)
σ∗ ← OTS.Sign(sgk∗, c′∗)
c∗ ← (c′∗, vk∗, σ∗)
b′ ← AODec2(sk,c∗,·)(guess, st, c∗)
Return 1 iff b = b′.

ODec1(sk, τ ∗ , c)
Parse c = (c′, vk, σ)
τ ← vk

If τ = τ ∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

ODec2(sk, c∗, c)
Parse c = (c′, vk, σ)
τ ← vk
If c = c∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

Claim 1
We claim that Game 0 and Game 1 are statistically close from the view of
A. First notice that moving the generation of vk∗ and sk∗ to the beginning of
the experiment makes no difference from the view of A. Given that A does not
send a decryption-query with tag τ ∗ to ODec1, the decryption oracle ODec1 behaves
identically from the view of A. Thus, in this case Game 0 and Game 1 are
identically distributed from the view of A. We will now bound the probability that
A sends a decryption query with tag τ = τ ∗ to the decryption-oracle ODec1.
Assume that A makes at most q ≤ poly(λ) many decryption-queries to ODec1. Re-

call that the size of the tag-space is at least sub-exponential, i.e. it holds that
|Tλ| ≥ 2poly(λ). Call the tags of the q decryption-queries τ1, . . . , τq. Since the
challenge-tag τ ∗ is not announced to A before the guess-stage, A can exclude at
most one additional tag per decryption query from the list of possible candidates
for τ ∗. Thus, we can bound Pr[τi = τ ∗] ≤ i

|Tλ|
≤ q
|Tλ|

for i ∈ {1, . . . , q}. By a
union-bound it holds that

Pr[∃i : τi = τ ∗] ≤
q∑
i=1

Pr[τi = τ ∗]︸ ︷︷ ︸
≤q/|Tλ|

≤ q · q

|Tλ|
≤ poly(λ)

2poly(λ) ,

which is negligible. Therefore, Game 0 and Game 1 are statistically close from
the view of A.
Claim 2
We claim that Game 1 and Game 2 are computationally indistinguishable from

the view of A, given that the signature scheme OTS is strongly existentially unforge-
able under one-time chosen message attacks. First observe that if all the decryption-
queries for ODec2 with tag τ ∗ are rejected in Game 1, then A’s views in Game 1
and Game 2 are identically distributed. Thus, in order to distinguish both exper-
iments, A must be able to produce (with non-negligible probability) a decryption
query with tag τ ∗ in Game 1, which is not rejected by the decryption oracle ODec2.
The decryption oracle ODec2 rejects decryption queries c = (c′, vk, σ) if it holds that
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Game 2
(vk∗, sgk∗)← OTS.Gen(1λ)
τ ∗ ← vk
(pk, sk)← TBE.KeyGen(1λ)
(m0,m1, st)← AODec1(sk,τ∗,·)(find, pk)
b←$ {0, 1}
c′∗ ← TBE.Enc(pk, τ ∗,mb)
σ∗ ← OTS.Sign(sgk∗, c′∗)
c∗ ← (c′∗, vk∗, σ∗)
b′ ← AODec2(sk,τ∗,·)(guess, st, c∗)
Return 1 iff b = b′

ODec1(sk, τ ∗, c)
Parse c = (c′, vk, σ)
τ ← vk
If τ = τ ∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

ODec2(sk, τ ∗ , c)
Parse c = (c′, vk, σ)
τ ← vk

If τ = τ ∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

c = c∗ or OTS.Verify(vk, c′, σ) = 0. Thus, if a decryption query with tag τ ∗ = vk∗ is
not rejected, it must hold that OTS.Verify(vk∗, c′, σ) = 1 and (c′, σ) 6= (c′∗, σ∗).
Assume thus that A produces a decryption-query c = (c′, vk∗, σ) for ODec2 with

OTS.Verify(vk∗, c′, σ) = 1 and (c′, σ) 6= (c′∗, σ∗) with non-negligible probability ε.
We will construct adversary B that breaks the OT-sEUF-CMA security of OTS
with probability ε.
Adversary B simulates Game 1, including the decryption oracles ODec1 and ODec2

faithfully, except for the following differences. Instead of generating the verification
key vk∗ using OTS.Gen, it uses the verification key vk∗ provided by the OT-sEUF-
CMA experiment. Moreover, it uses the signing oracle OSign(sgk∗, ·) provided by the
OT-sEUF-CMA experiment to generate the signature σ∗ on the challenge-ciphertext
c∗. Finally, once A sends a decryption-query c = (c′, vk, σ) to ODec2, B checks
whether (c′, σ) 6= (c′∗, σ∗) and OTS.Verify(vk∗, c′, σ) = 1, and if so halts the simula-
tion and outputs (c′, σ).
Observe first that from A’s view Game 1 and B’s simulation are identically

distributed, since the generation of the keys vk∗ and sgk∗ as well as the computation
of the signature σ∗ on the challenge ciphertext are only transfered to the OT-sEUF-
CMA experiment but remain otherwise identical.
Since we assume that A produces a decryption-query c = (c′, vk∗, σ) for ODec2

with OTS.Verify(vk∗, c′, σ) = 1 and (c′, σ) 6= (c′∗, σ∗) with probability ε in Game 1,
B wins the OT-sEUF-CMA experiment with probability ε, contradicting the OT-
sEUF-CMA security of OTS. This concludes the proof of the claim.

Claim 2
We claim that A has only negligible advantage in Game 2. Assume towards

contradiction that A has non-negligible advantage δ in Game 2. We will construct
an adversary A′ with advantage δ against the IND-STAG-CCA2 security of TBE.
Let O′Dec(·, ·) be the decryption oracle provided to A′ by the IND-STAG-CCA2
experiment. First notice that the decryption oracles ODec1 and ODec2 in Game 2 are
identical, we can thus replace them by a single decryption oracle ODec. A′ simulates
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Adversary B
Input: vk∗
τ ∗ ← vk∗

(pk, sk)← TBE.KeyGen(1λ)
(m0,m1, st)← AODec1(sk,τ∗,·)(find, pk)
b←$ {0, 1}
c′∗ ← TBE.Enc(pk, τ ∗,mb)
σ∗ ← OSign(sgk∗, c′∗)
c∗ ← (c′∗, vk∗, σ∗)
b′ ← AODec2(sk,c∗,·)(guess, st, c∗)
return b′

ODec1(sk, τ ∗, c)
Parse c = (c′, vk, σ)
τ ← vk
If τ = τ ∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

ODec2(sk, c∗, c)
Parse c = (c′, vk, σ)
Parse c∗ = (c′∗, vk∗, σ∗)
If (c′, σ) 6= (c′∗, σ∗) and
OTS.Verify(vk∗, c′, σ) = 1

Halt simulation and
return (c′, σ)

τ ← vk
If τ = τ ∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return TBE.Dec(sk, τ, c′)
Otherwise return ⊥

Game 2 faithfully, except for the following differences. Instead of generating pk and
sk itself, it uses the public key pk provided by the IND-STAG-CCA2 experiment
and it uses its own decryption oracle O′Dec to implement decryption in the simulation
of the decryption oracle ODec for A. Moreover, instead of generating the challenge
ciphertext c′∗ itself, it provides the challenge messages m0 and m1 to the IND-STAG-
CCA2 experiment and uses its own challenge ciphertext c′∗ to construct the challenge
ciphertext for A.
From the view of A, Game 2 and the simulation of A′ are identically distributed,

as in the latter certain computations have merely been transfered to the IND-STAG-
CCA2 experiment but remain otherwise identical. Thus, we can conclude that A′’s
advantage in the IND-STAG-CCA2 experiment is identical to A’s advantage in
Game 2, which is non-negligible. Since this contradicts the IND-STAG-CCA2
security of TBE, we can conclude the proof.



4.4. The Canetti-Halevi-Katz Transformation 83

Adversary A′
A′(init, 1λ)

(vk∗, sgk∗)← OTS.Gen(1λ)
st0 ← (vk∗, sgk∗)
τ ∗ ← vk
return (τ ∗, st0)

A′(find, st0, pk )
Parse st0 = (vk∗, sgk∗)
(m0,m1, st)← AODec(τ∗,·)(find, pk)
st1 ← (st, vk∗, sgk∗)
return (m0,m1, st1)

A′(guess, st1, c
′∗ )

Parse st1 = (st, vk∗, sgk∗)
σ∗ ← OTS.Sign(sgk∗, c′∗)
c∗ ← (c′∗, vk∗, σ∗)
b′ ← AODec(τ∗,·)(guess, st, c∗)
Return b′.

ODec(τ ∗, c)
Parse c = (c′, vk, σ)
τ ← vk
If τ = τ ∗ return ⊥
If OTS.Verify(vk, c′, σ) = 1

return O′Dec(τ, c′)
Otherwise return ⊥





5. IND-CCA2 Secure Public Key
Encryption from the McEliece
Assumption with small
Ciphertext Expansion

Mr. Watson, come here - I want to
see you

Alexander Graham Bell to Thomas
Watson, first phone call

5.1. Introduction
The McEliece cryptosystem [McE78] was one of the eariliest proposals of a public

key cryptosystem. An often mentioned criticism of this scheme are the comparatively
large key sizes of size O(λ2). On the other hand, key-generation, encryption and
decryption of McEliece schemes are highly parallelizable and can be implemented
using low depth binary circuits. Modular exponentiations on the other hand, the
cornerstone of all implementations of number theory based encryption schemes, are
reluctant to parallelization. However, maybe the most important aspect of this
public key cryptosystem is its conjectured post quantum security. While all num-
bertheoretic hardness assumptions can be broken by efficient quantum algorithms
[Sho94], coding based assumptions have resisted quantum cryptanalysis so far, which
makes them worthwhile objects of consideration.
In this Chapter we will provide the construction of an IND-CCA2 secure public key

encryption scheme with small ciphertext expansion based on the decisional McEliece
assumtion and the LPN problem. Following the paradigm of Section 4.4, we will
first construct an IND-STAG-CCA2 secure tag-based encryption scheme and then
invoke the CHK-transformation (Theorem 4.1). The resulting scheme has essentially
the same key sizes, ciphertext sizes and efficiency. The original construction of
an IND-CCA2 secure public key encryption scheme based on the McEliece and
LPN assumption is due to Dowsley, Müller-Quade and Nascimento [DMQN09]. The
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more efficient version presented here is due to Döttling, Dowsley, Müller-Quade and
Nascimento [DDMQN12]. The construction loosely follows the correlated products
paradigm of Rosen and Segev [RS09]. We will start by providing a short outline of
the scheme.

5.1.1. Outline
The basic building block for our scheme is a semantically secure version of the

McEliece cryptosystem [NIKM08]. We will first describe an enhanced version of the
basic scheme called PKEMcE which can be decrypted using incomplete secret keys.
Using this scheme, we will construct a tag-based encryption scheme TBEMcE. Given
such a scheme,the CHK-transformation (Construction 4.1) yields an IND-CCA2
secure scheme with essentially the same efficiency.
We will now sketch the building block scheme PKEMcE. Given a long message m

of bitlength l · n, we first split up m into blocks of size n bits, i.e. m = (m1, . . . ,ml).
Next, we prepend an extra random block s and obtain

z = (s,m1, . . . ,ml).

We now interpret z as a vector in Fl+1
2n and encode z using a [k, l + 1, k − l] Reed

Solomon code. This Reed Solomon code acts like the outer code in a concatenated
code. Let x = (x1, . . . ,xk) be the codeword obtained in this way. Next, we interpret
each xi as binary vector in Fn2 and encrypt them with a McEliece trapdoor function
with public key Ai, i.e. we compute

yi ← Aixi + ei

for a noise term ei.
One can also consider this step as encoding xi with a scrambled Goppa code and

adding noise. Thus, encryption basically encodes a message using a concatenated
code with outer Reed Solomon code and inner scrambled Goppa code, and then adds
noise. IND-CPA Security of this construction is established as follows. In a first
hybrid step, all the McEliece public keys are replaced by random matrices. Given
that the decisional McEliece assumption holds, no efficient adversary will notice a
difference. In the second step, we will replace all yi by purely random values. Given
that the decisional LPN problem holds, again no efficient adversary will notice a
difference. Such defunct random ciphertexts are independent of the message, thus
we have established IND-CPA security.
Now, notice that we don’t need to recover all the xi to decrypt successfully. As x

is a codeword of a [k, l+ 1, k− l] Reed Solomon code, we can decode up to k− l− 1
erasures. This in turn means that l + 1 of the McEliece secret keys are sufficient to
decrypt successfully and obtain z. Even more, given the public keys pk1, . . . , pkk,
we can re-encrypt z and recover the noise terms ei used for encryption. We can
therefore check if decryption of the blocks for which we did not possess the secret
key would have succeeded or not, by testing if the corresponding noise term has a
sufficiently low Hamming weight. Now, if we define decryption of this scheme such
that it outputs ⊥ if decryption of any block fails, then this decryption function can
be computed using incomplete secret keys, for which up to k− l− 1 block keys may
be missing.
This feature will be essential in the proof of selective tag chosen ciphertext security

of tag-based encryption scheme TBEMcE, where the security reduction needs to able
to simulate a decryption oracle, while not being in possession of a full secret key.
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Figure 5.1.: Structure of PKEMcE

5.2. The McEliece Assumption
In this Section, we will provide an overview of the McEliece assumption [McE78].

5.2.1. Search McEliece
As described in Section 3.1.1, at the heart of McEliece’s construction are scrambled

Goppa Codes (c.f. Section 2.5.6). Let C be an irreducible Goppa code of dimension
n, length m = n + l · t and designed distance 2t + 1. Let G be a generator matrix
of C. Moreover, let (α, g) be a description of C that allows efficient decoding of t
errors. McEliece’s proposal was to scramble the matrix G by choosing a random
permutation matrix P ∈ Fm×m2 and a random invertible matrix T ∈ Fn×n2 and
compute A ← PGT. Clearly, A is the generator matrix of an equivalent code C′
of C. The assumption underlying this transformation is that the code C′ should be
infeasible to decode given the generator matrix A but not its factors P, G and T.
More specifically, the original McEliece assumption is that the function fA given by

fA(x, e) = As + e

is one-way, if s ←$ Fn2 is chosen uniformly at random and e ←$ Sm(t) is chosen
uniformly of weight t. As the code C′ is equivalent to C, it has the same minimum
distance as C, which is at least 2t + 1. Thus, (s, e) are information theoretically
uniquely defined given A and y = fA(s, e). On the other hand, if we know the the
factors P, T and (α, g), then the problem of decoding C′ is easy. Let

y = As + e.
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As A = PGT we can rewrite this as

y = PGTs + e.

As P is a permutation matrix it holds that PTP = I. This yields

PTy = GTs + PTe.

As PT is also a permutation matrix, it holds that wgt(PTe) = wgt(e) = t. Thus,
we have reduced the problem of decoding the code C′ to decoding the code C. To
recover s′ = Ts we can use the efficient decoder of C = Γ(α, g) to obtain

s′ = C.Decode(PTy)

from which we can compute s by s = T−1s′. Thus, the original McEliece assump-
tion [McE78] conjectures that fA is an injective trapdoor function with trapdoor
(P,T,α, g), if A is generated by A← PGT.

5.2.2. Decisional McEliece
For our purposes however, we will need a slightly different assumption. McEliece

[McE78] assumed that scrambled Goppa codes are hard to decode as they meet the
Gilbert-Varshamov bound (Theorem 2.4) and there is further no efficient way of
telling them apart from random matrices. Thus, one might as well conjecture that
scrambled Goppa codes are actually pseudorandom, i.e. indistinguishable from ran-
dom codes [CFS01, NIKM08]. This is exactly the decisional McEliece assumption.
Assume there exists an efficient algorithm SampleGoppa, which, given parameters `
and t samples a the description (α, g) of an irreducible [m,n, 2t + 1] Goppa code.
Some care must be taken when sampling (α, g), as we explain in the next paragraph.
Construction 5.1. Let λ be a security parameter. Let `, t = poly(λ) be positive
integers, let m = 2` and n = m− ` · t. Let Perm(m) ⊆ Fm×m2 be the group of m×m
permutation matrices and GLn(F2) ⊆ Fn×n2 be the group of invertible n× n matrices
over F2. Assume that the decoder C.Decode outputs an information word s and an
error vector e. Define the algorithms McE.Gen and McE.Decode as follows.
• McE.Gen(1λ):

(α, g)← SampleGoppa(`, t)
C← Γ(α, g)
G← C.Generator()
P←$ Perm(m)
T←$ GLn(F2)
A← PGT
td← (P,T,α, g)
Return (A, td)

• McE.Decode(td,y):
Parse td = (P,T,α, g)
C← Γ(α, g)
y′ ← PTy
(s′, e)← C.Decode(y′)
If s′ = ⊥ or wgt(e) > t

Return ⊥
s← T−1s′
Return s
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The correctness of the decoding algorithm McE.Dec follows as above. We remark
at this point that we will use McE.Gen and McE.Decode in a rather axiomatic way.
More specifically, we will not use any particularities of Goppa codes and just assume
that McE.Decode decodes up to t errors but outputs ⊥ if more than t errors occur.
We will now state the decisional McEliece problem.

Problem 5.1 (Decisional McEliece Problem). Let λ be a security parameter. Let
m,n, `, t = poly(λ). Let (A, td) ← McE.Gen(1λ) and let U ←$ Fm×n2 be chosen
uniformly at random. The goal of the decisional McEliece problem is to distinguish
the distributions A and U.

Assumption 5.1 (The McEliece assumption). Every PPT distinguisher D has at
most negligible advantage distinguishing problem 5.1, i.e.

AdvMcE(D) = |Pr[D(A) = 1]− Pr[D(U) = 1]| ≤ negl(λ).

where A is generated by (A, td)← McE.Gen(1λ) and U←$ Fm×n2 is chosen uniformly
at random.

Notice now that the original McEliece assumption, i.e. the one-wayness of the
trapdoor function

fA(s, e) = As + e

follows from the McEliece assumption and the hardness of LPN(n,m, Sm(t)): In a
first hybrid step we can replace the matrix A by a uniformly chosen matrix U.
Any adversary that notices a will help distinguishing the McEliece distribution from
uniformly random. After this transformation, inverting fA is identical to solving
LPN(n,m, Sm(t)). Thus, an adversary against the one-wayness of fA can be used
to either solve the McEliece problem or the LPN problem LPN(n,m, Sm(t)), contra-
dicting the hardness of one of them.

5.2.3. Attacks and Variants
There are very few structural attacks against the McEliece assumption. If the

matrix G is known, then one can target the permutation P. If both P and G are
known for a given A, then the matrix T can be found using linear algebra, i.e. we
can solve

A = PGT

for T using e.g. gaussian elimination. The best known algorithm to recover P
from A = PGT and G is Sendrier’s support splitting algorithm [Sen00]. This
algorithm’s runtime is exponential in the dimension of the hull of C = C(G), which
is the intersection of C and its dual C⊥.
Loidreau and Sendrier [LS01] showed that there exists bad choices for the Goppa

code C = Γ(α, g), i.e. α, g for which the McEliece problem is easier than usual.
In particular, whenever the polynomial g ∈ F2` [X] has binary coefficients then a
combination of exhaustive search through all g ∈ F2[X] of degree t and the support
splitting algorithm will find both P and G. Thus, binary polynomials g should
be avoided when generating the Goppa code. There are, however, efficient distin-
guishing attacks when the chosen class of Goppa codes is more restricted. Faugère
et al. [FOPT10] demonstrated an algebraic attack against the McEliece problem
which leads to an efficient distinguishing attack for quasi-cyclic and dyadic Goppa
codes. In a follow up work Faugère et al. [FGUO+13] showed that if the rate of the
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irreducible Goppa code C = Γ(α, g) is chosen too close to 1, then there also exists
an efficient distinguisher for the McEliece problem. Very recently, Couvreur et al.
[COT14] provided an efficient distinguisher against the McEliece problem with so
called wild Goppa codes.
On the other hand, there are no structural attacks known against the original

McEliece assumption and it seems that brute forcing the trapdoor (α, g) and apply-
ing support splitting is thus far the most efficient attack. As a consequence, actual
attacks against McEliece cryptosystems usually target the LPN part (c.f. Section
3.6).
Several alternatives for irreducible Goppa codes have been proposed as a trapdoor

for McEliece. Among these proposals were generalized Reed Solomon codes [Nie85],
Reed-Muller codes [Sid94], algebraic geometric codes [JM96] and quasi-cyclic codes
[Gab05, BCGM07]. However, most of them were completely broken: generalized
Reed Solomon codes [SS92], Reed Muller codes [MS07], algebraic geometric codes
[FM08] and quasi-cyclic codes [OTD10]. It was shown that using low density parity
check codes is neither a good idea [MRS00].

