
A Formal Model and Analysis of the MQ Telemetry Transport Protocol

Benjamin Aziz
School of Computing

University of Portsmouth
Portsmouth, United Kingdom

benjamin.aziz@port.ac.uk

Abstract—We present a formal model of the MQ Telemetry
Transport version 3.1 protocol based on a timed message-
passing process algebra. We explain the modeling choices that
we made, including pointing out ambiguities in the original
protocol specification, and we carry out a static analysis of the
formal protocol model, which is based on an approximation of
a name-substitution semantics for algebra. The analysis reveals
that the protocol behaves correctly as specified against the first
two quality of service modes of operation providing at most
once and at least once delivery semantics to the subscribers.
However, we find that the third and highest quality of service
semantics is prone to error and at best ambiguous in certain
aspects of its specification. Finally, we suggest an enhancement
of this level of QoS for the protocol.

Keywords-Embedded Systems, Formal Verification, IoT,
MQTT, Protocols

I. INTRODUCTION

The MQ Telemetry Transport (MQTT) protocol - version
3.1 [1] is described by OASIS as a lightweight broker-based
publish/subscribe messaging protocol that was designed to
allow devices with small processing power and storage, such
as those which the Internet of Things (IoT) is composed
of, to communicate over low-bandwidth and unreliable
networks. The publish/subscribe message pattern [2], on
which MQTT is based, provides for one-to-many message
distribution with three variaties of delivery semantics, based
on the level of quality of service expected from the protocol,
including “at most once”, “at least once” and “exactly once”
semantics.

The protocol defines the message structure needed in com-
munications between clients, i.e. end-devices responsible for
generating data from their domain (the data source) and
servers, which are the system components responsible for
collating source data from clients/end-devices and distribut-
ing these data to interested subscribers.

In the “at most once” case, messages are delivered with
the best effort of the underlying communication infras-
tructure, which is usually IP-based, therefore there is no
guarantee that the message will arrive. This protocol, which
is termed as the QoS = 0 protocol, is represented by the
following flow of messages and actions:

Client→ Server : Publish
Server Action : Publish message to subscribers

In the second case of “at least once” semantics, certain
mechanisms are incorporated to allow for message dupli-
cation, and despite the guarantee of delivering the message,
there is no guarantee that duplicates will be suppressed. This
case is represented by the following flow of messages and
actions:

Client→ Server : Publish
Client Action : Store Message

Server Actions : Store Message,

Publish message to subscribers,

Delete Message

Server→ Client : Puback
Client Action : Discard Message

The second message Puback represents an acknowledgment
of the receipt of the first message, and if Puback is lost,
then the first message is retransmitted by the client (hence
the reason why the message is stored at the client). Once
the protocol completes, the client discards the message. This
protocol is also known as the QoS = 1 protocol.

Finally, for the last case of “exactly once” delivery se-
mantics, also known as the QoS = 2 protocol, the published
message is guaranteed to arrive only once at the subscribers.
This is represented by the following flow of messages and
actions:

Client→ Server : Publish
Client Action : Store Message

Server Actions : Store Message OR

Store Message ID,

Publish message to subscribers

Server→ Client : Pubrec
Client→ Server : Pubrel

Server Actions : Publish message to subscribers,

Delete Message OR

Delete Message ID

Server→ Client : Pubcomp
Client Action : Discard Message

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this protocol, Pubrec and Pubcomp represent acknowl-
edgment messages from the server, whereas Pubrel is an
acknowledgment message from the client. The loss of Pub-
rec causes the client to recommence the protocol from its
beginning, whereas the loss of Pubcomp causes the client to
retransmit only the second part of the protocol, which starts
at the Pubrel message. This additional machinery presum-
ably ensures a single delivery of the published message to
the subscribers.

The rest of the paper is organised as follows. In Section
II, we provide an overview of the TPi process algebra, a
timed version of the π-calculus [3] and provide a concrete
semantics for the language. In Section III, we abstract
this semantics and define our static analysis algorithm. In
Section, IV we develop a model of the MQTT protocol based
on TPi, and explain the various modeling options that we
adopted. In Section V, we give an analysis of the protocol
in the context of its three versions of the delivery semantics
and we discuss the results of the analysis in Section VI.
Finally, in Section VII, we describe related work in current
literature and in Section VIII, we conclude the paper and
provide directions for future research.

