98,148 research outputs found

    Experimental Validation of Multiphase Flow Models and Testing of Multiphase Flow Meters: A Critical Review of Flow Loops Worldwide

    Get PDF
    Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this theoretical effort, measurements at controlled experimental conditions are required to verify multiphase flow models and assess their range of applicability, which has given rise to a large number of multiphase flow loops around the world. These flow loops are also used intensively to test and validate multiphase flow meters, which are devices for the in-line measurement of multiphase flow streams without separation of the phases. However, there are numerous multiphase flow varieties due to differences in pressure and temperature, fluids, flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot represent all possible situations. Even when experiments in a given flow loop are believed to be sufficiently exhaustive for a specific study area, the real conditions encountered in the field tend to be very different from those recreated in the research facility. This paper presents a critical review of multiphase flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase flow situations. The authors suggest a way forward for new developments in this area

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Experimental validation of multiphase flow models and testing of multiphase flow meters: A critical review of flow loops worldwide

    Get PDF
    Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this theoretical effort, measurements at controlled experimental conditions are required to verify multiphase flow models and assess their range of applicability, which has given rise to a large number of multiphase flow loops around the world. These flow loops are also used intensively to test and validate multiphase flow meters, which are devices for the in-line measurement of multiphase flow streams without separation of the phases. However, there are numerous multiphase flow varieties due to differences in pressure and temperature, fluids, flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot represent all possible situations. Even when experiments in a given flow loop are believed to be sufficiently exhaustive for a specific study area, the real conditions encountered in the field tend to be very different from those recreated in the research facility. This paper presents a critical review of multiphase flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase flow situations. The authors suggest a way forward for new developments in this area

    A Machine Learning Approach for Virtual Flow Metering and Forecasting

    Get PDF
    We are concerned with robust and accurate forecasting of multiphase flow rates in wells and pipelines during oil and gas production. In practice, the possibility to physically measure the rates is often limited; besides, it is desirable to estimate future values of multiphase rates based on the previous behavior of the system. In this work, we demonstrate that a Long Short-Term Memory (LSTM) recurrent artificial network is able not only to accurately estimate the multiphase rates at current time (i.e., act as a virtual flow meter), but also to forecast the rates for a sequence of future time instants. For a synthetic severe slugging case, LSTM forecasts compare favorably with the results of hydrodynamical modeling. LSTM results for a realistic noizy dataset of a variable rate well test show that the model can also successfully forecast multiphase rates for a system with changing flow patterns

    Droplet collision simulation by multi-speed lattice Boltzmann method

    No full text
    Realization of the Shan-Chen multiphase flow lattice Boltzmann model is considered in the framework of the higher-order Galilean invariant lattices. The present multiphase lattice Boltzmann model is used in two dimensional simulation of droplet collisions at high Weber numbers. Results are found to be in a good agreement with experimental findings

    pH-responsive gas–water–solid interface for multiphase catalysis

    Get PDF
    © 2015 American Chemical Society. Despite their wide utility in laboratory synthesis and industrial fabrication, gas-water-solid multiphase catalysis reactions often suffer from low reaction efficiency because of the low solubility of gases in water. Using a surface-modification protocol, interface-active silica nanoparticles were synthesized. Such nanoparticles can assemble at the gas-water interface, stabilizing micrometer-sized gas bubbles in water, and disassemble by tuning of the aqueous phase pH. The ability to stabilize gas microbubbles can be finely tuned through variation of the surface-modification protocol. As proof of this concept, Pd and Au were deposited on these silica nanoparticles, leading to interface-active catalysts for aqueous hydrogenation and oxidation, respectively. With such catalysts, conventional gas-water-solid multiphase reactions can be transformed to H 2 or O 2 microbubble reaction systems. The resultant microbubble reaction systems exhibit significant catalysis efficiency enhancement effects compared with conventional multiphase reactions. The significant improvement is attributed to the pronounced increase in reaction interface area that allows for the direct contact of gas, water, and solid phases. At the end of reaction, the microbubbles can be removed from the reaction systems through changing the pH, allowing product separation and catalyst recycling. Interestingly, the alcohol oxidation activation energy for the microbubble systems is much lower than that for the conventional multiphase reaction, also indicating that the developed microbubble system may be a valuable platform to design innovative multiphase catalysis reactions
    • 

    corecore