5.3. The Building Block IND-CPA Scheme
We will now provide the elementary building block for our IND-CCA2 secure

scheme: An IND-CPA secure encryption scheme from the McEliece and LPN as-
sumptions which will serve as the basis for the construction of a tag-based encryp-
tion scheme in the next Section. The scheme is basically an upscaled version of the
basic McEliece scheme. Instead of encrypting a single message block, we encrypt l
message blocks m1, . . . ,ml.
To facilitate the construction of the tag-based encryption scheme TBEMcE in the

next section, we will construct PKEMcE directly such that it admits decryption using
incomplete secret keys. Therefore, the plaintexts will be encoded using an erasure
correcting code. Any blocks for which the corresponding secret key is missing will be
later reconstructed using erasure correction. As we are using message blocks of large
size, Reed Solomon codes are the optimal choice for the erasure correcting code.

Construction 5.2. Let λ be a security parameter. Let m,n, t = poly(λ) be param-
eters for which binary [m,n, 2t+ 1] Goppa codes exist. Let l, k = poly(λ) be positive
integers with k > l. Let ρ = ρ(λ) ∈ (0, 1). Let RS be a [k, l+ 1, k− l] Reed Solomon
Code over F2n. The public key encryption scheme PKEMcE = (PKEMcE.KeyGen,
PKEMcE.Enc,PKEMcE.Dec) is specified as follows.

• PKEMcE.KeyGen(1λ):
For i = 1, . . . k

(Ai, tdi)← McE.Gen(1λ)
pk ← (A1, . . . ,Ak)
sk ← (td1, . . . , tdk)
Return (pk, sk)

• PKEMcE.Enc(pk,m):
Parse pk = (A1, . . . ,Ak) ∈ (Fm×n2 )k and m = (m1, . . . ,ml) ∈ (Fn2 )l
s←$ Fn2
z← (s,m1, . . . ,ml)
x← RS.Encode(z)
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Parse x = (x1, . . . ,xk)
For i = 1, . . . , k

ei ←$ Ber(m, ρ)
yi ← Ai · xi + ei

c← (y1, . . . ,yk)
Return c

• PKEMcE.Dec(sk, c):
Parse sk = (td1, . . . , tdk) and c = (y1, . . . ,yk) ∈ (Fm2 )k
For i = 1, . . . , k

xi ← McE.Decode(tdi,yi)
If xi = ⊥

Return ⊥
x← (x1, . . . ,xk)
z← RS.Decode(x)
If z = ⊥

Return ⊥
Parse z = (s,m1, . . . ,ml)
m← (m1, . . . ,ml)
Return m

The plaintext space of PKEMcE is MMcE,λ = Fl·n2 and the ciphertext space is CMcE,λ =
Fk·m2 .

5.3.1. Completeness
We will first show that the encryption scheme PKEMcE is complete.

Lemma 5.1. The scheme PKEMcE is complete, if (1 + β)ρm ≤ t for a constant
β > 0.

Proof. Let c = (y1, . . . ,yk) be a ciphertext generated by PKEMcE.Enc, i.e. each yi
is of the form Aixi + ei. Since each error vector ei is chosen from the Bernoulli
distribution Ber(m, ρ), the Chernoff bound (Theorem 2.1) yields that

Pr[wgt(ei) ≥ t] ≤ Pr[wgt(ei) ≥ (1 + β)ρm] < e−β
2ρm/2.

Given that wgt(ei) ≤ t, the McEliece decoder McE.Decode(tdi, ·) correctly recovers
xi from yi = Aixi + ei. By the union bound it holds that

Pr[∃i : McE.Decode(tdi,yi) 6= xi] ≤
k∑
i=1

Pr[McE.Decode(tdi,yi) 6= xi] < k · e−β2ρm/2,

which is negligible in λ. Thus, the vector x = (x1, . . . ,xk) is recovered correctly
by the decryption algorithm, except with probability k · e−β2ρm/2. If the vector
x is correctly recovered, the Reed Solomon decoder RS.Decode will also recover
z = (s,m1, . . . ,ml). We can conclude that Pr[PKEMcE.Dec(sk,PKEMcE.Enc(pk,m)) 6=
m] < negl(λ).
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5.3.2. IND-CPA Security
We will now prove that the scheme PKEMcE is IND-CPA secure.

Theorem 5.1. The scheme PKEMcE is IND-CPA secure, given that the decisional
McEliece assumption (Assumption 5.1) and the DLPN(n,m ·k,Ber(m ·k, ρ)) assump-
tion hold.

Proof. Let A be a PPT-adversary against the IND-CPA security of PKEMcE. Con-
sider the following experiments Game 0, Game 1 and Game 2.

Game 0
For i = 1, . . . , k:

(Ai, tdi)← McE.Gen(1λ)
pk ← (A1, . . . ,Ak)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

Parse m∗ = (m∗1, . . . ,m∗l )
s←$ Fn2 , z← (s,m∗1, . . . ,m∗l )
x← RS.Encode(x)
For i = 1, . . . , k:

ei ←$ Ber(m, ρ)
yi ← Aixi + ei

c∗ ← (y1, . . . ,yk)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

Game 1
For i = 1, . . . , k:

Ai ←$ Fm×n2
pk ← (A1, . . . ,Ak)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

Parse m∗ = (m∗1, . . . ,m∗l )
s←$ Fn2 , z← (s,m∗1, . . . ,m∗l )
x← RS.Encode(x)
For i = 1, . . . , k:

ei ←$ Ber(m, ρ)
yi ← Aixi + ei

c∗ ← (y1, . . . ,yk)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

Game 2
For i = 1, . . . , k:

Ai ←$ Fm×n2
pk ← (A1, . . . ,Ak)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

Parse m∗ = (m∗1, . . . ,m∗l )
s←$ Fn2 , z← (s,m∗1, . . . ,m∗l )
x← RS.Encode(x)
For i = 1, . . . , k:

yi ←$ Fm2
c∗ ← (y1, . . . ,yk)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.
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Clearly, Game 0 is the IND-CPA experiment for PKEMcE, for which we have sub-
situted PKE.KeyGen and PKE.Enc with their implementations according to PKEMcE.
Game 1 is identical to Game 0, except that the matrices Ai are not generated
by the McEliece generation function McE.Gen but chosen uniformly at random.
Game 2 is identical to Game 1, except that the vectors yi are not computed by
yi ← Aixi + ei, but chosen uniformly at random. In Game 2 the challenge cipher-
text c∗ is independent of the challenge message m∗ and consequently the advantage
of A in Game 2 is 0. Thus, to prove IND-CPA security, it remains to show that
from the view of A Game 0 and Game 1 as well as Game 1 and Game 2 are
indistinguishable.
Claim 1
We claim that Game 0 and Game 1 are computationally indistinguishable from

the view of A, given that the decisional McEliece assumption (Assumption 5.1)
holds. Assume towards contradiction that A distinguishes between Game 0 and
Game 1 with non-negligible advantage ε, i.e.

Pr[Game0(A) = 1]− Pr[Game1(A) = 1] ≥ ε.

We will construct a distinguisher D1 that distinguishes the decisional McEliece prob-
lem with advantage ε/k. We will first provide the distinguisher D1.

Distinguisher D1
Input A ∈ Fm×n2
i∗ ←$ {1, . . . , k}
For j = 1, . . . , i∗ − 1

Aj ←$ Fm×n2
Ai∗ ← A
For j = i∗ + 1, . . . , k

(Aj, tdj)← McE.Gen(1λ)
pk ← (A1, . . . ,Ak)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

Parse m∗ = (m∗1, . . . ,m∗l )
s←$ Fn2 , z← (s,m∗1, . . . ,m∗l )
x← RS.Encode(x)
For i = 1, . . . , k:

ei ←$ Ber(m, ρ)
yi ← Aixi + ei

c∗ ← (y1, . . . ,yk)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

Before we analyze the distinguishing advantage of D1, we will define k+ 1 hybrid
experiments H0, . . . ,Hk. Experiment Hi is given as follows.
Clearly, experiment H0 is identical to Game 1 while experiment Hk is identical

to Game 2. We will now analyze the distinguishing advantage of D1. First assume
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Experiment Hi

For j = 1, . . . , i
Aj ←$ Fm×n2

For j = i+ 1, . . . , k
(Aj, tdj)← McE.Gen(1λ)

pk ← (A1, . . . ,Ak)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

Parse m∗ = (m∗1, . . . ,m∗l )
s←$ Fn2 , z← (s,m∗1, . . . ,m∗l )
x← RS.Encode(x)
For i = 1, . . . , k:

ei ←$ Ber(m, ρ)
yi ← Aixi + ei

c∗ ← (y1, . . . ,yk)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

that D1’s input A is generated by the McEliece generation, i.e. A = AMcE where
(AMcE, td) ← McE.Gen(1λ). Fix the random choice i∗ to i∗ = i. Then it holds that
from the view of A the simulation of D1 is identically distributed to experiment
Hi−1. Therefore, we have that

Pr[D1(AMcE) = 1|i∗ = i] = Pr[Hi−1(A) = 1].

Consequently, it holds that

Pr[D1(AMcE) = 1] =
k∑
i=1

1
k

Pr[D1(AMcE) = 1|i∗ = i]

=
k∑
i=1

1
k

Pr[Hi−1(A) = 1].

Now assume that D1’s input A is chosen uniformly at random, i.e. A = U where
U←$ Fm×n2 . Again, fix the random choice i∗ to i∗ = i. Then it holds that from the
view of A, the simulation of D1 is identically distributed to Hi. Therefore, we have

Pr[D1(U) = 1|i∗ = i] = Pr[Hi(A) = 1].

Consequently, it holds that

Pr[D1(U) = 1] =
k∑
i=1

1
k

Pr[D1(U) = 1|i∗ = i]

=
k∑
i=1

1
k

Pr[Hi(A) = 1].



5.3. The Building Block IND-CPA Scheme 95

Together this yields

Adv(D1) = Pr[D1(AMcE) = 1]− Pr[D1(U) = 1]

=
∣∣∣∣∣
k∑
i=1

1
k

Pr[Hi−1(A) = 1]−
k∑
i=1

1
k

Pr[Hi(A) = 1]
∣∣∣∣∣

= 1
k
|Pr[H0(A) = 1]− Pr[Hk(A) = 1]|

= 1
k
|Pr[Game0(A) = 1]− Pr[Game1(A) = 1]|

≥ ε

k
.

This however contradicts the decisional McEliece assumption which concludes the
claim.

Claim 2
We claim that Game 1 and Game 2 are computationally indistinguishable from

the view of A, given that the DLPN(n,m ·k,Ber(m ·k, ρ)) assumption holds. Assume
towards contradiction that A distinguishes between Game 1 and Game 2 with
advantage ε, i.e.

Pr[Game1(A) = 1]− Pr[Game2(A) = 1] ≥ ε.

We will construct a distinguisher D2 that distinguishes the DLPN(n,m ·k,Ber(m ·
k, ρ)) problem with advantage ε, contradicting the hardness of DLPN(n,m·k,Ber(m·
k, ρ)). We will now provide the distinguisher D2.

Distinguisher D2
Input (A,v) ∈ Fk·m×n2 × Fk·m2
Parse A = (AT

1 ‖ . . . ‖AT
k )T and v = (vT1 ‖ . . . ‖vTk )T

pk ← (A1, . . . ,Ak)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

Parse m∗ = (m∗1, . . . ,m∗l )
z← (0,m∗1, . . . ,m∗l )
x← RS.Encode(x)
For i = 1, . . . , k:

yi ← vi + Aixi
c∗ ← (y1, . . . ,yk)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

We will now analyze the distinguishing advantage of D2. Assume first that D2’s
input (A,v is of the form (A,As + e), where s ←$ Fn2 is chosen uniformly at
random and e ←$ Ber(k ·m, ρ). Then the vi are of the form vi = Ais + ei. Thus
yi = vi + Aixi = Ais + ei + Aixi = Ai(s + xi) + ei. It holds for all i ∈ {1, . . . , k}
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that RS.Encodei(s, 0, . . . , 0) = s, as this input corresponds to a constant polynomial.
Thus we have

s + xi = RS.Encodei(s, 0, . . . , 0) + RS.Encodei(0,m∗1, . . . ,m∗l )
= RS.Encodei(s,m∗1, . . . ,m∗l ).

We conclude that the yi are distributed as in Game 1 and thus A’s view is dis-
tributed as inGame 1. On the other hand, if D2’s input (A,v) is of the form (A,u),
with a uniformly random u, then the yi = vi+Aixi = ui+Aixi are also distributed
uniformly random. Thus the yi are distributed as in Game 2 and consequently A’s
view is distributed as in Game 2. We get that

Adv(D2) = Pr[D2(A,As + e) = 1]− Pr[D2(A,u) = 1]
= Pr[Game1(A) = 1]− Pr[Game2(A) = 1]
≥ ε,

contradicting the hardness of DLPN(n,m · k,Ber(m · k, ρ)).

5.3.3. Alternative Decryption
We will now construct an alternative decryption algorithm Dec∗ for PKEMcE that

can decrypt ciphertexts using incomplete secret keys. We will use this alternative
decryption algorithm in the proof of Theorem 5.2 in order to simulate a decryption
oracle using incomplete secret keys. Dec∗ will correctly decrypt ciphertexts c given
the public key pk and an incomplete secret key s̃k of which at most d(RS) − 1 =
k−l−1 components are missing. We need the behavior of Dec∗ to be identical to the
behavior of PKEMcE. To this end PKEMcE.Dec has been crafted in a way such that
it rejects a ciphertext c if Dec∗ would not be able to decrypt it. The construction of
Dec∗ follows a simple idea. Dec∗ first decrypts all the components for which it has
the secret keys and then uses erasure correction to reconstruct the other components.
Finally, it re-encrypts the components and compares them with the input ciphertext
to ensure that PKEMcE.Dec would not have rejected any of them.

Construction 5.3. Let λ be a security parameter and let m,n, l, k, ρ, t be as in the
definition of PKEMcE (Construction 5.2). The alternative decryption algorithm Dec∗
for PKEMcE is defined as follows.

Dec∗(pk, s̃k, c):
Parse pk = (A1, . . . ,Ak), s̃k = (td1, . . . , tdk) and c = (y1, . . . ,yk)
For i = 1, . . . , k

If tdi 6= ⊥
xi ← McE.Decode(tdi,yi)

Otherwise
xi ← ⊥

x← (x1, . . . ,xk)
z← RS.Decode(x)
If z = ⊥

Return ⊥
x′ ← RS.Encode(z)
Parse x′ = (x′1, . . . ,x′k)
For i = 1, . . . , k
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ei ← yi −Aix′i
If wgt(ei) > t

Return ⊥
Parse z = (s,m1, . . . ,ml)
m← (m1, . . . ,ml)
Return m

Lemma 5.2. Fix a pair (pk, sk) of public and secret keys generated by the key
generation algorithm PKEMcE.KeyGen. Fix an s̃k such that s̃k contains at most
k − l − 1 erasures but is otherwise identical to sk. Then it holds for every c ∈ Fm·k2
(i.e. every c that could syntactically be a ciphertext) that

PKEMcE.Dec(sk, c) = Dec∗(pk, s̃k, c).

Proof. Let pk = (A1, . . . ,Ak) and c = (y1, . . . ,yk). Let yi = Aix†i +e†i with x†i ∈ Fn2
and e†i ∈ Fm2 such that wgt(e†i ) is as small as possible. We will distinguish two cases:

1. It holds for all i that wgt(e†i ) ≤ t.

2. There exists an i such that wgt(e†i ) > t.

We will now show that in both cases it holds that

PKEMcE.Dec(sk, c) = Dec∗(pk, s̃k, c).

We will start with the first case. Observe that in this case x†i and e†i are uniquely
defined by Ai and yi, as Ai generates an error correcting code of distance ≥ 2t+ 1
and wgt(e†i ) ≤ t. As McE.Decode(tdi, ·) corrects up to t errors, it will output xi = x†i .
Consequently, if x = (x1, . . . ,xk) is a codeword of RS, then PKEMcE.Dec(sk, c) will
produce a unique output m 6= ⊥. Now consider the alternative decoding algorithm
Dec∗. There are at most k− l−1 erasures in s̃k. For all other i, McE.Decode(tdi,yi)
will output xi = x†i , as e†i is within the decoding bound for the McEliece decoder.
Consequently, Dec∗ recovers at least l + 1 components x†i 6= ⊥ of the vector x†.
Thus, x has at most k− l−1 erasures and the Reed-Solomon Decoder RS.Decode(x)
will produce the same output z as in the erasure-free case. Moreover, if z 6= ⊥
then x′ = RS.Encode(z) = (x1, . . . ,xk) is identical to x† = (x†1, . . . ,x†k). Therefore,
it holds for all i that ei = yi − Aix′i = Aix†i + e†i − Aixi = e†i and the checks
wgt(ei) ≤ t will be passed as wgt(e†i ) ≤ t. Thus the unique output m 6= ⊥ is
produced. Consequently, in this case we have PKEMcE.Dec(sk, c) = Dec∗(pk, s̃k, c).
In the second case there exists an index i such that wgt(e†i ) > t. For this particular

index i McE.Decode(tdi,yi) will output ⊥ by definition. Thus, PKEMcE.Dec(sk, c) =
⊥. Now consider Dec∗(pk, s̃k, c). It computes a vector x = (x1, . . . ,xk). If x has
more than k− l− 1 erasures, then RS.Decode(x) outputs ⊥ and thus Dec∗(pk, s̃k, c)
outputs ⊥. If however RS.Decode(x) outputs a z 6= ⊥, then x′ = RS.Encode(z) is
identical to x†. Thus we have ei = yi−Aix′i = Aix†i + e†i −Aixi = e†i and the check
wgt(ei) ≤ t is not passed as wgt(ei) > t. Thus Dec∗(pk, s̃k, c) outputs ⊥ and we
conclude that also in this case it holds that PKEMcE.Dec(sk, c) = Dec∗(pk, s̃k, c).