II. TPI: A TIMED PROCESS ALGEBRA

The model of MQTT that we introduce here is based on
a process algebra called TPi, originally inspired by [4] and
further developed in [5], which is a synchronous message-
passing calculus capable of expressing timed inputs.

A. Syntax and Structural Operational Semantics of TPi

The syntax of the language defines processes, P,Q ∈ P ,
based on names x, y ∈ N as follows:

P,Q ::= x〈y〉.P | timert(x(y).P,Q) | !P | (νx)P |
(P |Q) | (P+Q) | 0 | A(x)

The syntax corresponds to that of the standard synchronous
π-calculus [3] except for the fact that input actions are placed
within a timer, timert(x(y).P,Q), where t ∈ N represents
a time bound. The input action, x(y).P , can synchronise
with suitable output actions as long as t > 0. Otherwise,
when t = 0, the timer behaves as Q. There is an assumption
that t is decremented by the environment of the process and
that t can be any time unit (e.g. tick, second etc.). Finally,
we utilised process definition calls in the form of A(x). This
calls a process definition A(y)

def
= P , and at the same time,

passes it the value x to replace y. If the definition A does
not accept any input parameters, then we simply omit the
input parameter y and write A()

def
= P .

The structural operational semantics of TPi are given in
terms of the structural congruence, ≡, and labeled transition,
µ−→, relations as shown in Figure 1, where fn(P) represents

the set of free names of P .

The definition of ≡ is standard, except for rules (6), (7),
(8) and (9), which deal with expired and infinite timers, and
parameterised/non-parameterised process definition calls,
respectively. The labels, µ ∈ {x〈y〉−→, x(y)−→, x(z)−→, τ−→}, express
free and bound outputs, inputs and silent actions. Again,
most of the rules for

µ−→ are straightforward and their
explanation can be found elsewhere (e.g. [6, §3.2.2] and
[5]) except for rule (19), where a time-stepping function,
ð : P → P , expresses the ticking of activated timers (i.e.
timed inputs that are already at the head of the process
waiting to accept a message) by the external environment
of the process:

ð(P) =



timert(x(y).Q,Q′), if
P = timert+1(x(y).Q,Q′)
and 0 < t+ 1 <∞

ð(Q) | ð(R), if P = Q | R
ð(Q) + ð(R), if P = Q+R
(νx)ð(Q), if P = (νx)Q
ð(Q[x/y]), if P = A(x) and

A(y)
def
= Q

ð(Q), if P = A() and
A()

def
= Q

P, otherwise

This function reduces the timer’s value as long as that value
is still a positive number, expressed as t+1. The function dis-
tributes over parallel composition, non-deterministic choice,
restrictions and process definition calls, but it has no effect
over all other processes. This is interesting for the cases of
output and replicated processes since these are considered
to be non-active unless they are synchronised or replicated.
We assume that rule (19) is applied once every unit of time
and that its application (including the call to the ð function)
is completed before a single unit of time elapses.

B. A Name-Substitution Semantics

In this section, we define a non-standard semantics
for TPi such that it is possible to express the meaning
of processes in terms of name substitutions resulting
from message passing (note here that we exclude other
substitutions, such as those due to α-conversions or
renaming of bound names). For example, in:

!((νy)x〈y〉.0) | !timert+1(x(u).0,0)

we would like to have a meaning that captures the set of
substitutions, {y1/u1, y2/u2 . . .}, where yi is a labeled copy
of the fresh name, y, and ui is a labeled instance of the input
parameter, u, assuming that t+ 1 > 0. (Note: other labeling
schemes are also possible as long as they maintain bound
name uniqueness).

