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Abstract

We are concerned with robust and accurate forecasting of multiphase
flow rates in wells and pipelines during oil and gas production. In practice,
the possibility to physically measure the rates is often limited; besides, it
is desirable to estimate future values of multiphase rates based on the
previous behavior of the system. In this work, we demonstrate that a
Long Short-Term Memory (LSTM) recurrent artificial network is able not
only to accurately estimate the multiphase rates at current time (i.e., act
as a virtual flow meter), but also to forecast the rates for a sequence of
future time instants. For a synthetic severe slugging case, LSTM forecasts
compare favorably with the results of hydrodynamical modeling. LSTM
results for a realistic noizy dataset of a variable rate well test show that
the model can also successfully forecast multiphase rates for a system with
changing flow patterns.

1 Introduction

Accurate multiphase flow rate measurement is an indispensable tool for produc-
tion optimization from oil and gas fields, especially in an offshore environment
(see e.g. [3]). Currently, there are two industry-accepted solutions for provid-
ing such measurements: using test separators and using multiphase flow meters.
While these approaches have their advantages and disadvantages of (see e.g. [8]),
both of them require hardware installations. This can limit the applicability of
physical metering devices due to possible transportation issues, space and security
considerations, and high costs.

A virtual flow meter (VFM) is a mathematical model which allows to estimate
multiphase rates using available data on the flow. A VFM, primarily using readily

∗The Danish Hydrocarbon Research and Technology Centre, Technical University of Den-
mark, 2800 Kgs. Lyngby, Denmark. E-mail: nandria@dtu.dk.

1

ar
X

iv
:1

80
2.

05
69

8v
1 

 [
cs

.N
E

] 
 1

5 
Fe

b 
20

18

mailto:nandria@dtu.dk


available cheap measurements (such as pressure and temperature), can potentially
serve as a cost-efficient addition to physical flow metering devices.

VFM models can be classified as hydrodynamical or data-driven. In the hy-
drodynamical approach one typically solves the phase conservation equations in
a pipe geometry, which requires the choice of an adequate mathematical model,
appropriate numerical method, and availability of a large number of input data.
An advantage of this method is that one can estimate various parameters at ar-
bitrary points of the flowline. A comparison of several hydrodynamical VFMs is
presented in [2].

The data-driven approach is a system identification tool, which requires the
user to accept one of generic model structures. Such models exploit no prior
knowledge on the flow and produce essentially data descriptions. In practice, it
is easier to setup a data-driven model as compared to a hydrodynamical one.
However, data-driven predictions do not have a physical interpretation and it
is not possible to estimate parameters with no historical data. Despite these
shortcomings, the use of data-driven VFMs is gaining momentum in the industry,
see [5].

One important difference between hydrodynamical and data-driven VFMs is
the ability of the latter not only to predict rates (i.e., estimate rates at the current
time instant tn), but also to forecast rates at future time instants tn+1, tn+2, . . . .
Indeed, without a priori knowledge of time-varying boundary conditions, a hy-
drodynamical model is only able to yield forecasts at the next time instant tn+1.

The goal of the present paper is to evaluate the forecasting capability of a
class of data-driven VFMs which use artifical neural networks (ANNs). Feedfor-
ward ANNs have been successfully used in VFM predictions by many authors
(see e.g. [1] and the references therein). However, the forecasting capability of
feedforward ANNs is limited because they are unaware of the temporal structure
or order between observations.

Recent results in such applications as automatic text translation and image
captioning suggest that the Long Short-Term Memory (LSTM) model of [9] is a
efficient tool for time series forecasting.

In order to assess the LSTM model performance for VFM applications, we
consider a synthetic two-phase severe slugging case (see [4]) and a realistic three-
phase well testing dataset.

For the severe slugging data set, we demonstrate superior performance of
LSTM as compared to the feedfoward ANN sliding window approach. We in-
vestigate the LSTM convergence as a function of provided distributed pressure
measurements and determine the optimal model configuration.