5.4. Tag-based Encryption from McEliece
We will now construct a tag-based encryption scheme TBEMcE from the public key

encryption scheme PKEMcE provided in the last Section. We will first outline the
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ideas and strategies that lead to this construction. In order to prove IND-STAG-
CCA security for our scheme, we need to be able to simulate a decryption oracle
that can handle decryption queries for all tags except for the challenge tag. We have
seen in the last section that when we use the alternative decryption algorithm Dec∗,
then incomplete secret keys are sufficient for this task, given that not too many
components of the secret key are missing.
The tag-based encryption scheme TBEMcE will use (virtually) the same encryption

and decryption algorithms as PKEMcE. The only difference is that we augment both
algorithms by key-derivation mechanisms, that derive tag-specific keys from the full
keys. More specifically, encryption takes a full public key pk and derives a tag-specific
public key pkτ , which is basically a projection of pk onto coordinates corresponding
to τ . Similarly, decryption takes a full secret key sk and derives a tag-specific secret
key skτ , which is again a projection of sk to coordinates specified by τ .
When we reduce the IND-STAG-CCA security of TBEMcE to the IND-CPA security

of PKEMcE, the reduction will not be in possession of the secret key corresponding
to the challenge tag τ ∗. We will therefore set all components of the full secret key
sk that appear in skτ∗ to ⊥ (erasure). We need to ensure that no other tag τ shares
too many components with the challenge tag τ ∗, so that we can use Dec∗ to answer
decryption queries for any tag τ 6= τ ∗. We will accomplish this by encoding the tags
with a code of minimum distance l + 1. This guarantees that two distinct tags τ1
and τ2 agree on at most k − l − 1 locations. Consequently, every tag τ 6= τ ∗ agrees
with τ ∗ on at most k − l − 1 locations.
Construction 5.4. Let λ be a security parameter. Let m,n, t = poly(n) be such
that a binary [m,n, 2t + 1] Goppa codes exists. Let q = poly(λ) be a prime power
and l, k, r = poly(λ) be such that a q-ary linear [k, r, l + 1] code Ctag exists. The
tag-based encryption scheme TBEMcE = (TBEMcE.KeyGen,TBEMcE.Enc,TBEMcE.Dec)
is specified as follows.

• TBEMcE.KeyGen(1λ):
For i = 1, . . . , k and a ∈ Fq

(Ai,a, tdi,a)← McE.Gen(1λ)
pk ← (Ai,a)i,a
sk ← (tdi,a)i,a
Return (pk, sk)

• TBEMcE.Enc(pk, τ,m):
Parse pk = (Ai,a)i,a
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k)
pkτ ← (A1,τ̂1 , . . . ,Ak,τ̂k)
c← PKEMcE.Enc(pkτ ,m)
Return c.

• TBEMcE.Dec(sk, τ, c):
Parse sk = (tdi,a)i,a
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k)
skτ ← (td1,τ̂1 , . . . , tdk,τ̂k)
m← PKEMcE.Dec(skτ , c)
Return m
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The plaintext space of TBEMcE is MMcE,λ = Fl·n2 , the ciphertext space is CMcE,λ =
Fk·m2 and the tag space is TMcE,λ = Frq.

We will first show that the scheme TBEMcE fulfills the completeness requirement.

Lemma 5.3. The tag-based encryption scheme TBEMcE is complete.

Proof. Since the derived public key pkτ is a proper public key for PKEMcE, the
completeness of TBEMcE follows directly from the completeness of PKEMcE (Lemma
5.1).

5.4.1. IND-STAG-CCA2 Security
We will now establish that the tag-based encryption scheme TBEMcE is IND-STAG-

CCA2 secure.

Theorem 5.2. TBEMcE is IND-STAG-CCA2 secure, given that PKEMcE is IND-CPA
secure.

Proof. Let A be a PPT-adversary with advantage ε against the IND-STAG-CCA2
security of TBEMcE. We will construct an adversary A′ with advantage ε against
the IND-CPA security of PKEMcE. Consider the following experiments Game 0 and
Game 1.

Game 0
(τ ∗, st0)← A(init, 1λ)
For i = 1, . . . , k and a ∈ Fq

(Ai,a, tdi,a)← McE.Gen(1λ)
pk ← (Ai,a)i,a
sk ← (tdi,a)i,a
(m0,m1, st1)← AODec(sk,τ∗,·,·)(find, st0, pk)
b←$ {0, 1}
τ̂ ∗ ← Ctag.Encode(τ ∗)
Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k )
pkτ∗ ← (A1,τ̂∗1 , . . . ,Ak,τ̂∗

k
)

c∗ ← PKEMcE.Enc(pkτ∗ ,mb)
b′ ← AODec(sk,τ∗,·,·)(guess, st1, c

∗)
Return 1 iff b = b′.

ODec(sk, τ ∗, τ, c)
If τ = τ ∗

Return ⊥
Parse sk = (tdi,a)i,a
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k)
skτ ← (td1,τ̂1 , . . . , tdk,τ̂k)
m← PKEMcE.Dec(skτ , c)
Return m

Clearly, Game 0 is the IND-STAG-CCA2 experiment for TBEMcE, for which we
have substituted TBE.KeyGen, TBE.Enc and TBE.Dec with their implementations
according to TBEMcE.
Game 1 is identical to Game 0, except for the following changes. The lines

"τ̂ ∗ ← Ctag.Encode(τ ∗)" and "Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k )" have been moved further up.
This however does not affect the experiment, since the tag τ ∗ does not change during
the experiment. Moreover, the public and secret key components corresponding to
the encoded challenge-tag τ̂ ∗ are computed seperately from the other public and
secret key components and the secret key s̃k is set to ⊥ at locations corresponding to
the encoded challenge-tag τ̂ ∗. Finally, the decryption oracleODec uses the alternative
decryption algorithm Dec∗ instead of PKEMcE.Dec.
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Game 1
(τ ∗, st0)← A(init, 1λ)
τ̂ ∗ ← Ctag.Encode(τ ∗)
Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k )
(pk∗, sk∗)← PKEMcE.KeyGen(1λ)
Parse pk∗ = (A∗1, . . . ,A∗k)
For i = 1, . . . , k and a ∈ Fq

If a = τ̂ ∗i
(Ai,a, tdi,a)← (A∗i ,⊥)

Otherwise
(Ai,a, tdi,a)← McE.Gen(1λ)

pk ← (Ai,a)i,a
s̃k ← (tdi,a)i,a
(m0,m1, st1)← AODec(pk,s̃k,τ∗,·,·)(find, st0, pk)
b←$ {0, 1}
c∗ ← PKEMcE.Enc(pkτ∗ ,mb)
b′ ← AODec(pk,s̃k,τ∗,·,·)(guess, st1, c

∗)
Return 1 iff b = b′.

ODec( pk, s̃k , τ ∗, τ, c)
If τ = τ ∗

Return ⊥
Parse sk = (tdi,a)i,a
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k)
s̃kτ ← (td1,τ̂1 , . . . , tdk,τ̂k)
m← Dec∗(pk, s̃kτ , c)
Return m

We claim that from the view of A, Game 0 and Game 1 are identically dis-
tributed. First observe that the public keys pk are identically distributed in both
experiments. As the code Ctag has minimum distance l + 1, each encoded tag τ̂ has
Hamming-distance at least l + 1 from the encoded challenge-tag τ̂ ∗. Thus, for each
τ 6= τ ∗ the derived secret key s̃kτ has at most k − l − 1 erasures. By Lemma 5.2 it
holds that PKEMcE.Dec(skτ , c) = Dec∗(pk, s̃kτ , c), where skτ is a derived secret key
without erasures. Thus the decryption oracle has identical behavior in both experi-
ments and we can conclude that Game 1 and Game 2 are identically distributed
from the view of A and consequently AdvGame1(A) = AdvGame1(A) = ε.
We can now construct the IND-CPA adversary A′.
A′ simulates Game 1 faithfully, except that the public key pk∗ and the challenge-

ciphertext c∗ are provided by the IND-CPA experiment. However, the IND-CPA
experiment computes pk∗ and c∗ exactly in the same way as Game 1 does, so the
output of the IND-CPA experiment with A′ is identically distributed to the output
of Game 1. Therefore it holds that AdvIND−CPA(A′) = AdvGame1(A) = ε which is
non-negligible. This contradicts the IND-CPA security of PKEMcE, which concludes
the proof.

5.5. Instantiation of the IND-CCA2 Scheme
We will now discuss how the parameters m,n, t, k, r, l and ρ should be chosen

when instantiating TBEMcE. We have to determine a parameter set that meets the
following constraints.

1. The scheme TBEMcE should be complete.

2. The scheme TBEMcE should have security 2Ω(λ).
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Adversary A′

A′(find, pk∗ )
(τ ∗, st0)← A(init, 1λ)
τ̂ ∗ ← Ctag.Encode(τ ∗)
Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k )
Parse pk∗ = (A∗1, . . . ,A∗k)
For i = 1, . . . , k and a ∈ Fq

If a = τ̂ ∗i
(Ai,a, tdi,a)← (A∗i ,⊥)

Otherwise
(Ai,a, tdi,a)← McE.Gen(1λ)

pk ← (Ai,a)i,a
s̃k ← (tdi,a)i,a
(m0,m1, st1)← AODec(pk,s̃k,τ∗,·,·)(find, st0, pk)
st← (pk, s̃k, τ ∗, st1)
Return (m0,m1, st)

A′(guess, st, c∗ )
Parse st = (pk, s̃k, τ ∗, st1)
b′ ← AODec(pk,s̃k,τ∗,·,·)(guess, st1, c

∗)
Return b′

ODec(pk, s̃k, τ ∗, τ, c)
If τ = τ ∗

Return ⊥
Parse sk = (tdi,a)i,a
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k)
s̃kτ ← (td1,τ̂1 , . . . , tdk,τ̂k)
m← Dec∗(pk, s̃kτ , c)
Return m

3. The size of the tag space TMcE,λ should be 2λ.

Under these constraints, we would like to minimize the size of the keys and the
ciphertext expansion. We will now derive more specific constraints. There are three
codes involved: The outer Reed Solomon Code RS, the inner scrambled Goppa codes
and the code Ctag encoding the tags. It will be convenient to consider these codes
in terms of their respective rates. Let RMcE = n

m
be the rate of the Goppa codes,

RRS = l+1
k

be the rate of the Reed Solomon code and Rtag = r
k
be the rate of Ctag.

The size of the plaintexts of TBEMcE is l · n and the size of the ciphertexts k · m.
Thus the ciphertext expansion is

EMcE = k ·m
l · n

= k ·m
(l + 1)n− n = k ·m

RRSRMcEkm−RMcEm
= 1
RRSRMcE − RMcE

k

.

For a growing k, this is essentially 1
RRSRMcE

. The size of the public keys is

|pk| = q · k ·m · n = q · k ·RMcEm
2.

Finally, the size of the tag space is

|TMcE,λ| = qr = 2log(q)Rtagk.

We will now derive the precise constraints. By Lemma 5.1, TBEMcE is complete
whenever

(1 + β)ρm ≤ t.
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small Ciphertext Expansion

As t = (1−RMcE)m
log(m) this can be equivalently written as

ρ ≤ 1−RMcE

(1 + β) log(m) .

By Theorems 5.1 and 5.2 TBEMcE is IND-STAG-CCA2 secure given that the deci-
sional McEliece problem and the LPN problem DLPN(n,m ·k,Ber(m ·k, ρ)) are hard
and Ctag has minimum distance at least l + 1. Thus, want both problems to have
(conjectured) hardness 2Ω(λ). The decisional McEliece problem should have hardness
2Ω(λ) if m = Ω(λ) and RMcE is a constant smaller than 1. We assume that the best
attack against LPN(n,m · k,Ber(m · k, ρ)) is not significantly better than (modified)
brute force search, which in this case has complexity 2O(ρn) = 2O(m/ log(m)). Thus, in
order to get 2Ω(λ) security we need to adjust the choice of m to m = Ω(λ · log(λ)).
We still need to choose the Ctag. The minimum distance of Ctag must be at least
l + 1 = RRSk. We end up with the constraints

1. m = Ω(λ log(λ))

2. ρ ≤ 1−RMcE
(1+β) log(m)

3. d(Ctag) ≥ RRSk

4. log(q)Rtagk = λ

The choice of RMcE is pretty much dictated by the McEliece assumption and
leaves no opportunity to make adjustments. This also determines ρ. Moreover, the
choice of Rtag follows directly from the choice of q and RRS. The remaining degree
of freedom between q, RRS and k is now basically a parameter trade-off. We will
discuss several options.

5.5.1. Minimizing the Ciphertext Expansion
The ciphertext expansion can be minimized by maximizing RRS. Thus, we want

to maximize RRS under the constraints d(Ctag) ≥ RRSk and log(q)Rtagk = λ. Maxi-
mizing RRS is therefore equivalent to maximizing the minimum distance of Ctag. As
q tends towards infinity we can let d(Ctag) tend towards 1. If we let q grow with n,
i.e. if we have an asymptotically growing alphabet, then Reed Solomon codes yield
the best possible trade-off between rate and minimum distance, as they meet the
Singleton bound. Thus, let q ≥ k and set Ctag to be a [k,Rtagk, k −Rtagk + 1] Reed
Solomon code. Thus we have the constraint

1−Rtag ≥ RRS

on Rtag, which is fulfilled by setting

Rtag = 1−RRS.

With this choice of Rtag, our remaining constraint is

log(q) (1−RRS) k = log(q)Rtagk = λ

and we can thus set
RRS = 1− λ

k log(q) = 1− o(1).

Thus, the ciphertext expansion 1
RMcERRS

asymptotically tends to 1
RRS

for k = Ω(λ)
and q = k. The size of the keys is k2RMcEm

2 , which is by a factor k2 larger than
for the basic McEliece scheme.
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5.5.2. Minimizing the size of the public key
The size of the public key can be minimized by minimizing |pk| = q · kRMcEm

2.
Thus, we want to minimize q · k under the constraints d(Ctag) ≥ RRSk and

log(q)Rtagk = λ.

Clearly, we can minimize |pk| by minimizing q, therefore choosing q = 2. By the
Gilbert Varshamov bound (Theorem 2.4), we can find a binary code Ctag with relative
minimum distance at least RRS and rate at least 1 − H(RRS). Thus, we have the
remaining constraint

log(q)(1−Hq(RRS)) · k = λ.

which yields
k = λ

1−H(RRS) .

Thus, k can be minimized by choosing RRS close to 0. Choosing RRS as a small
constant leads to a key growth of ≈ 2λ and a rather large, but constant factor
ciphertext expansion of 1

RMcERRS
. The ciphertext expansion and the key expansion

can be balanced by choosing RRS such that

1−H(RRS) = RRS

which is the case for RRS ≈ 0.77. This leads to a ciphertext expansion of ≈ 1.3/RMcE
and a key growth of ≈ 2.6 · λ, which seems like a good trade-off.

5.5.3. IND-CCA2 scheme via CHK
We can now apply the CHK transformation (Theorem 4.1) and obtain the follow-

ing Theorem to conclude this Chapter.

Theorem 5.3. Let λ be a security parameter and m = O(λ2). There exists an IND-
CCA2 secure public key encryption scheme PKEMcE,CCA2 based on the hardness of the
decisional McEliece assumption and the LPN problem LPN(λ,m,Ber(m,O( 1

log(λ)))).
The scheme has a constant factor ciphertext expansion, plaintexts of size Θ(λ2), and
key sizes of Θ(λ3).





6. IND-CCA2 Secure Public Key
Encryption from the LPN
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So seltsam es auch klingen mag, die
Stärke der Mathematik beruht auf
dem Vermeiden jeder unnötigen
Annahme und auf ihrer großartigen
Einsparung an Denkarbeit.

Ernst Mach

6.1. Introduction
In Chapter 5 we have seen a construction of an IND-CCA2 secure public key

encryption scheme based on the hardness of the decisional McEliece assumption and
the LPN problem. A favorable feature of this scheme is that all its operations can
be implemented using simple modulo 2 arithmetic. However, we have also seen that
certain instantiations of the McEliece assumption give rise to algebraic attacks. This
may lead to concerns regarding the hardness of the classical McEliece problem. For
the LPN problem in contrast, no such structural attacks are known. Moreover, the
LPN problem is arguably of a more combinatorial nature than the rather algebraic
McEliece problem.
In this Chapter we will provide the construction of a standard model IND-CCA2

secure public key cryptosystem which is solely based on an LPN assumption. A
preliminary version of this construction is due to Döttling, Müller-Quade and Nasci-
mento [DMQN12]. We will need a low noise version of LPN such as used by
Alekhnovich [Ale03]. More specifically, the hardness of our scheme will be based
on the LPN problem LPN(n,m,Ber(m,O(m− 1

2 ))) for some m = O(n).
As mentioned in Section 4.2, standard model IND-CCA2 security has been ach-

ieved for virtually all standard number-theoretic assumptions. Efforts to construct
IND-CCA2 secure cryptosystems based on the hardness of lattice and coding as-
sumptions succeeded rather recently. In the LWE realm, this was first achieved

105



106 6. IND-CCA2 Secure Public Key Encryption from the LPN Assumption

by Peikert and Waters [PW08]. Improved constructions were provided by Peikert
[Pei09] and Micciancio and Peikert [MP12]. The construction we will provide in this
section was mostly inspired by McEliece scheme provided in Chapter 5, however, it
also bears certain resemblances with the scheme of Micciancio and Peikert [MP12].
In an asymptotical sense, the scheme we construct in this Chapter is optimal

regarding ciphertext expansion, key sizes and runtimes of the involved algorithms.

6.1.1. Outline
We will start with a rough outline of a simplified scheme that encrypts single bits

and has a substantial decryption-error. On a technical level, this first building block
resembles the schemes of Regev [Reg05] and the Dual-Regev Scheme of Gentry et al.
[GPV08] (which both live in the LWE realm) and uses a slightly simpler trapdoor
than [DMQN12], as proposed by Damgård and Park [DP12]. Public keys for this
scheme are pairs (a,A), where A ←$ Fm×n2 is chosen uniformly at random and
a = ATw, where w ←$ Ber(m, ρ) is chosen by a Bernoulli distribution Ber(m, ρ).
The secret key of this simplified scheme is w. To encrypt a message m ∈ F2, sample
s ←$ Fn2 , e ←$ Ber(m, ρ), e ←$ Ber(ρ) and set c ← (〈a, s〉 + e + m,As + e) and
output c. To decrypt a ciphertext c = (c1, c2) ∈ F2 × Fm2 , compute y = c1 − 〈w, c2〉
and output y. The output y is a noisy version of the plaintext m, since it holds that

y = c1 − 〈w, c2〉
= m + e+ 〈a, s〉 − 〈w,As + e〉
= m + e+ 〈ATw, s〉 − 〈w,As〉 − 〈w, e〉
= m + e+ 〈w,As〉 − 〈w,As〉 − 〈w, e〉
= m + e− 〈w, e〉.

As both w and e are chosen from Ber(m, ρ), 〈w, e〉 is approximately distributed by
Ber(ρ2m). Thus, once ρ is sufficiently small (on the order of O(m− 1

2 )), the decryption
error is low enough that it can be handled. Security of this simplified scheme follows
by the decisional LPN assumption. First notice that the vector a of the public key
is indistinguishable from uniformly random by the dual decisional LPN assumption.
Next, by the decisional LPN assumption (〈a, s〉+e,As+e) is indistinguishable from
uniformly random and IND-CPA security follows.
Considering this scheme, the process of encrypting a message m and decrypting

the ciphertext c acts like a noisy channel on the message m. The standard way of
dealing with this noise is encoding longer messages m using an error correcting code.
Thus, assume that m ∈ Fn2 and that C1 is a linear [m,n] error correcting code. If
x ← C1.Encode(m) is the encoding of m, we can just use the simplified scheme to
transmit all the bits xi of x and then use an efficient decoder for C1 to remove the
decryption error after decryption. However, there is room for optimization. The
basic observation is that we can use the same vector s for all the encryptions of
the bits of x, i.e. we can batch the encryption of the xi. For the modified scheme,
the secret key is a matrix W ∈ Fm×m2 chosen according to Ber(m ×m, ρ), and the
public key is (A1,A3)1 where A3 ←$ Fm×n2 is chosen uniformly at random and

1It will become clear in a moment why we call the second matrix A3 instead of A2
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A1 = WTA3. Messages m are encrypted to ciphertexts c = (c1, c3)2 by computing

c1 ← A1s + e1 + C1.Encode(m)
c3 ← A3s + e3,

where as above s ←$ Fn2 is chosen uniformly at random and e1, e3 ←$ Ber(m, ρ).
There is a slightly better choice for the distribution of e1 and e3. By choosing e1 and
e3 uniformly from the Hamming sphere Sbρmc, we will be able to avoid decryption
errors. Moreover, by Lemma 3.6 the corresponding LPN problem is at least as hard
as LPN with Bernoulli errors.
Similar to the simplified scheme above, ciphertexts (c1, c3) are decrypted by com-

puting

x = c1 −WT c3

= C1.Encode(m) + A1s + e1 −WT (A3s + e3)
= C1.Encode(m) + WTA3s + e1 −WTA3s−WTe3

= C1.Encode(m) + e1 −WTe3.