First however, we need to introduce the notion of tags
defined as the set, `, `′ ∈ L. The set L is then used to tag

Rules of the ≡ relation:
(1) (P/ ≡, |,0) is a commutative monoid
(2) (νx)0 ≡ 0
(3) (νx)(νy)P ≡ (νy)(νx)P
(4) !P ≡ P |!P
(5) (νx)(P | Q) ≡ (P | (νx)Q) if x /∈ fn(Q)
(6) timer0(x(z).P,Q) ≡ Q
(7) timer∞(x(z).P,Q) ≡ x(z).P

(8) A(x) ≡ P [x/y], where A(y)
def
= P

(9) A() ≡ P , where A()
def
= P

Rules of the
µ−→ relation:

(10) x〈y〉.P x〈y〉−→ P

(11) timert+1(x(z).P,Q)
x(z)−→ P

(12) P
x〈y〉−→Q ⇒ (νy)P

x(y)−→Q if x 6= y

(13) P
x〈y〉−→ P ′, Q

x(z)−→Q′ ⇒
P | Q τ−→ P ′ | Q′[y/z]

(14) P
x(y)−→ P ′, Q

x(z)−→Q′ ⇒
P | Q τ−→ (νy)(P ′ | Q′[y/z])

(15) P
µ−→Q ⇒ (νx)P

µ−→ (νx)Q if x 6= fn(µ)

(16) P
µ−→ P ′ ⇒ P | Q µ−→ P ′ | Q

(17) P
µ−→ P ′ ⇒ P +Q

µ−→ P ′

(18) P
µ−→ P ′ ⇒ Q+ P

µ−→ P ′

(19) P τ−→ ð(P)

Figure 1. The structural operational semantics of TPi [5].

messages of output actions: x〈y〉.P becomes x〈y`〉.P . This
tagging is performed uniquely, i.e. no two messages will
be assigned the same tag even if the two messages have
the same name. This will help distinguish every message in
the non-standard interpretation. Additionally, we define the
following two functions involving tags:

value of : L → N
tags of : P → ℘(L)

where value of(`) = y signifies that ` was assigned to
the message y and tags of(P) = {`1, . . . , `n} signifies
the set of tags used in P . Naturally, value of is non-
injective and we sometimes write value of({`, `′ . . .}) to
mean {value of(`), value of(`′) . . .}.

Next, we define the environment, φS : N → ℘(L), such
that ` ∈ φS(x) implies that the message tagged with `
replaces the input parameter, x, at runtime. From φS , a
semantic domain, D⊥ : N → ℘(L), is formed with the
following ordering:

∀φS1, φS2 ∈ D⊥ : φS1 vD⊥ φS2 ⇔ ∀x ∈
N : φS1(x) ⊆ φS2(x)

where the bottom element, ⊥, denotes the null environment,
φS0, which maps every name in N to ∅. From the above
definition of D⊥ then, we can assign a meaning to process P
as a function S([P]) ρ φS ∈ D⊥, defined over the structure
of P as shown in Figure 2.

In the rules of this semantics, ρ is a multiset of processes
in parallel with the interpreted process along with the
standard {| − |} : P → ℘(P) and] : ℘(P)× ℘(P)→ ℘(P)
operators over ρ. The meaning of ρ is given in (R0) using
the special union, ∪φS , defined as:

∀x ∈ N : (φS1 ∪φS φS2)(x) = φS1(x) ∪ φS2(x)

We describe next these rules informally. Rule (S1) does not
affect the value of φS since communications are dealt with
in the case of input actions (the next two rules). In (S2)
for active input actions, the rule uses the equivalence of
two names,

φS∼ , parameterised by φS to determine matching
channel names. This is defined for any two names, x and y
as:

x
φS∼ y ⇔

(value of(φS(x)) ∩ value of(φS(y)) 6= ∅) ∨ (x = y)

For each synchronisation, the value of φS is updated with
the tag of the communicated message using the update
operator defined as:

∀φS ∈ D⊥, y ∈ N , ` ∈ L :
update(φS , y, `) = φS [y 7→ φS(y) ∪ {`}]

Rule (S2) also considers the case where no communications
take place. In either case, all active timers are decremented
some using the time-stepping defined in the previous section.
Rule (S3) deals with inactive input actions the meaning of
the input-guarded process becomes the meaning of the con-
tinuation process Q. Rule (S4) naturally adds two parallel
process in the ρ multiset. Rule (S5) deals with replicated
processes using a fixed-point calculation of the higher order
functional, F . The rule allows for as many copies of P to be
spawned and the number of each copy is used to subscript its
bound names and tags in order to maintain their uniqueness.
As a result, the interpretation of restricted names in rule (S6)
drops the ν operator in ρ. Rule (S7) returns the same value
of φS when interpreting the null process, and in rule (S8),