For the variable rate well test data set, we show that LSTM can successfully
handle a noizy dataset, describing a system with changing flow patterns. The
accuracy of the forecast improves with the the number of flow periods used for
training the model.
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2 LSTM Model Setup

Consider a time series {x(ti)} and {y(ti)}, where x(ti) is a m-dimensional vector
of input features and y(ti) is a n-dimensional vector of output features values at
equally spaced time instants ti. In VFM applications, features are the measure-
ment data acquired at different points of the flowline. One can select the sets of
the input and output features independently from each other. In particular, a
feature can simultaneously be used for both input and output (e.g., we might be
willing to forecast future values of a flow rate from its past values).

We are interested in forecasting the sequences of output features of length lo
using the sequences of input features of length li. To this end, the terms x(ti) and
y(ti) from the training interval [t0, tL] are divided into N overlapping sequences
of length l = li + lo, shifted by an indentation step s. The result can be cast in
form of the training array

X =


x(t0) . . . x(tli−1)
x(ts) . . . x(ts+li−1)

. . . . . . . . . . . . . . . . . . . . . . . . .
x(tL−l+1) . . . x(tL−lo)

 (2.1)

and the target array

Y =


y(tli) . . . y(tl−1)
y(ts+li) . . . y(ts+l−1)

. . . . . . . . . . . . . . . . . . . . . . . . .
y(tL−lo+1) . . . y(tL)

 , (2.2)

so that X ∈ RN×li×m and Y ∈ RN×lo×n.
LSTM maps an input sequence x(tk), . . . ,x(tk+li−1) to the output sequence

ŷ(tk+li), . . . , ŷ(tk+l−1) for k = 0, . . . , N via a composition of linear transforma-
tions and nonlinear activation functions. The weights of the linear transforma-
tions are iteratively updated to minimize a loss function, which penalizes the
distance between the output and the target sequences. The original LSTM by [9]
is limited to the case when li = lo; [6] and [12] introduced an encoder-decoder
architecture to generalize the LSTM applicability for cases with li 6= lo. See [11]
for a review.

In this work, we use Keras implementation of LSTM, see [7]. The simulation
scripts with the corresponding datasets (see below) are publicly available under
https://github.com/nikolai-andrianov/VFM/.
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3 Experiments

3.1 Severe Slugging Case

Consider a two-phase isothermal gas-liquid flow in a 60 m section of an offshore
pipeline, ending with a 14 m long riser. The flow can be described by a set of
partial differential equations, expressing conservation of mass and momentum for
the phases. We will be using the mathematical model, numerical method, and
the specifications for the test case, presented in [4].

Under certain constant boundary conditions at the pipeline inlet and at the
riser outlet, the numerical solution exhibits a typical severe slugging behaviour,
see Fig. 1.
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Fig. 1. A snapshot of the numerical solution for the severe slugging
case at intermediate time instant.

We will utilize this numerical solution as a “ground truth” for forecasting
the liquid and gas rates at the riser bottom using the data from virtual pressure
gauges distributed along the flowline, see Fig. 2.

In order to run LSTM forecasts, we resample the normalized pressure and
flow rate data with a uniform timestep of 1 sec, and use half of the total hydro-
dynamical simulation time as a training interval, [t0, tL] = [0, 1500] sec.

We first analyze the quality of LSTM forecasts when the network is trained
using only pressure readings as input and liquid rate as output. The training
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Fig. 2. Pressure data used as input to forecast the flow rates.

data is divided into N = 1127 sequences of length l = 374 sec with li = lo, shifted
by the indentation step s = 1 sec. The network details are given below:

• Deep LSTM with 3 hidden layers and 10 memory cells at each layer;

• Total number of trainable parameters is 2171, . . . , 2411 with validation split
of 0.05 for the number of input features m = 1, . . . , 7 and number of output
features n = 1;

• Fixed random seed for repeatability in parameter initialization;

• Mean squared error (MSE) loss function and Adam optimizer of [10] with
batch size of 1 and number epochs equal to 10.

These network training parameters were determined by trial-and-error. For the
case considered, the forecasting results were most sensitive to the number and
lengths of input/output sequences.
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Fig. 3. LSTM liquid rate forecasts using various number of pressure
readings as input.
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Fig. 4. Feedforward ANN liquid rate forecasts using a single pressure
readings as input.
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Fig. 5. LSTM convergence history as a function of number of pressure
readings used to train the network.