Since W, e1 and e3 are chosen from low weight distributions, the error term WTe3
has also low weight and we can recover m from x by using the efficient decoder of
C1, i.e. m← C1.Decode(x). IND-CPA security follows as above.
Recall that for our McEliece based construction in Chapter 5 we required a witness

recovering encryption scheme, i.e. decryption must be able to recover the noise
terms e and test whether they are valid. We did this to facilitate the construction of
an alternative decryption algorithm that accomplishes decryption using incomplete
public keys. In this Chapter, we follow the same strategy. However with the above
scheme, this is not yet possible, i.e. there is no obvious way to recover e1 and e2 given
the secret key W and the ciphertext c. We circumvent this problem by encrypting
the witness s instead of the message m. Thus, we will add an extra component
c2 to the ciphertext that encrypts the actual message m encoded using a code C2.
We could actually encode m together with s. However, this would have a negative
impact on the ciphertext expansion of the scheme, as the code C1 needs to deal
with high noise during decryption, whereas as separate code C2 will only need to
deal with a low amount of noise. Let therefore C2 be another [m,n] error correcting
code. The public key is extended by a randomly chosen matrix Am×n

2 , i.e. the public
key is (A1,A2,A3) where A1 = WTA3. Since we want to recover the error terms,
the secret key now actually contains the matrices of the public key, i.e. the secret
key is (A1,A2,A3,W). Messages m are encrypted to ciphertexts c = (c1, c2, c3) by
computing

c1 ← A1s + e1 + C1.Encode(s)
c1 ← A2s + e2 + C2.Encode(m)
c3 ← A3s + e3,

where again s←$ Fn2 and e1, e2, e3 ←$ Sm(bρmc). To decrypt, we proceed as above
and compute

x = c1 −WT c3 = C1.Encode(s) + e1 −WTe3

2Same as for the matrix A3
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to recover s by s← C1.Decode(x). We now recover m by computing

m← C2.Decode(c2 −A2 · s) = C2.Decode(C2.Encode(m) + e2).

Once we have obtained s and m, we can recover e1, e2 and e3 by

e1 ← c1 −A1s− C1.Encode(s)
e2 ← c2 −A2s− C2.Encode(m)
e3 ← c3 −A2s.

The decryption algorithm can now check whether e1, e2 and e3 have appropriate
Hamming weight (i.e. exactly bρmc), and if not reject decryption.
Basically, we have now constructed an IND-CPA secure encryption scheme that

could take the role of the basic McEliece scheme in the constructions of Chapter 5.
However, recall that the McEliece based scheme in Section 5.3 needed to use Ω(λ)
McEliece trapdoors, which leads to rather large keys and ciphertexts. This blowup
occurred because we don’t know of any (sound) way of using the McEliece trapdoor
in a non-monolithic way. Put differently, we basically used the McEliece algorithms
McE.Gen and McE.Decode in an axiomatic way, without taking any advantage of
their internals.
The situation is different now. Due to the very simple structure of the LPN

problem and the trapdoors we have constructed, we will be able take advantage
of their internal structure. Specifically, we do not need to use the above trapdoor
monolithically. Recall that in order to construct a tag-based encryption scheme
we want to be able to derive tag-specific keys from a master key. In the McEliece
case we achieved this by using O(λ) McEliece keys in the master key. Each of the
McEliece secret keys is a full-fledged trapdoor that can be used to recover an entire
block. Here, we take a different approach, instead of chopping up the messages in
blocks and encrypting the blocks with monolithic keys we will chop up the keys
and combine them in a tag-specific way. Specifically, we can split the trapdoor
W ∈ Fm×m2 in k1 partial trapdoors of block size k2, i.e. if m = k1 ·k2 we split W into

W = (W1‖ . . . ‖Wk1),

where each Wi is a matrix in Fm×k1
2 . This means in particular that we can combine a

W by combining different choices of the Wi. This decomposition of W into blocks
also corresponds to a decomposition of the public keys and the ciphertexts into
blocks. Specifically, we get

A1 = WT ·A3 = (W1‖ . . . ‖Wk1)T ·A3 = (AT
3 W1‖ . . . ‖AT

3 Wk1)T .

If c = (c1, c2, c3) is a ciphertext, we can decompose c1 into

c1 = (y1, . . . ,yk1)

and decrypt yi by
x̃i = yi −WT

i c3.

The block x̃i is now a noisy block of the codeword x = (x1, . . . ,xk1). If we have
all the blocks x1, . . . ,xk we can use the decoder C1.Decode to decode the bit-errors
on x̃. However, if several blocks are missing, we will need a decoder that jointly
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decodes errors and erasures. We may even choose the blocks of length k2 = 1 (as in
[DMQN12]), but this leads to sub-optimal concrete performance.
We will again be faced with the task of simulating a decryption oracle using

incomplete keys. We will therefore construct the our IND-CPA scheme in a way
that allows decryption using incomplete secret keys. The alternative decryption
algorithm Dec∗ we construct for this task will have to handle bit errors and block
erasures simultaneously. As the blocks for which Dec∗ lacks the keys are not really
erased, but rather inaccessible for Dec∗, we will be able to make use of a list-decoding
advantage for Dec∗. We can design Dec∗ to operate in noise regimes that do not allow
unique decoding. However, given a short list of candidate secrets s will be sufficient,
as we can check for each s if it is a valid solution by recovering the corresponding
noise terms e1, e2 and e3 and testing whether they are valid.

6.2. The Building Block IND-CPA Scheme
In this Section we will construct the underlying IND-CPA scheme for our IND-

CCA scheme from LPN. The basic idea for this scheme follows the blueprint of the
McEliece cryptosystem provided in Chapter 5 and Regev’s LWE-based IND-CPA
secure public key encryption scheme [Reg05].

Construction 6.1. Let λ be a security parameter. Let m1,m2,m3, n1, n2, t1, t2 =
poly(λ) be positive integers. Let ρ = ρ(λ) ∈ (0, 1). Let C1 be a linear [m1, n1]
code with efficient encoding and decoding of up to t1 errors. Let C2 be an [m2, n2]
code with efficient encoding and decoding of up to t2 errors. The encryption scheme
PKELPN = (PKELPN.KeyGen,PKELPN.Enc,PKELPN.Dec) is specified as follows.

• PKELPN.KeyGen(1λ):
A2 ←$ Fm2×n1

2
A3 ←$ Fm3×n1

2
W←$ Ber(m3 ×m1, ρ)
A1 ←WT ·A3
pk ← (A1,A2,A3)
sk ← (A1,A2,A3,W)
Return (pk, sk)

• PKELPN.Enc(pk,m):
Parse pk = (A1,A2,A3)
s←$ Fn2
e1 ←$ Sm1(bρ ·m1c)
e2 ←$ Sm2(bρ ·m2c)
e3 ←$ Sm3(bρ ·m3c)
y1 ← A1 · s + e1 + C1.Encode(s)
y2 ← A2 · s + e2 + C2.Encode(m)
y3 ← A3 · s + e3
c← (y1,y2,y3)
Return c

• PKELPN.Dec(sk, c):
Parse sk = (A1,A2,A3,W) and c = (y1,y2,y3)
z← y1 −WT · y3
s← C.Decode(z)
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x← y2 −A2s
m← C2.Decode(x)
e1 ← y1 −A1s− C1.Encode(s)
e2 ← y1 −A2s− C2.Encode(m)
e3 ← y3 −A3s
If wgt(e1) = bρm1c and wgt(e2) = bρm2c and wgt(e3) = bρm3c

Return m
Otherwise

Return ⊥

The plaintext space of PKELPN is MLPN,λ = Fn2
2 and the ciphertext space is CLPN,λ =

Fm1+m2+m3
2 .

6.2.1. Completeness
We will first show that the scheme PKELPN is complete.

Lemma 6.1. Let β > 0 be a constant. Assume that the decoder C1.Decode can
handle up to t1 ≥ (1+β)ρ2m1m3 bit errors and C2.Decode can handle up to t2 ≥ ρm2
bit errors. Then the public key encryption scheme PKELPN is complete.

Proof. Let pk = (A1,A2,A3) and sk = (A1,A2,A3,W) be a pair of public and se-
cret keys generated by PKELPN.KeyGen(1λ). Let c = (y1,y2,y3) be a ciphertext gen-
erated by PKELPN.Enc. Since W is chosen from Ber(m3×m1, ρ), it holds by Lemma
2.11 that ‖WT‖wgt ≤ (1 +β− 1

ρm3
)ρm1, except with probability m3 · e−

1
3 (β− 1

ρm3
)2ρm1 .

Assume thus that ‖WT‖wgt ≤ (1 + β − 1
ρm3

)ρm1.
As c was generated by PKELPN.Enc, it holds that

y1 = A1s + e1 + C1.Encode(s) = WTA3s + e1 + C1.Encode(s)
y2 = A2s + e2 + C2.Encode(m)
y3 = A3s + e3

Thus we get

z = y1 −WTy3

= WTA3s + e1 + C1.Encode(s)−WT · (A3s + e3)
= C1.Encode(s) + e1 −WT · e3.

Since e1 ∈ Sm1(bρm1c) we have wgt(e1) = bρm1c. Likewise we have wgt(e3) = bρm3c
since e3 ∈ Sm3(bρm3c). As ‖WT‖wgt ≤ (1 + β − 1

ρm3
)ρm1 we get

wgt(WT · e3) ≤ ‖WT‖wgt · wgt(e3) ≤ (1 + β)ρ2m1m3 − ρm1

and thus we can bound

wgt(e1 −WT · e3) ≤ ρm1 + (1 + β)ρ2m1m3 − ρm1 = (1 + γ)ρ2m1m3.

The decoder C1.Decode will thus output s, as it can handle up to t1 ≥ (1+β)ρ2m1m3
errors. The decoder C2.Decode will then output m, as it can handle up to t2 ≥ ρm2
errors. Finally, the error terms e1, e2 and e3 will be recovered correctly and the
check will be passed. Thus PKELPN.Dec will correctly output m, which concludes
the proof.
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6.2.2. IND-CPA security
We will now show that the scheme PKELPN is IND-CPA secure.

Theorem 6.1. The public key encryption scheme PKELPN is IND-CPA secure given
that the DLPN(n1,m1 +m2 +m3,M) and DDMLPN(n1,m1,m2,Ber(m1×m2, ρ)) are
hard, where

M = Sm1(bρm1c)× Sm2(bρm2c)× Sm3(bρm3c)

Proof. Let A be an IND-CPA adversary against the IND-CPA security of PKELPN.
Consider the experiments Game 0, Game 1 and Game 2.

Game 0
A2 ←$ Fm2×n1

2
A3 ←$ Fm3×n1

2 , W←$ Ber(m3 ×m1, ρ)
A1 ←WT ·A3
pk ← (A1,A2,A3)
sk ← (A1,A2,A3,W)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

s←$ Fn2
e1 ←$ Sm1(bρm1c), e2 ←$ Sm2(bρm2c), e3 ←$ Sm3(bρm3c)
y1 ← A1 · s + e1 + C1.Encode(s)
y2 ← A2 · s + e2 + C2.Encode(m∗)
y3 ← A3 · s + e3
c∗ ← (y1,y2,y3)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

Clearly, Game 0 is the IND-CPA experiment for PKELPN, for which we have sub-
situted PKE.KeyGen and PKE.Enc with their implementations according to PKELPN.

Game 1
A1 ←$ Fm1×n1

2
A2 ←$ Fm2×n1

2
A3 ←$ Fm3×n1

2
pk ← (A1,A2,A3)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

s←$ Fn2
e1 ←$ Sm1(bρm1c), e2 ←$ Sm2(bρm2c), e3 ←$ Sm3(bρm3c)
y1 ← A1 · s + e1 + C1.Encode(s)
y2 ← A2 · s + e2 + C2.Encode(m∗)
y3 ← A3 · s + e3
c∗ ← (y1,y2,y3)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.
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Game 1 is identical to Game 0, except that the matrix A1 is now chosen uni-
formly at random.

Game 2
A1 ←$ Fm1×n1

2
A2 ←$ Fm2×n1

2
A3 ←$ Fm3×n1

2
pk ← (A1,A2,A3)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

s←$ Fn2
e1 ←$ Sm1(bρm1c), e2 ←$ Sm2(bρm2c), e3 ←$ Sm3(bρm3c)
y1 ←$ Fm1

2

y2 ←$ Fm2
2

y3 ←$ Fm3
2

c∗ ← (y1,y2,y3)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

Game 2 is identical to Game 1, except that the vectors y1, y2 and y3 are chosen
uniformly at random. Clearly, A’s advantage in Game 2 is 0, as the challenge
ciphertext c∗ is independent of the challenge message mb. It remains to show that
from the view of A, Game 0 and Game 1 as well as Game 1 and Game 2 are
indistinguishable.
Claim: It holds that |Pr[Game1(A) = 1] − Pr[Game0(A) = 1] ≤ negl(λ), given
that DDMLPN(n1,m3,m1,Ber(m3 ×m1, ρ)) is hard.
Assume towards contradiction that |Pr[Game1(A) = 1]−Pr[Game0(A) = 1]| >

ε for a non-negligible ε. We will construct a distinguisher D1 that distinguishes the
distributions (H,H · E) and (H,U). The distinguisher D1 is given as follows.
First assume that D1’s input is of the form (H,H · E). Then the public key pk

in D1’s simulation has the distribution (ETHT ,A2,HT ), with a uniformly random
HT ∈ Fm3×n1

2 and an E ∈ Fm3×m1
2 that is distributed according to Ber(m3 ×m1, ρ).

Therefore, the distribution of the public key pk is identical to the distribution of the
public key pk in Game 0. Thus, from the view of A, D1’s simulation and Game 0
are identically distributed and we have

Pr[D1(H,H · E) = 1] = Pr[Game0(A) = 1].

If, on the other hand, D1’s input is of the form (H,U), then A’s view in D1’s
simulation is identical to A’s view in Game 1. Thus we have

Pr[D1(H,U) = 1] = Pr[Game1(A) = 1].

This yields

AdvDDMLPN(D1) = |Pr[D1(H,H · E) = 1]− Pr[D1(H,U) = 1]
= |Pr[Game0(A) = 1]− Pr[Game1(A) = 1]|
> ε,
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Distinguisher D1
Input (H,Y) ∈ Fn1×m1

2 × Fn1×m2
2

A2 ←$ Fm2×n1
2

A3 ← HT

A1 ← YT

pk ← (A1,A3,A3)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

s←$ Fn2
e1 ←$ Sm1(bρm1c), e2 ←$ Sm2(bρm2c), e3 ←$ Sm3(bρm3c)
y1 ← A1 · s + e1 + C1.Encode(s)
y2 ← A2 · s + e2 + C2.Encode(m∗)
y3 ← A3 · s + e3
c∗ ← (y1,y2,y3)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

which contradicts the hardness of DDMLPN(n1,m3,m1,Ber(m3 × m1, ρ)), as ε is
non-negligible.
Claim: It holds that |Pr[Game2(A) = 1] − Pr[Game1(A) = 1] ≤ negl(λ), given
that DLPN(n1,m1 +m2 +m3,M) is hard.
Assume towards contradiction that |Pr[Game2(A) = 1]−Pr[Game1(A) = 1] >

ε for a non-negligible ε. We will construct a distinguisher D2 that distinguishes
(A,As + e) from (A,u), where

e←$ M = Sm1(bρm1c)× Sm2(bρm2c)× Sm3(bρm3c)
and u ∈ Fm1+m2+m3

2 is chosen uniformly at random. Let G ∈ Fm1×n1
2 be the

generator-matrix of C1 used by C1.Encode. The distinguisher D2 is given as fol-
lows.
Distinguisher D2

Input (A,y) ∈ Fm1+m2+m3×n1
2 × Fm1+m2+m3

2

Parse AT = (BT‖AT
2 ‖AT

3 )
Parse yT = (yT1 ‖zT‖yT3 )
A1 ← B−G
pk ← (A1,A3,A3)
(m0,m1, st)← A(find, pk)
b←$ {0, 1}
m∗ ← mb

y2 ← z + C2.Encode(m∗)
c∗ ← (y1,y2,y3)
b′ ← A(guess, st, c∗)
Return 1 iff b = b′.

We will now analyze the distinguishing advantage of D2. First assume that D2’s
input is of the form (A,As + e). When splitting up AT = (BT

1 ‖AT
2 ‖AT

3 ) and
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yT = (yT1 ‖zT‖yT3 ) this yields

y1 = Bs + e1

z = A2s + e2

y3 = A3s + e3

with uniformly random A1 ∈ Fm1×n
2 , B ∈ Fm2×n

2 and A3 ∈ Fm3×n
2 and with e1,

e2 and e3 chosen according to e1 ←$ Sm1(bρm1c), e2 ←$ Sm2(bρm2c) and e3 ←$
Sm3(bρm3c). As B is distributed uniformly random, so is A2 = B−G. The challenge
ciphertext c∗ is of the form

c∗ = (y1, z + C2.Encode(m∗),y2)
= (Bs + e1,A2s + e2 + C2.Encode(m∗),A3s + e3)
= (A1s + e1 + Gs,A2s + e2 + C2.Encode(m∗),A3s + e3)
= (A1s + e1 + C1.Encode(s),A2s + e2 + C2.Encode(m∗),A3s + e3)

Thus the distribution of pk and c∗ are the same as in Game 1 and we get

Pr[D2(A,As + e) = 1] = Pr[Game1(A) = 1].

Now assume that D2’s input is of the form (A,u). Again, splitting up AT =
(BT‖AT

2 ‖AT
3 ) and yT = (yT1 ‖zT‖yT3 ) yields that since B is uniformly distributed

and so is A2 = B−G. The ciphertext c∗ now has the form

c∗ = (u1,u2 + C2.Encode(m∗),u3) = (u1,u′2,u3).

As u2 is uniformly distributed, so is u′2 = u2 + C2.Encode(m∗). Thus, pk and c∗ have
the same distribution as in Game 2. We get

Pr[D2(A,u) = 1] = Pr[Game2(A) = 1].

We conclude

AdvDLPN(D2) = |Pr[D2(A,As + e) = 1]− Pr[D2(A,u) = 1]|
= |Pr[Game1(A) = 1]− Pr[Game2(A) = 1]|
> ε,

which contradicts the hardness of the DLPN(n1,m1 +m2 +m3, ρ) problem.
All together, we get that

AdvIND−CPA(A) ≤ AdvGame2(A) + negl(λ) ≤ negl(λ)

which concludes the proof.