(S1) S([x〈y`〉.P]) ρ φS = φS
(S2) S([timert+1(x(y).P,Q)]) ρ φS = (

⋃
φS

x′〈z`〉.P ′∈ρ: x
φS∼ x′

R([(
⊎
R∈ρ

{|ð(R)|})] {|P |}] {[P ′]}]) update(φS , y, `)) ∪φS

R([(
⊎
R∈ρ

{|ð(R)|})] {|timert(x(y).P,Q)|}]) φS

(S3) S([timer0(x(y).P,Q)]) ρ φS = R([{|Q|}] ρ]) φS
(S4) S([P | Q]) ρ φS = R([{|P |}] {|Q|}] ρ]) φS
(S5) S([!P]) ρ φS = snd(fix F(0,⊥))

where, F = λfλ(j, φ).f (ifφ = R([(
j⊎
i=0

{|(P)σ|})] ρ]) φS then j, φ else (j + 1), (R([(
j⊎
i=0

{|(P)σ|})] ρ]) φS))

and σ = [bni(P)/bn(P)][tags ofi(P)/tags of(P)], bni(P) = {xi | x ∈ bn(P)}, tags ofi(P) = {`i | ` ∈ tags of(P)}
(S6) S([(νn)P]) ρ φS = R([{|P |}] ρ]) φS
(S7) S([0]) ρ φS = φS
(S8) S([P +Q]) ρ φS = S([P]) ρ φS ∪ S([Q]) ρ φS

(S9) S([A(x)]) ρ φS = S([P [x/y]]) ρ φS where, A(y) def
= P

(R0) R([ρ]) φS =
⋃
φS

P∈ρ
S([P]) (ρ\{|P |}) φS

Figure 2. The definition of S([P]) ρ φS .

applies the union of the two possible choice interpretations.
Finally, rule (S9) replaces a process application with its
definition making the necessary name substitution. Note here
that we do not capture these substitutions in φS the same
way we do with communicated messages, as we are more
interested in the latter for the purpose of our analysis.

The following soundness theorem states that name substi-
tutions in the structural operational semantics are captured
in the non-standard semantics.

Theorem 1 (Soundness of the non-standard semantics).
∀P,Q, x, y : P

µ−→
∗
Q[x/y] ⇒ x ∈ value of(φ′S(y))

where, φ′S = S([P]) ρ φS

Proof: The proof is by induction on the rules of
the structural operational semantics in Figure 1. The most
interesting cases are rules (10) and (11), where we need to
show that if a process, P , exhibits a transition, P

x〈y〉−→P ′, then
this will eventually yield a process, x〈y`〉.P ′′ ∈ ρ during
the non-standard interpretation. The same can be shown for
Q
x(z)−→Q′ and R

x(y)−→R′. From rule (S2), we can then show
that P | Q and R | Q will capture substitutions in the φS
environment in each case.

III. AN APPROXIMATED SEMANTICS

The computation of the non-standard semantics of the
previous section is not guaranteed to terminate due to the
infinite size of D⊥ as a result of the presence of replication
in processes. Therefore, we need to approximate the meaning
of processes by introducing the αk approximation, which
limits the number of copies of fresh names and tags that
can be captured by the semantics.

Definition 1 (The αk-approximation function).
Define αk : (N ∪ L) → (N] ∪ L]) as follows, where
N] = N\{xi | i > k} and L] = L\{`i | ` > k}:

∀u ∈ (N ∪ L) : αk(u) =

{
uk, if u = ui ∧ i > k
u, otherwise

We write, αk({u, u′, . . .}), to mean {αk(u), αk(u′), . . .}.
The αk approximation function leads naturally to the
appearance of the abstract environment, φA : N] → ℘(L])
and the abstract semantic domain, D]

⊥ with the following
ordering:

∀φA1, φA2 ∈ D]
⊥ : φA1 vD]⊥ φA2 ⇔ ∀x ∈

N] : φA1(x) ⊆ φA2(x)

Based on D]
⊥, we can interpret processes as a new

function, A([P]) ρ φA ∈ D]
⊥, defined as follows:

A([P]) ρ φA = let update = updateAαk in let φS =
φA in S([P]) ρ φS

which uses the same algorithm for S([P]) ρ φS defined
in Figure 2 but replacing φS and update with their
abstract siblings. The updateAαk operator is defined for all
φA ∈ D]

⊥, y ∈ N , ` ∈ L as follows:

updateAαk(φA, y, `) = φA[αk(y) 7→ φA(αk(y)) ∪ {αk(`)}]

The following termination result can be shown to hold.