The forecasting capability of an LSTM can be quantified with the ratio

f =
lo

tL − t0
· 100%, (3.1)

which we will term the relative forecasting interval. For the severe slugging case
f = 12.4%, i.e. the LSTM can forecast the future flow rates for the time interval
which length is 12.4% of the length of LSTM’s training interval.

The forecasts are plotted as 15 non-overlapping sequences of length l = 374
sec with li = lo = 187 sec, shifted by the indentation step s = 187 sec, see
Fig. 3. Observe that even when trained on a single pressure reading, LSTM
yields excellent agreement with the ground truth hydrodynamical solution in
terms of the frequency and amplitude of the liquid rate peaks. This is in striking
contrast to the results of a feedforward ANN using sliding window approach with
3 hidden layers and 10 neurons at each layer, trained on the same dataset as the
LSTM, see Fig. 4.

Adding more pressure data as the training input does generally increase the
accuracy of LSTM forecasts. However, this improvement is not monotonous, and
starting from a certain number of pressure readings (in this case 5 readings) the
accuracy remains essentially the same, see Fig. 5.

Note that there are spurious oscillations visible in LSTM forecasts on Fig. 3.
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Fig. 6. First output sequences of zoomed LSTM liquid rate forecasts
using 5 pressure readings as input.

We replot the zoomed LSTM forecasts using 5 pressure readings as overlapping
sequences of the same length li = lo = 187 sec, but shifted by the indentation
step s = 93 sec, see Fig. 6.

Observe that the spurious oscillations are located at the beginning of each
sequence. This is not surprising because LSTM learns its weights within the
input sequence. However, these oscillations do not affect the accuracy of the
forecasts if we use overlapping output sequences. Indeed, referring to Fig. 6 we
have by the end of t = li the 0th sequence forecast till t = 2li, which is oscillation-
free by the time t = li + s, when the new 1st sequence forecast is made till
t = 2li + s. We keep using the 0th sequence forecast until the oscillations in the
1st sequence forecast disappear, and repeat the process.

The performance of LSTM trained on pressure and liquid rate is presented in
Fig. 7. Observe that increasing the number of measurements used to train the
network does not improve the accuracy of the forecast, cf. Fig. 5. Moreover, if
few pressure readings are used for training, the performance of LSTM trained on
pressure and rate data becomes worse than that of LSTM trained just on pressure
data.

The accuracy of LSTM forecasts of both liquid and gas rates (i.e., n = 2
output features) is essentially the same as the results presented above for liquid
rate forecasts only.
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Fig. 7. Convergence history of LSTM trained on several pressure
readings and the liquid rate.

We also tested the encoder-decoder LSTM of [6] and [12], but the forecasts
were less accurate compared to the results presented above.

Wall time required for training of LSTMs described above with was approx.
30 mins using a single core of i7-7700HQ CPU. Using 8 cores of the same CPU
resulted in approx. 20% speedup.

3.2 Variable Rate Well Test

Consider a synthetic dataset of pressure, temperature, and oil, gas and water rates
measurements during a well test, see Fig. 8 and Fig. 9. The data is characteristic
for a rich gas condensate deliverability test, which involves flowing the well on
successively larger choke sizes in order to determine the well’s inflow performance
relationship (IPR) and maximize gas condensate recovery. (In what follows, we
will refer to gas condensate as “oil”.)
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Fig. 8. Pressure and temperature for the variable rate well test.
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Fig. 9. Multiphase rates for the variable rate well test.
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Fig. 10. Multiphase rates forecast for the LSTM trained on first 2
flow periods. Spurious oscillations are plotted semi-transparent.

The dataset consists of 5 flow periods, which are characterized by the corre-
sponding choke size. Within each flow period, the measurements are generally
sampled with the uniform timestep of 1 min. We are interested in forecasting the
multiphase rates using the values of pressure and temperature.

To this end, we will be utilizing essentially the same procedure as for the
severe slugging experiment. We train the network on first flow periods using
pressure and temperature readings as input features and multiphase rates as
output feactures. Then, the multiphase rates forecasts are run for all flow periods.