6.2.3. Alternative Decryption
As in Section 5.3.3, we will first provide an alternative decryption algorithm Dec∗

for PKELPN. We will require Dec∗ to produce the same output as PKELPN.Dec, even
if Dec∗ has only an incomplete secret key at its disposal. Assume therefore that the
trapdoor W ∈ Fm3×m1

2 consists of k1 column blocks of size k2, i.e.m1 = k1 · k2 and

W = (W1‖ . . . ‖Wk1),
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where Wi ∈ Fm3×k2
2 . This is in direct analogy to the case of McEliece in Section 5.3.3,

where instead of partial trapdoors Wi we have full McEliece trapdoors. Assume now
that in an incomplete secret key s̃k several Wi are missing. Consequently, Dec∗
will not be able to recover the corresponding blocks from a ciphertext and has to
declare an erasure. Thus, in order to recover the secret s, we need a decoder for C1
that deals with both bit-errors and block erasures in codewords. A block erasure
deletes any of the k1 blocks entirely, while bit-errors appear on bit-level. However,
an important observation here is that we do not need unique decoding. Assume for
a moment that we have a decoder that outputs a short list of candidates for s.
We have crafted the encryption scheme PKELPN such that, given a ciphertext

c = (y1,y2,y3) and a possible secret s, we can verify whether s was the secret used
to encrypt c. More specifically, the decryption algorithm PKELPN computes e1, e2
and e3 and only generates an output if e1, e2 and e3 have the proper Hamming
weight. Therefore, we can use a list-decoder for the code C1 to obtain a short list of
candidates for s and then test which candidate is the right one.

Construction 6.2. Let m1 = k1 · k2. Assume that there exists an efficient list
decoder C1.ListDecode that list-decodes up to t1 bit errors and l block erasures for
blocks of length k2. The alternative decryption algorithm Dec∗ is given as follows.

Dec∗(s̃k, c):
Parse s̃k = (A1,A2,A3,W̃1, . . . ,W̃k1)
Parse c = (y1,y2,y3)
Parse yT1 = (yT1,1‖ . . . ‖yT1,k1)
For i = 1, . . . , k1

If W̃i 6= ⊥
zi ← y1,i − W̃T

i y3
Otherwise

zi ← ⊥
z← (z1, . . . , zk)
L← C1.ListDecode(z)
For s ∈ L

x← y2 −A2s
m← C2.Decode(x)
e1 ← y1 −A1s− C1.Encode(s)
e2 ← y1 −A2s− C2.Encode(m)
e3 ← y3 −A3s
If wgt(e1) = bρm1c and wgt(e2) = bρm2c and wgt(e3) = bρm3c

Return m
Return ⊥

We will now show that Dec∗ decrypts correctly.

Lemma 6.2. Assume that the decoder C1.ListDecode can simultaneously handle t1
errors and l block-erasures. Fix a public key pk together with a private key sk = W
such that it holds for all e1 ∈ Sm1(bρm1c) and e3 ∈ Sm3(bρm3c) that wgt(e1 −
WTe3) ≤ t1. Split W = (W1‖ . . . ‖Wk1). Let s̃k = (A1,A2,A3,W̃1, . . . ,W̃k1) be
such that (W̃1, . . . ,W̃k1) contains at most l erasures but is otherwise identical to
(W1, . . . ,Wk1). Then it holds for every c ∈ Fm1+m2+m3

2 (i.e. every c that could
syntactically be a ciphertext) that Dec∗(s̃k, c) = PKELPN.Dec(sk, c).
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Proof. Let c = (y1,y2,y3). One of the following two cases must occur.

1. There exist s ∈ Fn1
2 , m ∈ Fn2

2 and e1 ∈ Sm1(bρm1c), e2 ∈ Sm2(bρm2c), e3 ∈
Sm3(bρm3c) such that

y1 = A1s + e1 + C1.Encode(s)
y2 = A2s + e2 + C2.Encode(m)
y3 = A3s + e3

2. No such s, m, e1, e2 and e3 exist.

Case 2 is almost trivial, as both PKELPN.Dec and Dec∗ only output m if they have
found s, m, e1, e2 and e3 with the above property. If they do not exists, both
PKELPN.Dec and Dec∗ will output ⊥.
We will now consider case 1. Fix an index i ∈ {1, . . . , k1}. If W̃i = ⊥, then

zi = ⊥. If W̃i 6= ⊥, then we are guaranteed that W̃i = Wi. Thus

zi = y1,i − W̃T
i y3

= A1,is + e1,i + C1.Encode(s)i −WT
i (A3s + e3)

= C1.Encode(s)i + e1,i −WT
i e3.

which states that zi is the i-th block of C1.Encode(s) + e1 + WTe3. As wgt(e1 −
WTe3) ≤ t1, the vector z contains at most t1 bit errors. Moreover, z contains at
most l block erasures. Thus, as C1.ListDecode can list decode up to t1 errors and l
block erasures, the list L will contain s an we get that Dec∗ and PKELPN.Dec both
output m. This concludes the proof.

6.3. Tag-Based Encryption from the LPN Assump-
tion

We will now construct a tag-based encryption scheme TBELPN from the public key
encryption scheme PKELPN constructed in Section 6.2. The only extra ingredient for
TBELPN is a mechanism that derives tag-specific public and secret keys. Like in
Section 5.4, the derivation mechanism will select several components of the full
keys, obtaining tag-specific derived keys.

Construction 6.3. Let λ be a security parameter, m2,m3, n1, n2, k1, k2, r = poly(λ),
m1 = k1k2, ρ = ρ(λ) ∈ (0, 1) and q = poly(n) be a prime-power. Let Ctag be a q-ary
linear [k1, r] code. The tag-based encryption scheme TBELPN = (TBEMcE.KeyGen,
TBELPN.Enc,TBELPN.Dec) is specified as follows.

• TBELPN.KeyGen(1λ):
A2 ←$ Fm2×n1

2
A3 ←$ Fm3×n1

2
For i = 1, . . . , k1 and a ∈ Fq

Wi,a ← Ber(m3 × k2, ρ)
A1,i,a ←WT

i,aA3
pk ← ((A1,i,a)i,a,A2,A3)
sk ← ((A1,i,a)i,a,A2,A3, (Wi,a)i,a)
Return (pk, sk)
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• TBELPN.Enc(pk, τ,m):
Parse pk = ((A1,i,a)i,a,A2,A3)
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k1) ∈ Fk1

q

A1,τ ← (AT
1,1,τ̂1‖ . . . , ‖A

T
1,k1,τ̂k1

)T
pkτ ← (A1,τ ,A2,A3)
c← PKELPN.Enc(pkτ ,m)
Return c

• TBELPN.Dec(sk, τ, c):
Parse sk = ((A1,i,a)i,a,A2,A3, (Wi,a)i,a)
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k1) ∈ Fk1

q

A1,τ ← (AT
1,1,τ̂1‖ . . . , ‖A

T
1,k1,τ̂k1

)T
Wτ ← (W1,τ̂1‖ . . . ‖Wk1,τ̂k1

)
skτ ← (A1,τ ,A2,A3,Wτ )
m← PKELPN.Dec(skτ , c)
Return m

The plaintext-space of TBELPN is MLPN,λ = Fn2
2 , the ciphertext space is CLPN,λ =

Fm1+m2+m3
2 and the tag-space is TLPN,λ = Frq.

6.3.1. Completeness
Before we show that TBELPN is complete, we will first prove a lemma which states

that with overwhelming probability over the choice of the secret key sk, all derived
secret keys skτ will only account for an error that is bounded by (1 + γ)qρ2mk.

Lemma 6.3. Let β > 0. Let sk = ((A1,i,a)i,a,A2,A3, (Wi,a)i,a) be a secret key
generated by TBELPN.KeyGen. Then it holds for all e1 ∈ Sm1(bρm1c) and e3 ∈
Sm3(bρm3c) and tags τ that wgt(e1−WT

τ e3) ≤ (1+β)qρ2m1m3, except with negligible
probability over the coins used by TBELPN.KeyGen.

Proof. Let W = ‖i∈{1,...,k},a∈FqWi,a ∈ Fm3×qm1
2 be a matrix that is the horizontal

concatenation of all Wi,a. Then W is distributed according to Ber(m3 × qm1, ρ).
Now it holds by Lemma 2.11 that ‖WT‖wgt ≤ (1 + β − 1

ρqm3
)ρqm1, except with

negligible probability. The matrix Wτ is a column-submatrix of W, thus it holds
for all τ that ‖WT

τ ‖wgt ≤ ‖WT‖wgt ≤ (1 + β − 1
ρqm3

)ρqm1. As wgt(e3) = ρm3 and
wgt(e1) = ρm1, it holds that

wgt(e1 −WT
τ e3) ≤ wgt(e1) + ‖WT

τ ‖wgtwgt(e3)

≤ ρm1 + (1 + β − 1
ρqm3

)ρm1 · ρm3

= (1 + β)qρ2m1m3.

A direct corollary from Lemma 6.3 is that TBELPN fulfills the completeness re-
quirement.

Corollary 6.4. TBELPN is complete, given that C1.Decode can handle at least t1 ≥
(1 + β)qρ2m1m3 errors.
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6.3.2. IND-STAG-CCA2 Security
We are now ready to show that TBELPN is IND-STAG-CCA2 secure.

Theorem 6.2. TBELPN is IND-STAG-CCA2 secure, given that PKELPN is IND-CPA
secure, Ctag has minimum distance at least k1 − l and C1.ListDecode can efficiently
simultaneously decode t1 errors and l erasures.

Proof. Let A be a PPT-adversary with advantage ε against the IND-STAG-CCA2
security of TBELPN. We will construct an adversaryA′ with advantage ε′ ≥ ε−negl(λ)
against the IND-CPA security of PKELPN. Consider the following experimentsGame
0 and Game 1.

Game 0
(τ ∗, st0)← A(init, 1λ)
A2 ←$ Fm2×n1

2
A3 ←$ Fm2×n1

2
For i = 1, . . . , k1 and a ∈ Fq

Wi,a ← Ber(m3 × k2, ρ)
A1,i,a ←WT

i,aA3
pk ← ((A1,i,a)i,a,A2,A3)
sk ← ((A1,i,a)i,a,A2,A3, (Wi,a)i,a)
(m0,m1, st1)← AODec(sk,τ∗,·,·)(find, st0, pk)
b←$ {0, 1}
τ̂ ∗ ← Ctag.Encode(τ ∗)
Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k1)
A1,τ∗ ← (AT

1,1,τ̂∗1
‖ . . . , ‖AT

1,k1,τ̂∗k1
)T

pkτ∗ ← (A1,τ∗ ,A2,A3)
c∗ ← PKELPN.Enc(pkτ∗ ,mb)
b′ ← AODec(sk,τ∗,·,·)(guess, st1, c

∗)
Return 1 iff b = b′.

ODec(sk, τ ∗, τ, c)
If τ = τ ∗

Return ⊥
Parse sk = ((A1,i,a)i,a,A2,

A3, (Wi,a)i,a)
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k1)
A1,τ ← (AT

1,1,τ̂1‖ . . . ‖A
T
1,k1,τ̂k1

)T
Wτ ← (W1,τ̂1‖ . . . ‖Wk,τ̂k1

)
skτ ← (A1,τ ,A2,A3,Wτ )
m← PKELPN.Dec(skτ , c)
Return m

Clearly, Game 0 is the IND-STAG-CCA2 experiment for TBELPN, for which we
have substituted TBE.KeyGen, TBE.Enc and TBE.Dec with their implementations
according to TBELPN.
In Game 1, the following changes have been made compared with Game 0.

First, the generation of the keys corresponding to the challenge tag τ ∗ has been
moved to the beginning of the experiment. Moreover, the secret key corresponding
to the challenge tag is not included in the secret key s̃k, instead block-erasures are
set in the corresponding blocks of the secret key. Finally, the decryption oracle ODec
now uses the alternative decryption algorithm Dec∗ instead of PKELPN.Dec to deal
with the erasures in the secret key.
Claim: We claim that it holds that |Pr[Game0(A) = 1]− Pr[Game1(A) = 1]| ≤
negl(λ), given that Ctag has minimum distance at least k1 − l and C.Decode can
efficiently simultaneously decode t1 errors and l erasures.
First observe that the distribution of the public key pk is identical in both ex-

periments. Moreover, the challenge-ciphertext c∗ is also computed in the same way
in both experiments. If we condition to the event that in both experiments the
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Game 1
(pk∗, sk∗)← PKELPN.KeyGen(1λ)
Parse pk∗ = (A∗1,A2,A3)
(τ ∗, st0)← A(init, 1λ)
τ̂ ∗ ← Ctag.Encode(τ ∗)
Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k1)
Parse A∗1 = (A∗1,1T‖ . . . ‖A∗1,k1

T )T

For i = 1, . . . , k1 and a ∈ Fq
If a = τ ∗i

Wi,a ← ⊥
A1,i,a ← A∗1,i

Otherwise
Wi,a ← Ber(m3 × k2, ρ)
A1,i,a ←WT

i,aA3

pk ← ((A1,i,a)i,a,A2,A3)
s̃k ← ((A1,i,a)i,a,A2,A3, (Wi,a)i,a)
(m0,m1, st1)← AODec(s̃k,τ∗,·,·)(find, st0, pk)
b←$ {0, 1}
c∗ ← PKELPN.Enc(pk∗,mb)
b′ ← AODec(s̃k,τ∗,·,·)(guess, st1, c

∗)
Return 1 iff b = b′.

ODec(s̃k, τ ∗, τ, c)
If τ = τ ∗

Return ⊥
Parse s̃k = ((A1,i,a)i,a,A2,

A3, (Wi,a)i,a)
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k1)
A1,τ ← (AT

1,1,τ̂1‖ . . . ‖A
T
1,k,τ̂k1

)T
Wτ ← (W1,τ̂1‖ . . . ‖Wk,τ̂k1

)
s̃kτ ← (A1,τ ,A2,A3,Wτ )
m← Dec∗(s̃kτ , c)
Return m

decryption oracle behaves identically, then Game 0 and Game 1 are identically
distributed from the view of A.
Lemma 6.3 states that with overwhelming probability sk is such that it holds for

all e1, e3 and τ that wgt(e1 −WT
τ e3) ≤ (1 + β)qρ2m1m3 ≤ t1. Moreover, since Ctag

has minimum-distance k1− l, it holds for every tag τ 6= τ ∗ that wgt(τ̂ − τ̂ ∗) ≥ k1− l
and thus τ̂ and τ̂ ∗ agree on at most l locations. But this means that s̃kτ contains at
most l erasures. Now we can conclude using Lemma 6.2 that the behavior of Dec∗
is identical to the behavior of PKELPN.Dec. Thus

|Pr[Game0(A) = 1]− Pr[Game1(A) = 1]| ≤ negl(λ)

follows.
Claim: It holds that AdvGame1(A) ≤ negl(λ), given that PKELPN is IND-CPA
secure.
We will now use A to construct an IND-CPA adversary A′ against PKELPN. A′ is

given as follows.
We will now show that AdvIND−CPA(A′)) = AdvGame1(A). Observe that the

distribution of pk∗ is identical in Game 1 and the IND-CPA experiment. The only
difference is that key generation has been moved into the IND-CPA experiment.
The same is true for the challenge-ciphertext c∗, the computation of c∗ is moved into
the IND-CPA experiment, but is otherwise identical. Thus the view of A is identical
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Adversary A′

A′(find, pk∗ )
Parse pk∗ = (A∗1,A2,A3)
(τ ∗, st0)← A(init, 1λ)
τ̂ ∗ ← Ctag.Encode(τ ∗)
Parse τ̂ ∗ = (τ̂ ∗1 , . . . , τ̂ ∗k1)
Parse A∗1 = (A∗1,1T‖ . . . ‖A∗1,k1

T )T
For i = 1, . . . , k1 and a ∈ Fq

If a = τ ∗i
Wi,a ← ⊥
A1,i,a ← A∗1,i

Otherwise
Wi,a ← Ber(m3 × k2, ρ)
A1,i,a ←WT

i,aA3
pk ← ((A1,i,a)i,a,A2,A3)
s̃k ← ((A1,i,a)i,a,A2,A3, (Wi,a)i,a)
(m0,m1, st1)← AODec(s̃k,τ∗,·,·)(find, st0, pk)
st← (s̃k, st1)
Return (m0,m1, st)

A′(guess, st, c∗ )
Parse st = (s̃k, st1)
b′ ← AODec(s̃k,τ∗,·,·)(guess, st1, c

∗)
Return b′

ODec(s̃k, τ ∗, τ, c)
If τ = τ ∗

Return ⊥
Parse s̃k = ((A1,i,a)i,a,A2,

A3, (Wi,a)i,a)
τ̂ ← Ctag.Encode(τ)
Parse τ̂ = (τ̂1, . . . , τ̂k1)
A1,τ ← (AT

1,1,τ̂1‖ . . . ‖A
T
1,k,τ̂k1

)T
Wτ ← (W1,τ̂1‖ . . . ‖Wk,τ̂k1

)
s̃kτ ← (A1,τ ,A2,A3,Wτ )
m← Dec∗(s̃kτ , c)
Return m

in Game 1 and A′’s simulation. Consequently, it holds that AdvIND−CPA(A′) =
AdvGame1(A) = ε − negl(λ), which is non-negligible. Thus, A′ breaks the IND-
CPA security of PKELPN with non-negligible advantage, which yields the desired
contradiction. This concludes the proof.

6.4. Instantiations
We will now discuss instantiations of TBELPN for concrete choices of the codes

involved. We will therefore discuss the performance of different codes and decoders.
Let n1, n2,m1,m2,m3 = O(n) for a parameter n.
By Theorems 6.1 and 6.2, the security of TBELPN relies on the hardness of the

problems DLPN(n1,m1 +m2 +m3,M) and DDMLPN(n1,m1,m2,Ber(m1 ×m2, ρ)).
Both problems in turn are based on LPN(n′,m′,Ber(m′, ρ)) for some n′,m′ = O(n).
By the discussion in Section 3.6 we need to choose n = Ω((λ/ log(λ))2) so that
LPN(n′,m′,Ber(m′, ρ)) has (conjectured) hardness 2Ω(λ).
Moreover, in order to achieve completeness of the scheme, we need to be able to

decode errors of weight O(ρ2m1m3) = O(ρ2n2) by Corollary 6.4. Thus, ρ must be
in ρ = O(1/

√
n) for the errors to be sufficiently low to be decodable.

We now need to find suitable instantiations for the codes C1,C2 and Ctag. Recall
that our only constraint to the binary code C2 was that it needs to be able to
efficiently correct ρm2 = O(

√
n) errors, which is sub-linear in n. This allows us to

choose C2 to be a code of very high rate. A natural choice for C2 are binary Goppa
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codes (c.f. Section 2.5.6), as they are efficiently decodable and meet the Gilbert
Varshamov bound. Thus, the rate of C2 can be as high as 1−O(log(n)/

√
n).

It remains to find suitable instantiations for C1 and Ctag. Ideally, we would like to
choose the codes C1 and Ctag in a way such that the noise rate ρ can be as high as
possible, as higher noise means more security (in a concrete sense). It will be more
convenient to discuss the codes C1 and Ctag with respect to their rates and relative
minimum distances. Thus

• let C1 be a binary [m1, R1m1, δ1m1] code.

• let Ctag be a q-ary [k1,
Rtag

log(q)k1, δtagk1] code.

In the following discussion we will omit issues such as the constraints that R1m1,
δ1m1, Rtag

log(q)k1 and δtagk1 must be integers. As Ctag may be a q-ary code (for a q ≥ 2),
we will consider Ctag with respect to its equivalent binary rate Rtag, i.e. the rate
of Ctag is Rtag/ log(q). We do this to make the rates for different alphabet sizes q
comparable. Recall that the size of the tag-space TTBE is

|TLPN,λ| = qr = q
Rtag

log(q) ·k1 = 2Rtagk1 .