Theorem 2 (Termination of the Abstract Semantics).
For any process, P , the computation of A([P]) {||} ⊥D]⊥
terminates.

Proof: The proof relies on two requirements: First, to
show that D]

⊥ is finite. This is true from the definition of
αk. The second is to show that the abstract meaning of a
process is monotonic with respect to the number of copies
of a replicated process:

R([(
j⊎
i=0

{|(P)σ|})] ρ]) φA vD]⊥ R([(
j+1⊎
i=0

{|(P)σ|})] ρ]) φA

This latter requirement is proved by showing that the extra
copy of P can “only” induce more communications.

IV. A MODEL OF MQTTV3.1

We now define a model of the MQTT protocol in TPi as
shown in Figure 3, which captures the client/server protocol
messages. Although the protocol also describes messages
between the server and the subscribers, we only focus on
one aspect of these, which is the initial publish message
from the server to the subscribers. The model expresses three
protocols, one for each of the three levels of the quality of
service specified in [1].

A. The Subscribers

Our model of the subscribers is minimal, since we only
care about the first step in their behaviour, which is listening
to the published messages announced by the server:

Subscriber() def
= !pub(x′)

This definition does not care about what happens to the
message after it has been read by the subscriber on the
channel pub. The main reason for including the replication, !,
is to allow for the possibility of accepting multiple messages
from the server. This will allow us later in the analysis to
validate the different delivery semantics associated with the
MQTTv3.1 protocol. The definition can capture the number
of times the subscriber will read a message within a single
run of the protocol since each instance of x′ spawned under
the replication is renamed with the labeling system x′1, x′2,
etc. [7]. The definition also assumes that the subscriber can
wait ad infinitum for a message to be published by the server,
and if no such message is published, it will do nothing. This
is not realistic, but sufficient for our purpose here.

B. The Attacker

The attacker in our case has a very primitive role, which
reflects the passive behaviour of an open network that offers
the possibility of consuming the exchanged messages in the
protocol. In fact, the attacker is only interested in disrupting
messages between the client and the server. Therefore, its
definition is to listen continuously on the channels c and c′

over which the client and the server communicate:

Attacker() def
= !(c(y′) + c′(u′))

Similar to the case of the subscribers, the attacker is not
in a rush to obtain an input from the protocol, therefore it
can wait ad infinitum for a message to be received on its
channels c or c′. It is also possible to run a finite attacker
model as follows:

Attacker() def
= (c(y′1) + c′(u′1)) | . . . | (c(y′n) + c′(u′n))

Where the operator ! is replaced by a finite number n of the
input choices all composed in parallel. In this finite model,
the attacker is capable of only consuming n messages.

V. ANALYSIS OF THE PROTOCOL

We now define formally the three message-delivery se-
mantics associated with the MQTT protocol, at most once,
at least once and exactly once delivery, and we discuss
the results of analysing the protocol in light of these three
semantics.

A. QoS = 0 Protocol

The model of QoS = 0 protocol is straightforward. The
client process is called from the top level protocol with
the Publish message. This process is then run in parallel
with the server process, which upon receiving the Publish
message, it publishes it on the pub channel where interested
subscribers are listening. For simplicity, we assume that the
message is published as is. However, a more refined (but
not of interest to us) server process would be expected to
extract the relevant payload from Publish before publishing
the actual data. We formalise the semantics of the protocol
for the case of QoS = 0 in terms of the following theorem.

Theorem 3 (Delivery Semantics For QoS = 0). The
MQTTv3.1 protocol for the case of QoS = 0 has a delivery
semantics of the publish message to the subscribers of “at
most once”.