One key difference of the variable rate well test case from the severe slugging
case considered in the previous section is that the flow pattern in the well test case
changes drastically from one flow period to another, see Fig. 8 and Fig. 9. This
constitutes a challenge to the neural network, because we try to approximate the
behaviour of the changing flow system with the same ANN. Another difference
and a challenge for the neural network is that the dataset is noizy.

In what follows, we will compare the forecasting accuracy of LSTMs trained
on first 2 and 3 flow periods. For these two cases, the training data is divided
into N = 2705 and N = 3828 sequences, respectively. In both cases the sequence
length is l = 244 min with li = lo, and the indentation step is s = 1 min. The
relative forecasting intervals are f = 3.8% and f = 2.6%, respectively. The

11



Jan 05
16:00

Jan 05
17:00

Jan 05
18:00

Jan 05
19:00

Jan 05
20:00

Jan 05
21:00

Jan 05
22:00

Jan 05
23:00

3.60

3.65

3.70

3.75

3.80

3.85

3.90

Qg
 (m

3/
da

y)

1e5Gas flow rate
Measured Qg
Sequence 0
Sequence 1
Sequence 2
Sequence 3

Fig. 11. First output sequences of zoomed LSTM gas rate forecasts.

LSTM structure is the same as described in the previous section. The forecasts
are presented in sequences of l = 244 min with the indentation step is s = li/2
min.

The results for the LSTM, trained on first 2 flow periods, are presented in
Fig. 10.

The model reproduces well the training data from the first 2 flow periods.
The best accuracy is achieved for forecasted values of oil and water rates, while
the gas rate is slightly overestimated. Still, the trends for all rates are captured
correctly.

On the testing set (flow periods 3 to 5), the model yields reasonable values for
the oil and water rates. However, the forecasts for gas rate are non-satisfactory.
This can be explained by the fact that both oil and water rates lie in a same
range throughout all flow periods, which is not the case for the gas rate. Also,
note that the first li data points on each training sequence are not covered by
any output sequence. Consequently, the sharp peaks at the beginning of the flow
periods 2, 3, and 4 are not included in the training dataset.

On Fig. 10 we witness the same spurious oscillations as discussed in the pre-
vious section, cf. Fig. 6. To see this, in Fig. 11 we plot the measured gas rate
together with the first output sequences of forecasted gas rate during the 1st flow
period. Observe that the peaks are located at the beginning of each output se-
quence of length lo = 122 min. By following the same reasoning as in the previous

12



Jan 06
Jan 07

Jan 08
Jan 09

Jan 10
Jan 11

Jan 12
Jan 13

Jan 14
Jan 15

0

100

200

300

400

500
Qo

 &
 Q

w 
(m

3/
da

y)
Measured Qo
Measured Qw
Measured Qg
Forecasted Qo
Forecasted Qw
Forecasted Qg

0.4

0.5

0.6

0.7

0.8

0.9

Qg
 (m

3/
da

y)

1e6Flow rates data

Fig. 12. Multiphase rates forecast for the LSTM trained on first 3
flow periods. Spurious oscillations are plotted semi-transparent.

section, we argue that these spurious oscillations do not affect the quality of the
forecast.

The results for the LSTM, trained on first 3 flow periods, are presented in
Fig. 12. The model reproduces well all training data from the first 3 flow periods.
It is interesting to note that the forecasts are less noizy as compared to the
measured data. There are spurious oscillations visible on the graphs, but their
amplitude is less than that of the model, trained on 2 flow periods.

On the testing set (flow periods 4 and 5), the model performance is best for oil
and water rates, and less satisfactory for gas rates. Again, this can be explained
by a larger variability of the gas rate as compared to oil and water rates. Overall,
the accuracy of the forecast is considerably better compared to that of the model,
trained just on 2 flow periods.

Wall time required for training of LSTMs on first two and three flow periods
using a single core of i7-7700HQ CPU was approx. 50 and 90 min, respectively.

4 Conclusion

In this work, we have shown that LSTM can be considered as a robust tool
for forecasting the values of multiphase rates using pressure and temperature
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data. The best accuracy was achieved when the lengths of the input and output
sequences to LSTM were equal. Consequently, we are limited in the length of the
time interval suited for forecasts. Removing this limitation without sacrifice on
the accuracy of the forecast can be an interesting topic of future research.
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