Thus, the equivalent binary rate Rtag represents the size of the tag-space, indepen-
dent of the alphabet size q. We will consider different families of codes for C1 and
decoders for C1 and each time proceed as follows. For such a choice of C1 and a
decoder for C1, we want to set the free parameters of the construction in a way such
that the tolerable noise rate ρ is maximal, as a function of the rate R1 of C1 and
Rtag of Ctag. Recall that by Theorem 6.2 the list decoder C1.ListDecode needs to be
able to handle (1 + β)qρ2m3m1 bit errors and l = k1 − δtagk1 block erasures. Set

η = (1 + β)qρ2m3

and
σ = 1− δtag.

Thus, the decoder needs to handle an η fraction of bit errors and a σ fraction of block
erasures. We will briefly consider the constraint δtag = 1 − σ in more detail. If we
want to choose Ctag to be a binary code, then δtag <

1
2 . But this implies that σ > 1

2 .
In other words, the list-decoder C1.ListDecode will have to deal with more than a 1

2
fraction of block erasures. If we aspire for a block size k2 = 1, then list decoding is
strictly necessary, as no unique decoder can handle more than a 1

2 fraction of (worst
case) erasures.
Let δmax(R, q) be the best (known) achievable minimum distance by an (efficiently

constructible) q-ary code of equivalent binary rate R. Asymptotically, the best
known (existential) bounds are the Gilbert Varshamov bound (Theorem 2.4) and the
TVZ bound (Theorem 2.5). Combining both bounds yields that for every alphabet
size q and every rate R there exists a q-ary code with minimum distance at least

δmax(R, q) = max
{

1−R− 1
√
q − 1 , H

−1
q (1−R)

}
.

We will choose the tag code Ctag such that it has best possible minimum distance,
i.e.

δtag = δmax(Rtag/ log(q), q).
Recall that we do not need efficient decoding for Ctag.
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6.4.1. Instantiation 1: Arbitrary Code C1, Unique Decoder
We will start by providing the simple instantiation given in [DMQN12]. Let C1

be a binary [m1, R1m1, δ1m1] code for which we can efficiently decode any constant
fraction α(R1) of errors using a decoder C1.Decode. We will not assume that C1 is
list decodable from errors and erasures. Instead, we will simply treat erasures as
errors. We can thus also set the block size k2 to k2 = 1. As discussed above, this will
make it necessary to choose the alphabet size q of Ctag strictly larger than 2. For this
instantiation, we will therefore treat q as a free parameter. The code C1 may be an
expander code (as suggested in [DMQN12], c.f. Section 2.5.8) or an asymptotically
good concatenated code (c.f. Section 2.5.7). As we treat erasures as errors for this
instantiation, we have the constraint

η + σ ≤ α(R1).

As we want to maximize η, we set

η = α(R1)− σ
= α(R1)− 1 + δtag

= α(R1)− 1 + δmax(q, Rtag/ log(q)).

Finding a best possible q analytically as a function of R1 (or α(R1)) and Rtag is
hopeless. We will thus first show that for every constants α(R1) ∈ (0, 1/4) and
Rtag ∈ (0, 1) there exists a q such that η > 0 is a constant. For large (but constant)
q, it holds that

δmax(q, Rtag/ log(q)) = 1− Rtag

log(q) −
1

√
q − 1 ,

as for such q the TVZ bound (Theorem 2.5) outperforms the Gilbert Varshamov
bound (Theorem 2.4). Thus it holds that

η = α(R1)− Rtag

log(q) −
1

√
q − 1 .

Consequently, by choosing q sufficiently large it holds that

Rtag

log(q) −
1

√
q − 1 < α(R1),

which yields the desired, as η is now a positive constant. We have thus established
that the scheme is instantiatable for every α(R1) ∈ (0, 1/4) and Rtag ∈ (0, 1). How-
ever, choosing q as a large constant has severe side effects. For one, the size of the
public and secret keys depends linearly on q. Even though q is a constant and thus
asymptotically irrelevant, a large q would imply impractical key sizes. On the other
hand, q also has a negative effect on the maximum tolerable noise rate ρ,

ρ =
√

η

(1 + β) · q ·m3
.

To get a handle on the effect of q on the noise rate, we can compare ρ with the
maximum possible noise rate ρ′ we could tolerate for the basic scheme PKELPN when
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instantiating it with C1. Clearly, as C1.Decode can correct α(R1) bit errors, it holds
by Lemma 6.1 that

ρ′ =
√
α(R1)
1 + β

m3.

The fraction ρ/ρ′ tells us by which factor we need to choose ρ smaller than ρ′, or
in other words, how much noise tolerance (and therefore concrete security) we lose
compared to the basic scheme PKELPN. It holds that

ρ

ρ′
= 1
√
q
·

√√√√1− δmax(q, Rtag/ log(q))
α(R1) .

Thus,
ρ ≈ 1
√
q
ρ′,

which leads to unrealistically small ρ for very large q.
Figures 6.1 and 6.2 show plots of ρ/ρ′ and the corresponding q as a function of

α(R1) and Rtag. The discontinuity in the plot of q (Figure 6.2) originates from the
switch from the GV bound to the TVZ bound. A reasonable choice of parameters
may be α(R1) = 0.1 and Rtag = 0.05, for which ρ/ρ′ ≈ 0.09 and q = 64.
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Figure 6.1.: Instantiation 1: The fraction ρ/ρ′ as a function of α(R1) and Rtag
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6.4.2. Instantiation 2: C1 = Cin ◦ RS with Unique Decoder,
large Blocks

We have seen that a large (constant) q has several undesirable effects. We will
therefore focus on the case q = 2 henceforth. This immediately implies that we can
choose the code Ctag by the Gilbert Varshamov ensemble, i.e. we have that

Rtag = 1−H(δtag)

and therefore δtag = H−1(1 − Rtag). However, this will also require a more subtle
treatment of erasures than just treating them like errors. In in the McEliece based
construction of Chapter 5 we had a natural concatenated code structure with an
outer Reed Solomon and an inner Goppa code. We will now take a similar approach
by choosing the code C1 as a concatenated code C1 = Cin ◦ Cout. As outer code we
will choose a Reed Solomon code. As inner code we will choose a (short) binary
code that meets the Gilbert Varshamov bound. We will now determine the block
lengths. Let therefore n1 = c1c2 and m1 = k1k2 with k1 ≥ c1 and k2 ≥ c2. If we
keep the block length c2 = O(log λ), we can choose any binary linear code as Cin and
still decode efficiently, as in this case |Cin| ≤ 2k2 = poly(λ). Thus, Cin can be chosen
as a code that meets the Gilbert Varshamov bound and still be efficiently decoded
(using brute force).
The size of the tag-space of this instantiation is

|TLPN,λ| = 2Rtagk1 = 2Rtagk1 = 2Rtagm1/k1 = 2O(n/ log(n)).

While this is asymptotically smaller than the tag space of instantiation 1, we still
get a tag space of size 2Ω(λ) as n = Θ((λ/ log(λ))2).
Let Rin = k2/c2 be the rate of Cin and δin its relative minimum distance. As Cin

meets the Gilbert Varshamov bound it holds that Rin = 1−H(δin). Let Rout be the
rate of the outer Reed Solomon code RS. The rate of C1 = Cin ◦ RS is

R1 = Rout ·Rin = Rout · (1−H(δin)).

By Corollary 2.10 there exists an efficient decoder for C1 decoding up to an η fraction
of bit errors and a σ fraction of block erasures given that

η ≤ 1
2δin(1−Rout − σ).

Again, as we seek to maximize η, we set η = 1
2δin(1−Rout). Solving the first equation

for Rout and using that σ = 1− δtag = 1−H−1(1−Rtag) yields

η = 1
2δin

(
H−1(1−Rtag)− R1

1−H(δin)

)
.

Moreover, it follows from Rout < 1 that 1−H(δin) > R1 and this yields the constraint
δin < H−1(1 − R1). Now, δin is the only undetermined variable left on which η
depends. Thus, we can maximize η as a function of δin subject to the constraint
that δin < H−1(1 − R1). Clearly, also for this problem an analytical solution is
hopeless. However, notice that for every Rtag we can find an R1 and δin such that
η > 0. Namely we can choose δin < 1

2 arbitrary and set

R1 = H−1(1−Rtag) · (1−H(δin))
2 > 0,
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which yields
η = 1

4δin(H−1(1−Rtag) > 0.

We will now discuss the numerical solution of the problem of maximizing

η = 1
2δin

(
H−1(1−Rtag)− R1

1−H(δin)

)
.

subject to δin < H−1(1−R1).
Figure 6.3 shows a plot of η as a function of R1 and Rtag. A reasonable choice

of parameters for this instantiation is maybe R1 = 0.05 and Rtag = 0.05, for which
η ≈ 0.02 and ρ/ρ′ ≈ 0.77.
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Figure 6.3.: Instantiation 2: The maximum toleratble noise rate η as a function of
R1 and Rtag

6.4.3. Instantiation 3: C1 = Cin ◦ RS with List Decoder, large
Blocks

The third instantiation is very similar to the second, the only difference is that
we use a list decoder instead of a unique decoder. Consequently, the constraints

σ = 1− δtag = 1−H−1(1−Rtag),

Rout = R1

1−H(δin)
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and
δin < H−1(1−R1)

remain the same. By Theorem 2.10 there exists a list decoder for C1 = Cin ◦ RS
that can efficiently list decode an η fraction of bit errors and a σ fraction of block
erasures given that

η ≤ 1
2(1− σ) ·

1−
√

1− 2δin − 2
√
δinRout

1− σ

 .
Taking η to the maximum possible value and plugging in the expressions for σ and
Rout yields

η = 1
2H

−1(1−Rtag)
1−

√
1− 2δin − 2

√√√√ δinR1

H−1(1−Rtag) · (1−H(δin))

 .
A numerical maximization of η subject to δin < H−1(1−R1) is given in the plot of
Figure 6.4. It shows η as a function of R1 and Rtag. The plot shows clearly that the
effect of the list-decoder only kicks in for very small rates R1. For higher rates, the
performance of the decoder is worse than the unique decoder, used in instantiation
2. This however is not a shortcoming of the concept of list-decoding but rather of
the specific decoder used here. It was also mentioned in 2.10 that this decoder only
outperforms the unique decoder for very small rates.

R1

0.000
0.002

0.004
0.006

0.008
0.010

R
tag

0.0
0.1

0.2
0.3

0.4
0.5

η

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 6.4.: Instantiation 3: The maximum tolerable noise rate η as a function of
R1 and Rtag
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6.4.4. Instantiation 4: C1 = Cin ◦RS with List Decoder, Blocks
of size 1

We will now discuss a final instantiation. Again, we will choose C1 as the con-
catenation of an outer Reed Solomon code and an inner code that meets the Gilbert
Varshamov bound. Moreover, we will also use an alphabet size q = 2 for Ctag.
However, this time we will choose blocks of size k2 = 1, as in instantiation 1. As
discussed above, this will make list decoding essential, as q = 2 implies that the
fraction of bit erasures is greater than 1/2. For this instantiation, the size of the
tag-space is

|TLPN,λ| = 2Rtagk1 = 2Rtagm1 .

Thus, let C1 = Cin◦RS be a concatenated code where RS is an outer Reed Solomon
code with rate Rout and C1 is a binary inner code with relative minimum distance
δin and rate Rin = 1−H(δin). The constraints

σ = 1− δtag = 1−H−1(1−Rtag),

Rout = R1

1−H(δin)
and

δin < H−1(1−R1)
are as before. By Theorem 2.11 there exists an efficient list decoder for C1 = Cin◦RS
that decodes an η fraction of bit errors and a σ fraction of bit erasures given that

η ≤ 1
2 ·
1− σ −

√
(1 + ε)(1− 2δin)−

√√√√ (1− σ)Rout

ε · (1− 2δin)

 .
where ε > 0 is arbitrary. Taking η to the maximum possible value and plugging in
the expressions for σ and Rout yields

η = 1
2 ·
H−1(1−Rtag)−

√
(1 + ε)(1− 2δin)−

√√√√ H−1(1−Rtag)R1

ε · (1− 2δin) · (1−H(δin))

 .
We will now directly consider the numerical maximization of η as a function of

the free parameters δin and ε subject to ε > 0 and δin < H−1(1 − R1). Figure
6.5 shows the maximum η as a function of R1 and Rtag. As can be seen in Figure
6.5, a drawback of this decoder is that we only obtain reasonable values for η for
unreasonably small rates R1 ≈ 10−6.

6.4.5. IND-CCA2 scheme via CHK
We have seen that instantiation 1 requires large alphabet sizes q for the code Ctag,

which leads to undesirably large public and private keys. In instantiations 3 and 4 we
have examined the performance of list decoders for concatenated codes C1 = Cin◦RS.
It turns out that while this approach is interesting in theory, state of the art list
decoders for concatenated codes only yield an advantage for very low rates R1. This
however, is also undesirable from a practical point of view. Instantiation 2 provides
the most reasonable results from a practical point of view. Both the rate R1 and
the tolerable noise amount η can be set to realistic parameters. This comes at the
price of a tag-space that is asymptotically smaller than that of instantiations 1 and
4. To conclude this Chapter, we will now apply the CHK transformation (Theorem
4.1) and obtain the following Theorem.



6.5. Further Developments 129

R1(·10
−6 )

0
1

2
3

4
5

R
tag

0.00
0.05

0.10

0.15

0.20

η

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 6.5.: Instantiation 4: The maximum toleratble noise rate η as a function of
R1 and Rtag

Theorem 6.3. Let λ be a security parameter. Let m,n = Θ((λ/ log λ)2). There
exists an IND-CCA2 secure public key encryption scheme PKELPN,CCA2 based on the
hardness of the LPN problem LPN(n,m,Ber(m,O( 1√

m
))). The scheme has a constant

factor ciphertext expansion, plaintexts of size Θ(m), and a key sizes of Θ(m2).

6.5. Further Developments
Very recently, Kiltz, Masny and Pietrzak [KMP14] proposed an alternative con-

struction of an IND-CCA2 secure public key encryption scheme. Their scheme fol-
lows the same basic blue-print as ours by first constructing a tag-based encryption
scheme and then applying the CHK transform (Theorem 4.1). The main difference
between the scheme of [KMP14] and ours is that in their scheme the target-tag τ ∗
is only computationally hidden in the public key, while our scheme hides the target-
tag statistically. The scheme of [KMP14] achieves slightly better performance than
instantiation 2 of our scheme, while not depending on a specific choice of the code
used to encode the secrets. Specifically, their public and secret keys are smaller by
a factor of approximately 1

2 .





7. LWE with Uniform Errors

Whoever wishes to become a
philosopher must learn not to be
frightened by absurdities

Bertrand Russell [Rus36]

The following introduction and outline closely follow the introduction in the au-
thor’s original publication of the results [DMQ13].

7.1. Introduction
As discussed in Chapter 3, the learning with errors (LWE) problem is a general-

ization of the learning parity with noise (LPN) problem to larger moduli and more
general error distributions. The Learning-with-Errors (LWE) Problem asks to re-
cover an unknown vector s ∈ Znq , given a random matrix A ∈ Zm×nq and a noisy
codeword y = As + e, where e ∈ Zmq is chosen from an error distribution χm.
This hardness assumption has had a significant impact in cryptography since its

conception by Regev [Reg05] in 2005. Maybe the most intriguing feature of this
problem, however, is its worst-to-average case connection [Reg05, Pei09]. This ba-
sically allows to transform an efficient adversary solving LWE on average, into an
efficient (quantum) algorithm solving lattice problems in the worst case. Beyond
this very strong hardness-guarantee, the problem has unmatched cryptographic ver-
satility. It allows for IND-CPA and IND-CCA secure encryption [Reg05, GPV08,
Pei09], lossy-trapdoor functions [PW08], (hierarchical) identity-based encryption
[CHKP10, ABB10], fully homomorphic encryption [BV11, BGV12, Bra12] and many
more. The worst-to-average-case reductions [Reg05, Pei09] crucially rely on gaussian
error-distributions.
Gaussian distributions arise naturally in many different situations. This is mostly

due to the central limit theorem, which roughly states that the sum of many in-
dependent (and bounded) random variables converges to a gaussian distribution.
Consequently, the sum of several gaussian distributions is again gaussian.
However, this has the consequence that the cryptographic applications also need

to use gaussian error-distributions. For the above-mentioned encryption-schemes,
sampling from a gaussian error-distribution is usually the computationally heaviest

131
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step (which occurs mostly during key-generation). It would thus be desirable to have
a variant of the LWE problem enjoying the same worst-to-average-case connection,
but that comes with an easier-to-sample error-distribution.
In this Chapter, we show that the the worst-case-connection of LWE with gaus-

sian errors can be transfered to LWE with uniform errors from a small interval
[−r, r]. A preliminary version of this result appeared in [DMQ13]. Our main-lever
to obtain this result is a technique which we call lossy codes, reminiscent of the
technique used by Peikert [Pei09] to establish the classical hardness of LWE (c.f.
Section 3.7). Roughly speaking, lossy codes are pseudorandom codes that seem to
be good codes. However, encoding messages with a lossy code and adding certain
errors provably annihilates the message (on average). On the other hand, encod-
ing the same message using a truly random code and adding the same type of
error preserves the message, i.e. the message can be recovered information theoret-
ically (yet not efficiently). Using a proof-strategy pioneered by Peikert and Waters
[PW08], we conclude that recovering the message when encoding with a random code
and adding noise must be computationally hard. Namely, if this was not the case,
lossy codes could be efficiently distinguished from random codes, contradicting the
pseudorandomness-property of lossy codes. The main-part of this Chapter is devoted
to proving that a very simple construction of lossy codes for LWE actually is lossy
for the uniform errors from [−r, r]. The key-insight for this construction is that the
standard LWE problem with gaussian error-distribution allows us to implant many
very short vectors into a random looking lattice. Our resulting worst-to-average case
connection-factor for LWE with error-distribution [−r, r] depends on the number of
samples provided by LWE (while those for standard LWE [Reg05, Pei09] do not).
We will therefore consider an m-bounded LWE problem LWE(n,m, q, [−r, r]), where
the number of samples m has a fixed poly(λ) upper bound (rather than being arbi-
trary poly(λ) depending on the adversary, like in the standard LWE problem). As
lossy codes are basically an information-theoretical technique, this seems unavoid-
able. However, this drawback is still quite mild compared to the super-polynomial
inapproximability assumptions made in other works [GKPV10, BV11, Bra12].
Applying the search-to-decision reduction of [MM11], we can conclude as a corol-

lary that the decisional LWE problem DLWE(n,m, q, [−r, r]) is also hard if q =
poly(λ) is a prime modulus.