Proof: Given the definition of the subscribers’ process
in the previous section, a run of this protocol would be
equivalent to the following in the absence of any attackers:
(Client(Publish) | Server() | Subscriber()). Analysing the
process renders the following value of Φ:

φ = {x 7→ {Publish}, x′1 7→ {Publish}}

From this, we can see that the message arrives at the
subscriber. However, if we re-run the analysis with the
attacker process activated: (Client(Publish) | Server() |
Subscriber() | Attacker()), we obtain the following inter-
esting outcome:

φatk = {y′1 7→ {Publish}}

This case shows a run of the protocol, which leads to only
y′ being instantiated with Publish. There is no instantiation
of the x or x′ variables.

From these results, it is easy to see that there are two
possible outcomes. The first value of φ represents a normal
run where x′ 7→ {Publish}, whereas in the second value of
φatk, we have that x′ 7→ {} by the definition of the default
state φ0. Hence, it is straightforward to see that the protocol
may deliver the published message to the subscribers, and
therefore, it correctly exhibits the at most once delivery
semantics.

QoS Level 0 Protocol:
Client(Publish) | Server(), where:
Client(z) def

= c〈z〉
Server() def

= c(x).pub〈x〉

QoS Level 1 Protocol:
Client(Publish) | Server(), where:
Client(z) def

= c〈z〉.timert(c′(y),Client(PublishDUP))

Server()def= !c(x).pub〈x〉.c′〈Puback〉

QoS Level 2 Protocol:
Client(Publish) | Server(), where:
Client(z) def

= c〈z〉.timert(c(y).ClientCont(y),Client(PublishDUP))

ClientCont(u)
def
= c′〈Pubrelu〉.timert

′
(c′(w),ClientCont(u))

Server()def= !c(l).(ServerLate(l) + ServerEarly(l))

ServerLate(x)
def
= (c〈Pubrecx〉.c′(v).pub〈x〉.c′〈Pubcompv〉.!(c′(v′).c′〈Pubcompv′〉))

ServerEarly(x)
def
= (pub〈x〉.c〈Pubrecx〉.c′(q).c′〈Pubcompq〉.!(c′(q′).c′〈Pubcompq′〉))

Figure 3. A model of MQTTv3.1 in TPi considering the three levels of QoS.

B. QoS = 1 Protocol

The QoS = 1 protocol has a semantics of “at least once”
delivery. We model this in Figure 3 as a client process, which
starts by sending a Publish message to the server. The server
is capable of inputting this message, publishing it to the
subscribers and then replying back to the client with the
Puback message. Again, for simplicity, we abstract away
from the structure of both Publish and Puback, and point
out here that a more refined treatment of these messages
(i.e. extracting their payload) does not affect our analysis in
the paper.

The next part is the main difference from the QoS =
0 case above. The client will wait for a finite amount of
time, t, on its input channel c′ for the Puback message from
the server. If this message delays (for any communication
failing reason), the client will choose to re-call its process
with a new PublishDUP message. The difference between
PublishDUP and Publish is that the DUP bit is set in the
former to indicate that it is a duplication of the latter. The
server on its side is capable of receiving this new publish
message since its behaviour is replicated, which means that
it can restart its process any number of times required by
the context.

The two channels, c and c′, distinguish between the two
parts of the protocol (Publish and Puback parts). This is not
necessary in practice, however it renders our model much
simpler by avoiding unnecessary interferences between these
two parts. In practice, there would some message validation
mechanisms to prevent such interferences occurring.

We formalise the delivery semantics for this protocol in
terms of the following theorem.

Theorem 4 (Delivery Semantics For QoS = 1). The
MQTTv3.1 protocol for the case of QoS = 1 has a delivery
semantics of the publish message to the subscribers of “at
least once”.

Proof: Again, we first analyse the protocol under no
attackers. In this case, we find the following subset value
for φ:

φ = {x1 7→ {Publish}, y 7→ {Puback}, x′1 7→ {Publish}}

This implies normal behaviour, where the published
message eventually arrives at the subscriber only once.
We now re-run the analysis with the attacker activated,
which produces the following subset value of φatk, where
k is set to 3 to allow three runs of the protocol to take place:

φatk = {x1 7→ {Publish}, u′1 7→ {Puback}, x′1 7→
{Publish},
x2 7→ {PublishDUP }, u′2 7→ {Puback},
x′2 7→ {PublishDUP }, x3 7→ {PublishDUP },
u′3 7→ {Puback}, x′3 7→ {PublishDUP }}

The first subset of name substitutions corresponds to the
first run where the attacker interferes with the protocol by
consuming the Puback message. In the next two subsets, the
client will issue a duplicate PublishDUP . In both of these
subsets, the attacker continues to consume the acknowledg-
ment message and the client will continue to restart the
protocol. Examining these results, we can easily see that
the subscribers’ input x′ has more than one instantiation of
the message Publish, including when the DUP bit is set.
This indicates that the message may arrive more than once

at the subscriber.

