272 research outputs found

    Publish/subscribe protocol in wireless sensor networks: improved reliability and timeliness

    Get PDF
    The rapidly-evolving demand of applications using wireless sensor networks in several areas such as building and industrial automation or smart cities, among other, makes it necessary to determine and provide QoS support mechanisms which can satisfy the requirements of applications. In this paper we propose a mechanism that establishes different QoS levels, based on Publish/Subscribe model for wireless networks to meet application requirements, to provide reliable delivery of packet and timeliness. The first level delivers packets in a best effort way. The second one intends to provide reliable packet delivery with a novel approach for Retransmission Timeout (RTO) calculation, which adjusts the RTO depending on the subscriber Packet Delivery Ratio (PDR). The third one provides the same reliable packet delivery as the second one, but in addition, it provides data aggregation trying to be efficient in terms of energy consumption and the use of network bandwidth. The last one provides timeliness in the packet delivery. We evaluate each QoS Level with several performance metrics such as PDR, Message Delivery Ratio, Duplicated and Retransmitted Packet Ratio and Packet Timeliness Ratio to demonstrate that our proposal provides significant improvements based on the increase of the PDR obtained.Peer ReviewedPostprint (author's final draft

    Facilitating the creation of IoT applications through conditional observations in CoAP

    Get PDF
    With the advent of IPv6, the world is getting ready to incorporate smart objects to the current Internet to realize the idea of Internet of Things. The biggest challenge faced is the resource constraint of the smart objects to directly utilize the existing standard protocols and applications. A number of initiatives are currently witnessed to resolve this situation. One of such initiatives is the introduction of Constrained Application Protocol. This protocol is developed to fit in the resource-constrained smart object with the ability to easily translate to the prominent representational state transfer implementation, hypertext transfer protocol (and vice versa). The protocol has several optional extensions, one of them being, resource observation. With resource observation, a client may ask a server to be notified every state change of the resource. However, in many applications, all state changes are not significant enough for the clients. Therefore, the client will have to decide whether to use a value sent by a server or not. This results in wastage of the already constrained resources (bandwidth, processing power,aEuro broken vertical bar). In this paper, we introduced an alternative to the normal resource observation function, named Conditional Observation, where clients tell the servers the criteria for notification. We evaluated the power consumption and number of packets transmitted between clients and servers by using different network sizes and number of servers. In all cases, we found out that the existing observe option results in excessive number of packets (most of them unimportant for the client) and higher power consumption. We also made an extensive theoretical evaluation of the two approaches which give consistent result with the results we got from experimentation

    A formal model and analysis of the MQ telemetry transport protocol

    Get PDF

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered

    On M2M Micropayments : A Case Study of Electric Autonomous Vehicles

    Get PDF
    The proliferation of electric vehicles has spurred the research interest in technologies associated with it, for instance, batteries, and charging mechanisms. Moreover, the recent advancements in autonomous cars also encourage the enabling technologies to integrate and provide holistic applications. To this end, one key requirement for electric vehicles is to have an efficient, secure, and scalable infrastructure and framework for charging, billing, and auditing. However, the current manual charging systems for EVs may not be applicable to the autonomous cars that demand new, automatic, secure, efficient, and scalable billing and auditing mechanism. Owing to the distributed systems such as blockchain technology, in this paper, we propose a new charging and billing mechanism for electric vehicles that charge their batteries in a charging-on-the-move fashion. To meet the requirements of billing in electric vehicles, we leverage distributed ledger technology (DLT), a distributed peer-to-peer technology for micro-transactions. Our proof-of-concept implementation of the billing framework demonstrates the feasibility of such system in electric vehicles. It is also worth noting that the solution can easily be extended to the electric autonomous cars (EACs)

    Semantic Gateway as a Service architecture for IoT Interoperability

    Get PDF
    The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a gateway and Semantic Web enabled IoT architecture to provide interoperability between systems using established communication and data standards. The Semantic Gateway as Service (SGS) allows translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic interoperability between messages and support semantic reasoning to obtain higher-level actionable knowledge from low-level sensor data.Comment: 16 page

    A System Architecture for Software-Defined Industrial Internet of Things

    Full text link
    Wireless sensor networks have been a driving force of the Industrial Internet of Things (IIoT) advancement in the process control and manufacturing industry. The emergence of IIoT opens great potential for the ubiquitous field device connectivity and manageability with an integrated and standardized architecture from low-level device operations to high-level data-centric application interactions. This technological development requires software definability in the key architectural elements of IIoT, including wireless field devices, IIoT gateways, network infrastructure, and IIoT sensor cloud services. In this paper, a novel software-defined IIoT (SD-IIoT) is proposed in order to solve essential challenges in a holistic IIoT system, such as reliability, security, timeliness scalability, and quality of service (QoS). A new IIoT system architecture is proposed based on the latest networking technologies such as WirelessHART, WebSocket, IETF constrained application protocol (CoAP) and software-defined networking (SDN). A new scheme based on CoAP and SDN is proposed to solve the QoS issues. Computer experiments in a case study are implemented to show the effectiveness of the proposed system architecture.Comment: To be published by IEEE ICUWB-201

    IoT Standardization: The Road Ahead

    Get PDF
    The Internet of Things (IoT) is an emerging area of the modern technology which impacts use cases across governance, education, business, manufacturing, entertainment, transportation, infrastructures, health care, and so on. Creating a generalized framework for the IoT with heterogeneous devices and technology support requires interoperability across products, applications, and services that preclude vendor lock-in. Global standardization of the IoT is the only solution to this. Though standardization efforts in the IoT are not new with many national and international standard bodies working today, there are many open areas to debate and standardize—like reconciling country-specific efforts, empowering local solutions, etc. This chapter brings a holistic view of the existing IoT standards, discusses their interlinking, and enumerates the pain points with possible solutions. It also explains the need for country-specific standardization with the example of an Indian Standard Development Organization (SDO), vis-à-vis global initiatives, as a driver for societal uplifting and economic growth

    Internet of Things: Architectural Components, Protocols and Its Implementation for Ubiquitous Environment

    Get PDF
    Ubiquitous data processing of the sensing nodes has revolutionized the development of electronic industries manufacturing. The concept of the Internet of Things (IoT) is the connectivity of distributed sensing and processing nodes from anywhere rather than fixed computing. For the Implementation of Ubiquitous smart environment, anything and everything can be converted to smart IO Things, and where things have sensing and processing abilities for automation and analysis of environmental processes. Sensors, actuators, embedded processing systems, networking gateways, and IoT Cloud Services are the building blocks of IoT implementation. This paper presents a brief discussion on the connectivity of building blocks with various enabling technologies for the implementation of the Internet of Things. Moreover, many of data link standards and the internet of things data communication protocols will be in the discussion
    • …
    corecore