7.1.1. Outline
We will briefly outline the construction and the proof of our main results. As

discussed in Chapter 3, the Learning With Errors Problem is basically the decoding
problem for q-ary lattices: Given a randomly chosen generator-matrix A and a
vector y, find the nearest lattice point (or codeword) As, under the promise that y
was generated by drawing a random point from the lattice and adding an error by
some specified distribution. We want to show that this decoding-problem is hard if
the error is component-wise chosen by uniformly from [−r, r]. Assume that we knew
that there exists a distribution of lossy matrices A′ such that that the decoding-
problem has no unique solution if the errors are drawn uniformly from [−r, r], i.e.,
adding errors to a lattice-point A′s loses information about s. If distinguishing such
matrices from truly random matrices is hard, we can conclude that the decoding-
problem must be hard for truly random matrices. Otherwise, given a decoder for
random matrices we can distinguish random matrices from lossy matrices. The
distinguisher samples random challenges for the decoder. If the decoder succeeds
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significantly often, i.e. if it outputs the same s that was used to sample the instance,
then the given matrix must come from the random distribution, as this behavior is
impossible for the lossy distribution. Thus, our task is to construct a distribution
of lossy codes for uniform errors from [−r, r]. Our starting-point to find such a
distribution is the observation that the standard LWE-problem allows us to construct
pseudorandom matrices that generate lattices which contain many vectors that are
significantly shorter than one would expect for lattices generated by truly random
matrices. Let G ∈ Zm×nq be component-wise chosen according to a (short) discrete
gaussian distribution Dαq. We want to set the parameters α and r such that the
lattice generated by G is bad on average against errors from [−r, r]. Put differently,
if y = Gs+e, where s is chosen uniformly at random and e is chosen uniformly from
[−r, r]m, we want that, with overwhelming probability, there exist at least one more
"admissible" s′ 6= s and e′ ∈ [−r, r]m such that y = Gs′ + c′. As e is distributed
uniformly on the volume [−r, r]m, each s′ will have the same posterior-probability
given G and y. If there is at least one such s′, then y statistically hides at least
one bit of s and we can implement the distinguisher sketched above. To make this
lossy code pseudorandom, we hide the matrix G in a bigger matrix A. This can be
achieved in a pretty standard way. Let A′ ∈ Zm×nq be chosen uniformly at random.
Define B = (A′‖G) as the concatenation of A′ and G. B now contains the G as a
sub-matrix. Thus, B has a lossy sub-code. As having a lossy sub-code is sufficient
to be lossy, A is also lossy. We can randomize the generator-matrix B = (A′‖G) by
applying the transformation

T =
(

I T′
0 I

)
,

for a T′ ∈ Zn×nq chosen uniformly at random. This yields the randomized generator
A = BT = (A′‖A′T′ + G) for the same code. By the decisional LWE-assumption
(for specific parameters), the matrix A is pseudorandom.
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y

y + e

Figure 7.1.: The non-lossy case: The cubes around lattice points are non-intersecting

y

y + e

Figure 7.2.: The lossy case: The cubes around lattice points are highly intersecting
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7.2. LWE with Non-Gaussian Errors for Superpo-
lynomial Hardness

In this section we will discuss prior results on the hardness of LWE with non-
gaussian errors. Applebaum, Ishai and Kushilevitz [AIK11] noted that if one is
willing to assume that standard LWE is hard, even if the noise rate α is below 1

poly(λ) ,
then we can replace the gaussian error distribution by other error distributions.
Specifically, let Dαq be the discrete gaussian distribution with noise rate α and let χ
be any efficiently samplable distribution on Z. Let χ′ = χ+Dαq be the distribution
obtained by adding independent samples of χ and Dαq, i.e. x ←$ χ

′ is sampled by
picking z ←$ χ and e←$ Dαq and setting x← z + e. χ′ can be seen as a smoothed
version of χ. Assume now that the distributions χ and χ′ are statistically close.
Then we claim that DLWE(n, q, χ) is as hard as DLWE(n, q,Dαq). The reason for
this is that samples from DLWE(n, q,Dαq) can be efficiently converted to samples
from DLWE(n, q, χ′). Assume that (a, y) is a sample provided by DLWE(n, q,Dαq).
We let z ←$ χ. We claim that (a, y + z) is then a sample from DLWE(n, q, χ′). If
y = 〈a, s〉+ e, then

y + z = 〈a, s〉+ e+ z = 〈a, s〉+ x

where x is a sample of χ′. On the other hand, if y is uniformly random, then y + z
is also uniformly random. Thus, the converted samples have the right distribu-
tion. However, since χ and χ′ are statistically close, any distinguisher distinguishing
DLWE(n, q, χ) can also be used to distinguish DLWE(n, q, χ′). By the above conver-
sion, such a distinguisher can be used to distinguish DLWE(n, q,Dαq), contradicting
its hardness.
Thus, χ and χ′ being statistically close is a sufficient condition for DLWE(n, q, χ)

to be hard. We will briefly consider the case that χ is the uniform distribution on
an interval [−r, r]. We claim that χ and χ′ = χ + Dαq are statistically close if and
only if αq

r
≤ negl(λ). Given that αq

r
is negligible, a sample z ←$ [−r, r] is with

overwhelming probability in the interval [−r + 2αqλ, r − 2αqλ], as

Pr
z

[z /∈ [−r + 2αqλ, r − 2αqλ]] = 4αqλ
r
≤ negl(λ).

Let e←$ Dαq. As e is αqλ bounded, it holds that

Pr
e

[z + e ∈ [−r + αqλ, r − αqλ]] ≤ Pr
z

[z /∈ [−r + 2αqλ, r − 2αqλ]] + Pr[|e| > αqλ]

≤ 1− negl(λ).

Thus, both z and z+e are in the interval [−r+2αqλ, r−2αqλ], except with negligible
probability. For t ∈ [−r + 2αqλ, r − 2αqλ] it holds that

Pr[z + e = t] =
∑

s∈[−r,r]
Pr[s+ e = t] Pr[z = s]︸ ︷︷ ︸

=Pr[z=t]

= Pr[z = t] · Pr[t− e ∈ [−r, r]]︸ ︷︷ ︸
≥1−negl(λ)

≥ Pr[z = t] · (1− negl(λ)),

from which follows that z and z + e are statistically close.
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If, on the other hand, αq
r
> 1

poly(λ) , then

Pr[z /∈ [−r + αq, r − α]] = 2αq
r
≥ 1

poly(λ) .

Moreover, Pr[|e| > 2αq] ≥ 1
poly(λ) and thus

Pr[z + e /∈ [−r, r]] ≥ 1
poly(λ)

which yields that z and z + e are not statistically close.

7.3. Lossy Codes
In this section, we introduce the main technical tool of this chapter, which we

call lossy codes. We will show that the existence of lossy codes implies that the
associated decoding problems for random codes are hard.

Definition 7.1 (Families of Lossy Codes). Let λ be a security parameter, let q =
q(λ) be a modulus, let m,n = poly(λ) and γ = γ(λ). Let C be a distribution on
Zm×nq and let χ be a distribution on Zmq . Let L←$ C and let U←$ Zm×nq be chosen
uniformly at random. We say that C is γ-lossy for the error-distribution χ, if the
following 3 properties hold.

1. L is pseudorandom: It holds that L ≈c U.

2. L is lossy: Let y = L · s̃ + ẽ (where s̃ is chosen uniformly from Znq and ẽ
is distributed according to χ), let s be chosen uniformly from Znq and let e be
chosen according to χ. Then it holds that Pr(L,y)[H∞(s|Ls + e = y) ≥ γ] ≥
1− negl(λ).

3. U is non-lossy: Let y = U · s̃ + ẽ (where s̃ is chosen uniformly from Znq and
ẽ is distributed according to χ), let s be chosen uniformly from Znq and let e be
chosen according to χ. Then it holds that Pr(U,y)[H∞(s|Us + e = y) = 0] ≥
1− negl(λ).

Our main motivation for defining lossy codes is proving that the decoding-problem
of recovering s given a matrix A and a noisy codeword As + e, where A and s are
chosen uniformly and e is chosen from χ, is computationally hard, even though s is
information-theoretically (with overwhelming probability) uniquely defined.

Theorem 7.1. Let λ be a security-parameter, let m,n = poly(λ) and let q = q(λ)
be a modulus. Let χ be an efficiently samplable distribution on Zmq .

1. Let χ be a uniform distribution with efficiently decidable support. Then the
problem LWE(n,m, q,χ) is hard, given that there exists a distribution of 1-lossy
codes C on Zm×nq for the error-distribution χ.

2. Let γ = γ(n) = ω(log(n)). Then LWE(n,m, q,χ) is hard, given that there
exists a distribution of γ-lossy codes C on Zm×nq for the error-distribution χ.
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Proof. First notice that due to the non-lossiness property of uniformly distributed
U←$ Zm×nq instances of LWE(n,m, q,χ) have a unique solution, except with negligi-
ble probability. For contradiction, let A be a PPT-adversary the solves the problem
LWE(n,m, q,χ) with non-negligible probability ε.
We will begin with the first statement of the theorem. Let L ←$ C and let

U ←$ Zm×nq be chosen uniformly at random. Using A, we will construct a PPT-
distinguisher D that distinguishes L and U with non-negligible advantage. Say that
a solution s for an instance (A,y) is valid, if y − A · s is in the support of the
error-distribution χ.
There are two different behaviors that algorithm A could exhibit when receiving

inputs of the form (L,y), where L is chosen from C and y = Ls + e.

1. The probability that A outputs a valid solution s is negligible.

2. There exists a non-negligible ε′(λ) such that the probability that A outputs a
valid solution s with probability at least ε′.

In the first case we can construct the distinguisher D1 as follows.

Distinguisher D1
Input A ∈ Zm×nq

s←$ Znq
e←$ χ
y← As + e
s′ ← A(A,y)
If s′ = s

Return non-lossy
Otherwise

Return lossy

D1 basically generates an LWE sample and checks if A is successful in recovering
the solution. Clearly, if A is chosen uniformly from Zm×nq , then A recovers s with
probability at least ε. On the other hand, if A is chosen according from the lossy
distribution C, then A recovers s only with negligible probability. Thus it holds that

Adv(D1) = |Pr[D1(U) = lossy]− Pr[D1(L) = lossy]| = ε(λ)− negl(λ),

which is non-negligible.
In the second case, we construct the distinguisher D2 differently.
First, observe that such a collision s′ 6= s cannot exist (except with negligible

probability) if A is chosen according to the uniform distribution on Zm×nq . This is
due to the non-lossiness property of Zm×nq . On the other hand, consider that A is
chosen from the lossy distribution C. Then it holds (with overwhelming probability)
that H∞(s|As + e = y) ≥ 1. Thus it holds (even for an unbounded A) that A
outputs the same s that was chosen by D with probability at most 1/2, conditioned
that A outputs a valid s. Thus, conditioned that A gives a valid output, there is
a chance of 1/2 that A outputs a valid s′ 6= s. As A gives a valid output with
probability at least ε′, A outputs a collision s′ with probability at least ε′/2. Thus
D2 distinguishes U from L with advantage at least ε′/2, which is non-negligible.
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Distinguisher D2
Input A ∈ Zm×nq

s←$ Znq
e←$ χ
y← As + e
s′ ← A(A,y)
e′ ← y−As′
If s′ 6= s and e′ ∈ Support(χ)

Return lossy
Otherwise

Return non-lossy

We now turn to the second statement of the theorem. In this case the construction
of the distinguisher D is straightforward.

Distinguisher D
Input A ∈ Zm×nq

s←$ Znq
e←$ χ
y← As + e
s′ ← A(A,y)
If s′ = s

Return non-lossy
Otherwise

Return lossy

Again, if A was chosen uniformly at random from Zm×nq , then A outputs s (which
is in this case unique) with probability at least ε. On the other hand, if A comes from
the lossy distribution C, then A finds s with probability at most 2−H∞(s|As+e=y) ≤
2−γ(n) (this holds with overwhelming probability in the choice of A and y), which
is negligible (as γ(n) = ω(log(n))). All together, D distinguishes U from L with
advantage at least ε− 2−γ, which is non-negligible.

7.4. Construction of Lossy Codes for Uniform Er-
rors from Standard-LWE

We will now provide the details of the construction outlined in Section 7.1.1.

Construction 7.1. Let λ be a security parameter, let q = q(λ) be a modulus,
m,n, k = poly(λ) with k ≤ n. Let α > 0 and let Dαq be a discrete gaussian dis-
tribution on Z. The distribution Cα,k defined on Zm×nq is specified by the following
sampling procedure.

We will now show, that for certain parameter choices, the distribution defined
in Construction 7.1 is lossy for the errors chosen uniformly from [−r, r]m. The
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SampleLossy(1λ)
A′ ←$ Zm×kq

T′ ←$ Zk×(n−k)
q

G←$ D
m×(n−k)
αq

A← (A′‖A′T′ + G)
Return A

pseudorandomness of the distribution Cα,k can be established directly assuming the
hardness of DMLWE(k,m, n − k, q,Dαq), which in turn by Lemma 3.4 follows from
the hardness of DLWE(k,m, n− k, q,Dαq).

Lemma 7.1. Let λ be a security-parameter, let q = q(λ) be a modulus, let m,n, k =
poly(λ) with k ≤ n and let α = α(λ) ∈ (0, 1). Assuming that DLWE(k,m, n −
k, q,Dαq) is hard, the distribution Cα,k is pseudorandom.

The non-lossiness of truly random U←$ Zm×nq can be established by the following
Gilbert-Varshamov-type argument.

Lemma 7.2. Let λ be a security parameter. Let m,n = poly(λ), r = r(λ) and
q = q(λ) be a positive integers. Let ε > 0 be an arbitrarily small constant. Assume
n ≤ (1 − logq(4r + 1) − ε)m and let A be chosen uniformly at random from Zm×nq .
Then the shortest vector of the lattice Λq(A) has length (in the ‖ · ‖∞-norm) greater
than 2r, except with negligible probability.

Proof. Let A ∈ Zm×nq be chosen uniformly at random. Fix a vector s 6= 0 ∈ Znq .
Then the vector A · s is distributed uniformly at random in Zmq . Thus it holds that
PrA[‖A · s‖∞ ≤ 2r] ≤

(
4r+1
q

)m
. Thus, a union-bound yields that

Pr[∃x 6= 0 ∈ Znq : ‖As‖∞ ≤ 2r] ≤ (4r + 1)m
qm−n

= qn−(1−logq(4r+1))m ≤ q−εm,

as n ≤ (1− logq(4r + 1)− ε)m. This immediately yields

Pr[∀x 6= 0 ∈ Znq : ‖As‖∞ ≥ 2r] ≥ 1− q−εm,

which is overwhelming.

Lemma 7.2 immediately yields that if n ≤ (1− logq(4r+ 1)− ε)m, then uniformly
chosen U←$ Zm×nq are non-lossy for errors chosen uniformly from [−r, r]m.

Corollary 7.3. Let λ be a security parameter. Let m,n = poly(λ), r = r(λ) and
q = q(λ) be a positive integers. Let ε > 0 be an arbitrarily small constant. Assume
n ≤ (1 − logq(4r + 1) − ε)m. Let U ←$ Zm×nq be chosen uniformly at random, let
y = U · s̃ + ẽ (where s̃ is chosen uniformly from Znq and ẽ is distributed according
to χ), let s be chosen uniformly from Znq and let e be chosen according to χ. Then
it holds that

Pr
(U,y)

[H∞(s|Us + e = y) = 0] ≥ 1− negl(λ),

i.e. U is non-lossy.
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Proof. By Lemma 7.2, it holds for the shortest nonzero vector v of Λq(U) that
‖v‖∞ > 2r, except with negligible probability. Thus, U and y = Us̃ + ẽ uniquely
determine s̃, as ‖ẽ‖ ≤ r. Consequently, H∞(s|Us + e = y) = 0.

Definition 7.2. We say that a vector y ∈ Zmq is N-ambiguous for a matrix A and
a distance r, if |{s ∈ Znq |‖y −A · s‖∞ ≤ r}| ≥ N . If A and r are clear by context,
we just say that y is N-ambiguous.

Notice that if y is N -ambiguous, then for every z ∈ Znq by linearity it holds that
y + Az is also N -ambiguous.
Since we want to establish lossiness for errors uniformly distributed in [−r, r],

counting the number of possible preimages is sufficient, as each preimage is equally
likely. This is formalized in the following lemma.

Lemma 7.4. Let λ be a security parameter. Let m,n = poly(λ), let q = q(λ)
be a modulus and let r = r(λ) and N = N(λ) be positive integers. Fix a matrix
A ∈ Zm×nq . Assume that y ∈ Zmq is N-ambiguous for the matrix A and distance r.
Let s ∈ Znq be chosen uniformly at random and e ←$ [−r, r]m be chosen uniformly
from [−r, r]m. Then it holds that H∞(s|As + e = y) ≥ log(N).

Proof. Since s and e are drawn from uniform distributions, p := Pr[s = s̃, e = ẽ] is
the same for all s̃ ∈ Znq and ẽ ∈ [−r, r]m. Let X := {z ∈ Znq |‖y−Az‖ ≤ r}. As y is
N -ambiguous it holds that |X| ≥ N , thus

Pr[As + e = y] =
∑

z∈Znq

Pr[As + e = y, s = z] =
∑
z∈X

Pr[e = y−Az, s = z] ≥ p ·N.

Thus it holds for all z ∈ Znq that

Pr[s = z|As + e = y] = Pr[s = z,As + e = y]
Pr[As + e = y] ≤ 1

N
.

This immediately implies H∞(s|As + e = y) ≥ log(N), which concludes the proof.

Definition 7.3. Let λ be a security parameter. Let B = B(λ) > 0. We say that a
distribution χ is B-bounded, if

Pr[|x| > B] ≤ negl(λ),

where x is chosen according to χ.

The following lemma shows that if we sample e uniformly from [−r, r]m, then with
overwhelming probability e is such that if we add a sample g from an appropriately
bounded distribution χm, then, with substantial probability over the choice of g,
e− g is also in [−r, r]m.

Lemma 7.5. Let n,m,B > 0 be integers, let r > (m + 1)B and let ε < 1/2. Let χ
be a B-bounded symmetrical distribution on Z. Let e be chosen uniformly at random
from [−r, r]m and let g be distributed according to χm. Then it holds that

Pr
e

[
Pr
g

[‖e− g‖∞ ≤ r] ≥ ε
]
≥ 1−m · εlog(r/(m·B)) − negl(λ).
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Proof. We will first bound the probability that it holds for more than k = b− log(ε)c
components ei of e that |ei| > r−B, i.e. that ei is not in the interval [−r+B, r−B].
For i = 1, . . . ,m let Zi be a random-variable that is 1 if |ei| > r−B and 0 otherwise.
As e1, . . . , em are iid., Z1, . . . , Zm are also iid. Thus let

p = Pr[Z1 = 1] = · · · = Pr[Zm = 1].

As e1 ←$ [−r, r] and p = Pr[Z1 = 1] = Pr[|e1| > r −B], it holds that

(B − 1)/r ≤ p ≤ B/r.

Set Z = ∑m
i=1 Zi. Clearly, Z is the number of components of e that are not in

the interval [−r + B, r − B] and it is binomially distributed. We can bound the
probability Pr[Z > k] by the following low deviation inequality.

Pr[Z > k] =
m∑

i=k+1

(
m

i

)
pi(1− p)m−i

(1)
≤ m

(
m

k + 1

)
︸ ︷︷ ︸
≤mk+1

pk+1︸ ︷︷ ︸
≤(B/r)k+1

(1− p)m−k−1︸ ︷︷ ︸
≤1

≤ m ·
(
m ·B
r

)k+1 (2)
< m ·

(
m ·B
r

)− log(ε)
= m · εlog(r/(m·B)).

Inequality (1) holds, as
(
m
i

)
pi(1 − p)m−i is monotonically decreasing for i ≥ b(m +

1)pc ≥ b(m + 1)(B − 1)/rc = 0. Inequality (2) holds as m · B/r < 1 and k +
1 > − log(ε). Now, fix an e and assume that it holds that it holds for at most k
components ei1 , . . . , eik of e that |eij | > r −B. Let i ∈ {i1, . . . , ik}.
Let χ̃ be the restriction of the distribution χ to [−B,B], i.e. χ̃ can be sampled

by sampling χ and rejecting samples of outside of [−B,B]. As χ is symmetric and
[−B,B] is symmetric, χ̃ is also symmetric. Moreover, as χ is B-bounded, χ and
χ̃ are statistically close. Therefore, g ←$ χ

m is statistically close to a g′ ←$ χ̃
m.