C. QoS = 2 Protocol

The last protocol represents the highest quality of service
level, indicated by the QoS bit setting of 2. The model of
Figure 3 contains again the definitions of the client and
the publishing server. Similar to (and for the same reasons
above) for the case of QoS = 1, we use two channels for
the client: c for the first part ending with the sending of
Pubrec and c′ for the second part ending with the sending
of Pubcomp.

The client process has two parts. The first could be re-
iterated, which will result in the Publish message being re-
sent with the DUP bit set in case the Pubrec message is not
received from the server within a time bound of t units. Note
here that the standard protocol of [1] is not clear regarding
the resent message. There is no explicit mentioning that
the resent publish message is considered different from the
original one. The assumption we make is that since DUP is
set, then the resent message is a “duplicate” of the original
one and therefore it is the same message.

The second part of the client process, ClientCont, is
instantiated by the first part only if Pubrec is received from
the server within the time bound t. In this case, it will send
a Pubrel message to the server parameterised by the same
message id as received in the previous message (hence we
write Pubrelu). After this, it waits for an amount of time t′

for the last message from the server, Pubcomp, at which
point it terminates once this message is received. If this
last message does not arrive within the time bound t′, it
will re-call itself (i.e. the ClientCont part), which will result
in the re-commencement of the protocol from the point of
the sending of the Pubrelu message. We believe the above
two timed input actions model adequately the requirement
that ”If a failure is detected, or after a defined time period,
the protocol flow is retried from the last unacknowledged
protocol message; either the PUBLISH or PUBREL.“ [1,
pp. 38].

Finally, the last part of the protocol represents the server
process. This process after receiving the initial publish mes-
sage splits into a choice of two processes, ServerEarly and
ServerLate. The main difference between these is whether
the publish message is published to the subscribers before
(i.e. early) or after (i.e. late) sending the second message of
the protocol Pubrecx, which is parameterised by the message
id received in the first message from the client.

The standard provides two alternative options for this case
[1, pp. 38]. The first follows the sequence of actions (store
message, publish message and delete message), whereas the
second follows the sequence of actions (store message id,
publish message and delete message id). We term the former
a late publish semantics and the latter an early publish
semantics. The standard’s document states that “The choice
of semantic is implementation specific and does not affect

the guarantees of a QoS level 2 flow” [1, pp. 38], however,
we demonstrate next in terms of the output of our static
analysis later that this is not generally true.

The whole server process is replicated in order to be able
to receive a repeat publish message from the client in the
event that Pubrecx is not received at the client within the
time limit.

The server process, after sending Pubrecx, goes into the
second part of the protocol. In this part, it listens on c′(v)
or c′(q) for the incoming Pubrel message from the client.
It then continues depending on the choice made earlier
to either publish the message and send Pubcompv or just
send Pubcompq . In both cases, the Pubcomp message is
parameterised by the message id from the received Pubrel
message from the client.

The final part now commences, which is a replicated
process that again listens for the Pubrel message from the
client, and once this is received, it sends another Pubcomp
message back to the client. This last part of the server
process is similar in both sides of the choice and it will
replicate itself until the client receives successfully the
Pubcomp message, at which point the client will cease re-
sending Pubrel messages.

It is worth noting here that our model above assumes
that the implementation of the server will cater for a non-
deterministic choice of both the early and late publish
semantics. However, it is also possible, as we shall see in
the next section, to model and analyse the server assuming
only one of the two semantics of message publishing is im-
plemented. This would be equivalent to modeling the server
process as either !c(l).ServerLate(l) or !c(l).ServerEarly(l).

We now capture the delivery semantics for this protocol
in terms of the following property.

Property 1 (Delivery Semantics For QoS = 2). The
MQTTv3.1 protocol for the case of QoS = 2 has a delivery
semantics of the publish message to the subscribers of
exactly once.