Thus, let g′ ←$ χ̃
m.

If sgn(g′i) = sgn(ei), then it holds that |ei − g′i| = |ei| − |g′i| ≤ |ei| ≤ r. As χ̃ is
a symmetrical distribution, it holds that Pr[sgn(g′i) = sgn(ei)] ≥ 1

2 . Therefore, it
holds that Pr[|ei − g′i| ≤ r] ≥ 1

2 . For all other indices j /∈ {i1, . . . , ik} it holds that
|ej| ≤ r − B. The triangle-inequality yields |ej − g′j| ≤ |ej|+ |g′j| ≤ r − B + B = r.
Therefore, we have that Pr[|ej − g′j| ≤ r] = 1. Putting this together, we get that

Pr[‖e− g′‖∞ ≤ r] =
m∏
i=1

Pr[|ei − g′i| ≤ r] ≥ 2−k ≥ ε.

All together, it holds that

Pr
e

[Pr
g

[‖e− g‖∞ ≤ r] ≥ ε] ≥ Pr
e

[Pr
g′

[‖e− g′‖∞ ≤ r] ≥ ε]− negl(λ)

≥ 1−m · εlog(r/(m·B)) − negl(λ),

which concludes the proof.

We can now show that Construction 7.1 also fulfills the lossiness-condition for
appropriate parameters.
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Lemma 7.6. Let λ be a security-parameter, let m,n, k = poly(λ) with n − k ≤ λ
and let q = q(λ) be a modulus. Let B = B(λ) and let χ be a symmetric B-bounded
distribution on Z. Let r ≥ m ·B · κ for some κ = κ(λ) > 0 with κ = 2

√
ω(log(λ)). Let

G be chosen according to χm×(n−k), let the matrix A′ ←$ Zm×kq be chosen uniformly
from Zm×kq , let T′ ←$ Zk×(n−k)

q and let A = (A′‖A′T′ + G). Let y = As′ + e′, with
s′ ←$ Znq and e′ ←$ [−r, r]m. Also let s ←$ Znq and e ←$ [−r, r]m. Then it holds
that

Pr
(A,y)

[H∞(s|As + e = y) ≥ 1] ≥ 1− negl(λ).

Proof. We first need to set the parameter ε for Lemma 7.5 appropriately. Let κ′ ≤ κ

be such that κ′ = 2
√
ω(log(λ)) and κ′ = λ/ω(log(λ)), i.e. κ′ is also upper-bounded by

λ/ω(log(λ)). Clearly, as κ′ ≤ κ, the distribution χ is also B′-bounded with

B′ = B · κ
κ′
≥ B.

Moreover, it holds that
r ≥ m ·B · κ = m ·B′ · κ′.

We can now set ε = 1/κ′ (for Lemma 7.5). Let g be distributed according to χm. It
holds by Lemma 7.5 that

Pr
e′

[
Pr
g

[‖e′ − g‖∞ ≤ r] ≥ 1
κ′

]
≥ 1−m · κ′− log(r/(m·B′))

≥ 1− 2−(log(κ′))2

≥ 1− 2−ω(log(λ))

≥ 1− negl(λ),

as it holds that log(κ′) =
√
ω(log(λ)). Thus it holds that

Pr
g

[‖e′ − g‖∞ ≤ r] ≥ 1
κ′
,

except with negligible probability. Assume henceforth that Prg[‖e′ − g‖∞ ≤ r] ≥
1/κ′. Let g1, . . . ,gn−k be the columns of G. As G is chosen according to χm×(n−k),
each gi is independently distributed according to χm. As the gi are chosen indepen-
dently according to χm, the probability that it holds for all i = 1, . . . , n − k that
‖e′ − gi‖∞ > r is at most

Pr[∀i : ‖e′ − gi‖∞ > r] =
n−k∏
i=1

Pr[‖e′ − gi‖∞ > r]

≤ (1− 1/κ′)n−k

≤ e−(n−k)/κ′

≤ e−λ/κ
′

≤ e−ω(log(λ))

≤ negl(λ),

as n − k ≥ λ and κ′ = λ/ω(log(λ)). Thus, with overwhelming probability there
exists an s 6= 0 such that ‖e′ −Gs‖∞ ≤ r, where we can choose s to be one of the
unit vectors. Together, this yields that

Pr
G,e′

[e′ 2-ambiguous for G] ≥ 1− negl(λ).
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The same holds for the matrix A = (A′‖A′T′ + G), as we can obtain A from G by
appending extra columns and applying a basis-change. Both operations straightfor-
wardly do not decrease the ambiguity. Therefore it holds that

Pr
A,e′

[e′ 2-ambiguous for A] ≥ 1− negl(λ).

By linearity, this also holds if we shift e′ by As′ for any s′ ∈ Znq . As y = As′ + e′
we get

Pr
A,y

[y 2-ambiguous for A] ≥ 1− negl(λ).

By Lemma 7.4, if y is 2-ambiguous for A, then H∞(s|As + e = y) ≥ 1. Thus we get

Pr
(A,y)

[H∞(s|As + e = y) ≥ 1] ≥ Pr
A,y

[y 2-ambiguous for A] ≥ 1− negl(λ).

This concludes the proof.

We will summarize the statements of Lemma 7.1, Corollary 7.3 and Lemma 7.6
in the following theorem.

Theorem 7.2. Let λ be a security-parameter. Let q = q(λ) be a modulus and
α = α(λ) ∈ (0, 1). Let m,n, k = poly(λ) and r = r(λ) be positive integers such that

• n− k ≥ λ

• r ≥ m · α · q · κ for some κ = κ(λ) > 0 with κ = 2
√
ω(log(λ)).

• n ≤ (1− logq(4r + 1)− ε)m for an arbitrarily small constant ε > 0

Provided that LWE(k,m, q,Dαq) is hard, the distribution Cα,k given in Construction
7.1 is 1-lossy for the errors uniformly distributed on [−r, r]m,

Proof. Let L be distributed according to Cα,k and U be chosen uniformly from Zm×nq .

1. By Lemma 7.1 it holds that L ≈c U, as we assume that LWE(k,m, q,Dαq) is
hard.

2. As n ≤ (1− logq(4r + 1)− ε)m, it holds by Corollary 7.3 that U is non-lossy.

3. We can set κ′ =
√
κ. Then it holds that κ′ =

√
ω(log(λ)) and κ′ =

√
κ =

2
√
ω(log(λ)). By Lemma 2.15, the discrete gaussian Dαq is B = αqκ′-bounded.

Thus it holds that

r ≥ m · α · q · κ
= m · α · q · κ′2

= m ·B · κ′.

As n− k ≥ λ, κ′ = 2
√
ω(log(λ)), Lemma 7.6 yields that L is 1-lossy.

Consequently, Cα,k is a distribution of 1-lossy codes for uniformly distributed errors
on [−r, r]m.
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7.5. Putting it all together
Using Theorems 7.1 and 7.2 we can translate the worst-case connection for stan-

dard LWE (Theorem 3.5) to LWE with uniform errors.

Theorem 7.3. Let λ be a security parameter. Let q = q(λ) be a modulus and
α = α(λ) ∈ (0, 1). Let m,n = poly(λ) and r = r(λ) be positive integers such that
n ≥ 2λ and r ≥ m · α · κ for κ = κ(λ) = 2

√
ω(log(λ)). If LWE(n/2, q,Dαq) is hard,

then LWE(n,m, q, [−r, r]m) is also hard.

Notice that the term κ = 2
√
ω(log(λ)) can be chosen sub-polynomial. For instance,

we can set
κ = 2(log(λ))

1
2 +ε

= λ(log(λ))−( 1
2−ε) = λo(1)

for a small constant ε ∈ (0, 1/2).

Proof of Theorem 7.3. Let ε > 0 be an arbitrarily small integer and m∗ be such that

m∗ ≥ n

1− logq(4r + 1)− ε.

Assume that m < m∗ and that there exists an efficient PPT adversary A that
solves LWE(n,m, q, [−r, r]m) with non-negligible probability ε. Then there exists an
efficient PPT adversary A′ that solves LWE(n,m∗, q, [−r, r]m∗) with probability ε.
A′ basically discards the last m − m′ equations of its input instance and runs A
on the so truncated instance. As the components of the error distribution [−r, r]m∗

are independent, this this is a proper instance of LWE(n,m, q, [−r, r]m), A’s success
probability is at least ε. Thus, it is sufficient to consider the case m ≥ m∗ ≥

n
1−logq(4r+1)−ε . Setting k = n/2, we get that n − k ≥ n/2 ≥ λ. By a search-to-
decision reduction (Theorem 3.1 or 3.2), the hardness of LWE(n/2, q,Dαq) implies
the hardness of DLWE(n/2, q,Dαq), which in turn immediately implies the hardness
of DLWE(n/2,m, q,Dm

αq). By Theorem 7.2 this implies that Cα,n/2 is 1-lossy. Theorem
7.1 then implies that LWE(n,m, q, [−r, r]m) is also hard. This concludes the proof.

Using the search-to-decision reduction of Theorem 3.1, we can establish the hard-
ness of the decisional LWE problem with error-distribution [−r, r], given that q is a
polynomially small prime integer.

Corollary 7.7. Let λ be a security parameter. Let q = poly(λ) be a prime modulus
and α = α(λ) ∈ (0, 1). Let m,n, r = poly(λ) be positive integers such that n ≥ 2λ
and r ≥ m · α · κ for κ = κ(λ) = 2

√
ω(log(λ)). If LWE(n/2, q,Dαq) is hard, then

DLWE(n,m, q, [−r, r]m) is also hard.

By the worst-to-average case reductions (Theorem 3.5 and 3.6) for LWE with gaus-
sian errors, we can conclude that LWE(n,m, q, [−r, r]m) and DLWE(n,m, q, [−r, r]m)
(for prime q = poly(λ)) are as hard as standard worst case lattice problems.
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7.6. Further Developments
Concurrently and independently of our work, Micciancio and Peikert [MP13] es-

tablished a worst-case connection for LWE with very short uniform errors. Specifi-
cally, [MP13] shows that a family of instantiations of LWE with short uniform errors,
at most linear number of samples and polynomial modulus are as hard as approx-
imating standard worst-case lattice problems to withing a factor of Õ(

√
nq). For

instance, their result can be instantiated with binary errors and n ·(1+Ω(1/ log(n)))
samples or polynomial errors (nε for some small ε) and a linear number of samples
(m = (1 + ε/3)n).
Moreover, Alwen, Krenn, Pietrzak and Wichs [AKPW13] independently provided

a hardness reduction for the learning with rounding (LWR) problem [BPR12] and
LWE with uniform errors which is, on a technical level, similar to ours presented
in this Chapter. While their technique yields slightly worse connection factors than
ours, it has stronger implications, yielding that LWE and LWR remain secure if the
secret s is weak and leaky.





8. Conclusion and Prospects

We will conclude this thesis by reflecting on problems left open by the results of
Chapters 5, 6 and 7, but also on directions to which our results point.

Chosen Ciphertext Security from McEliece.
In Chapter 5 we presented a chosen ciphertext secure McEliece cryptosystem

which has a constant factor ciphertext expansion. However, this scheme does not
provide a tight reduction to the McEliece problem. More specifically, the basic
McEliece scheme has keys of size O(λ2) and ciphertexts of size O(λ), while our
scheme has keys of size O(λ3) and ciphertexts of size O(λ2). The reason for this
quality-loss is that our tag-based encryption scheme uses O(λ) basic McEliece in-
stances in a monolithic way. This poses the question whether there is a construction
of chosen ciphertext secure McEliece cryptosystem that uses at most O(1) basic
McEliece instances. We believe that in order to reach this goal, one will have to
make non-monolithic use of the McEliece trapdoor, i.e. use structural properties of
binary Goppa codes in an essential way.

Chosen Ciphertext Security from LPN
In Chapter 6 we have constructed a chosen ciphertext secure public key cryp-

tosystem based on low noise LPN. The public and secret keys of this scheme have
size Õ(λ4) and the ciphertexts have size Õ(λ2). This seems optimal, as even the
best known constructions of semantically secure public key cryptosystems from this
assumption have the same performance. The reason for this rather large dependence
on the security parameter lies in the computational assumption we use. As we use
LPN with a square-root amount of noise, we need to scale up the security parameter
accordingly by a quadratic amount to ensure that the best known attack (in this
case brute forcing) has complexity at least 2λ. Thus, the quadratic dependence of
the ciphertext size on the security parameter seems unavoidable if the underlying
hardness assumption uses a square-root amount of noise.
Recently several alternatives to the standard LPN problem have been proposed,

most notable the Ring-LPN problem [HKL+12] and the linear time encoding1 LPN
problem [DI14]. Both problems replace the multiplication with A by a more ef-
ficient operation in an algebraically richer structure. This also results in a more

1In [DI14] this problem is called CODE
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efficient representation of the LPN instances, which reduces the size from O(λ4) to
O(λ2). Constructions of semantically secure public cryptosystems can immediately
be translated from standard LPN to these new LPN variants. However, our con-
struction of a chosen ciphertext secure cryptosystem from LPN2 makes explicit use
of the matrix structure of the LPN problem and therefore does not translate to the
new LPN variants. We thus regard the construction of efficient chosen ciphertext
secure public cryptosystems from the new LPN variants as a problem of high prac-
tical relevance. First implementations [DP12] indicate that cryptosystems based on
the new LPN variants have competitive performance, compared to state-of-the-art
number theory based cryptosystems.

LWE with Uniform Errors
In Chapter 7 we showed that under certain conditions, LWE with uniform errors

enjoys the same hardness guarantees as LWE with gaussian errors. However, in
comparison to LWE with gaussian errors our guarantees for LWE with uniform
errors are unsatisfactory in two ways.

1. While we can establish the hardness of the LWE search problem with uniform
errors for any modulus, our reduction for decisional LWE basically relies on
the search-to-decision reduction of Micciancio and Mol [MM11] (Theorem 3.1),
which essentially restricts the modulus q to small powers of polynomially large
primes. The search-to-decision reductions for LWE with gaussian errors in
turn, allow for hardware friendly moduli that are powers of 2. To take full
advantage of LWE with uniform errors, decisional LWE with moduli 2k would
be highly desirable.

2. From a theoretical point of view a more important drawback is that our hard-
ness guarantee for LWE with uniform errors deteriorates with the number of
samples. We stress that this is not the case for LWE with gaussian errors. We
thus consider it an important question whether this limitation arises from an
insufficient proof technique or whether this limitation is inherent. Compare
this to the case of LWE with binary errors, i.e. the errors are chosen uniformly
from {0, 1}. We immediately face a strict upper bound of m = O(n) samples,
as the algorithm of Arora and Ge [AG11] (c.f. Section 3.8.2) yields an efficient
attack given more samples. For the case of binary errors, this is well in line
with a recent result of Micciancio and Peikert [MP13] who showed that LWE
with binary errors has a worst case hardness guarantee given that the number
of samples is limited by n+ o(n).

2As well as a subsequent work [KMP14]
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Appendix

A. Lattices
Definition 8.1. A discrete G subgroup of (Rn,+) is a a group such that for all
distinct x,x′ ∈ G it holds that

‖x− x′‖2 ≥ λ1.

The notions of discrete subgroups of Rn and lattices in Rn are identical.

Lemma 8.1. Every discrete subgroup G of (Rn,+) is a lattice, i.e. there exists a
B ∈ Rn×k such that

G = Λ(B).

The converse follows directly by Lemma 2.13.

Proof. We will construct the basis B together with r(B) inductively. To this end, we
will define a sequence of bases B0,B1, . . . ,Bk and radii r0, . . . , rk with the property
that G ∩ span(Bi) = Λ(Bi) and forall y ∈ span(Bi) it holds that d(y,Λ(Bi)) ≤ ri.
Set B0 = ∅ and r0 = 0, thus we have G ∩ span(B0) = Λ(B0) = {0}. We will now
prove that the inductive step. So let y ∈ G\Λ(Bi−1). Thus y /∈ span(Bi−1) and y
has non-zero distance d(y, span(Bi−1)) from Bi−1. Set r∗ = ri−1 + d(y, span(Bi−1).
We claim that for every x ∈ G with d(x, span(Bi−1)) ≤ d(y, span(Bi−1)), there exists
an x′ ∈ G with d(x′, span(Bi−1)) = d(y′, span(Bi−1)) and ‖x′‖ ≤ r∗. Let x̄ be the
orthogonal projection of x on span(Bi−1), i.e. it holds that x̄ ∈ span(Bi−1) and
‖x− x̄‖ = d(x, span(Bi−1)). Now, by assumption it holds that d(x̄,Λ(Bi−1)) ≤ ri−1,
i.e. there exists a z ∈ Λ(Bi−1) such that ‖x̄ − z‖ ≤ ri−1. Set x′ = x − z ∈ G. By
the triangle inequality it holds that

‖x′‖ = ‖x− z‖
≤ ‖x− x̄‖+ ‖x̄− z‖
≤ d(x, span(Bi−1)) + ri−1

≤ d(y, span(Bi−1)) + ri−1

= r∗
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Now, there are only finitely many x′ ∈ G\Λ(Bi−1) with ‖x′‖ ≤ r∗. This is true
because two distinct x1,x2 ∈ G are separated at least by distance λ1, i.e. ‖x1−x2‖ ≥
λ1. Therefore, the spheres of radius λ1/4 around x1 and x2 are disjoint. However,
we can only pack a finite number of spheres of radius λ1/4 in the sphere of radius r∗.
Thus, there can only be a finite number of lattice points x′ in the sphere of radius
r∗. But from this follows immediately that the number of x′ ∈ G\Λ(Bi−1) with
‖x′‖ ≤ r∗ is finite. Therefore, there exists an xmin ∈ G\Λ(Bi−1) with ‖xmin‖ ≤ r∗

such that for all x ∈ G\Λ(Bi−1) it holds that d(xmin, span(Bi−1)) ≤ d(x, span(Bi−1)).
We can now set Bi = (Bi−1‖xmin) and set ri =

√
r2
i−1 + d(xmin, span(Bi−1))2.

It remains to show that G ∩ span(Bi) = Λ(Bi) and and for all y ∈ span(Bi) that
d(y,Λ(Bi)) ≤ ri. Let x ∈ span(Bi), i.e. let x = v + αxmin with v ∈ span(Bi−1) and
α ∈ R. By adding an appropriate integer multiple of xmin to x we can obtain an
x′ ∈ G ∩ span(Bi) with x′ = v + α′xmin with α′ ∈ [−1

2 ,
1
2 ].

First assume that x′ ∈ G. Then it holds that

d(x′, span(Bi−1)) ≤ α′‖xmin‖ ≤
1
2‖xmin‖,

which implies that α′ = 0, since otherwise x′ would have smaller distance from
span(Bi−1) than xmin, contradicting the minimality of xmin. Thus xmin = v ∈
G ∩ span(Bi−1). But by the inductive assumption it holds that v ∈ Λ(Bi−1) and
this yields x ∈ Λ(Bi), proving the first part of the statement.
Now assume that x′ /∈ G. Let x̄′ be the orthogonal projection of x′ onto span(Bi−1).

By the inductive assumption it holds that d(x̄′,Λ(Bi−1)) ≤ ri−1. Thus it holds that

d(x,Λ(Bi)) = d(x′,Λ(Bi))

=
√
‖x′ − x̄′‖2 + d(x̄′,Λ(Bi−1)2)

≤
√
α′2d(xmin, span(Bi−1))2 + r2

i−1

≤
√

d(xmin, span(Bi−1))2 + r2
i−1

= ri.

Thus, x is within distance ri of Λ(Bi), which concludes the proof.
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