In the first analysis we run, the attacker is deactivated.
We obtain the following subset value for Φ when k = 1:

φ = {x1 7→ {Publish}, y 7→ {Pubrecx}, v1 7→
{Pubrelu}, x′1 7→ {Publish}, w 7→ {Pubcompv},
x1 7→ {Publish}, x′1 7→ {Publish}, y 7→ {Pubrecx}, q1 7→
{Pubrelu}, w 7→ {Pubcompq}, . . .}

The substitutions correspond to normal runs of the protocol
for the two choices of the late and early publish semantics.
Now, let’s examine some of the results of the static analysis
when the attacker is activated. In particular, we consider
the case of the early publish semantics where we analyse in
the context of the server !c(l).ServerEarly(l) and the simple
attacker model (c(y′) + c′(u′)). We obtain the following
interesting subset of the results, with k = 2:

φatk1 = {x1 7→ {Publish}, x′1 7→ {Publish}, y′1 7→
{Pubrecx}, x2 7→ {PublishDUP }, x′2 7→ {PublishDUP },
y 7→ {Pubrecx}, q1 7→ {Pubrelu}, w 7→ {Pubcompq}, . . .}

The result is interesting, as it represents a single interference
case by the attacker (since k = 2). The attacker manages
to consume the Pubrec message (y′1 7→ {Pubrecx}) be-
fore the client does so. As a result, the first part of the
protocol is repeated and hence, in addition to the initial
publish message (x′1 7→ {Publish}), this leads to a second
instance of this message to be announced to the subscribers
(x′2 7→ {PublishDUP).

Next, we re-apply the analysis this time on the case of
the full server model and the simple non-replicated attacker
model, where again we set k = 2 for simplicity:

φatk2 = {x1 7→ {Publish}, x′1 7→ {Publish}, y′1 7→
{Pubrecx}, x2 7→ {PublishDUP }, y 7→ {Pubrecx},
v1 7→ {Pubrelu}, x′2 7→ {PublishDUP }, w 7→
{Pubcompv}, . . .}

This represents another case of the attacker interfering with
the protocol, however unlike the case of the first attack, a dif-
ferent choice of the publish semantics is made here in terms
of the re-transmission of first part of the protocol. Here,
we find that the Pubrecx acknowledgment message sent by
the server is captured by the attacker after an early publish
semantics choice is taken involving announcing the publish
message to the subscribers (by means of x′1 7→ {Publish}).
This failure in delivering Pubrecx to the client causes a
restart of the protocol, however, in this case a different
choice is made with the late publish semantics. Continuing
with this run, the second part of the protocol causes the
duplicated publish message PublishDUP to be announced
again to the subscribers. Note that this attack would not be
possible if either ServerLate or ServerEarly process only is
adopted, but not a choice of both.

VI. DISCUSSION

Considering the results of the above three analyses, we
find that the protocol as described in [1] and specified in
Section IV is quite sound in the cases of QoS = 0 and
QoS = 1, however in the case of QoS = 2, the protocol
description in [1] is ambiguous in terms of how the server is
supposed to deal with the publication of duplicated messages
and whether it may or may not implement both choices of
early and late publish semantics.

More specifically, considering the two results of φatk1 and
φatk2 for the case of QoS = 2, we conclude that there is
more than one scenario where the protocol fails in adhering
to its “exactly once” delivery semantics and where Pub-
lish/PublishDUP are delivered to the subscribers more than
once. As a result, Property 1 defined in the previous section

does not hold. It is also noteworthy that this failure occurs
only due to more-than-once delivery reasons, and there is
no case where the failure occurs due to less-than-once (i.e.
zero) delivery, unless we assume a powerful attacker with
replicated inputs whose capable of continuously blocking
the Pubrec message from being delivered to the client.

We propose here the following two enhancements to the
MQTT protocol in the case of QoS = 2. First, separate the
implementation of the early and late publish semantics. This
is currently not explicit in the specification of the protocol
in [1]. We suggest that this be made explicit, if this is the
intention, so that implementations of the protocol are not
confused with the choice.

The second enhancement we suggest is to introduce a
conditional guard on the publishing action at the server side,
for both choices of early and late publish semantics. This
can be described as the following modified exchange of
messages and actions:

Client→ Server : Publish
Client Action : Store Message

Server Actions : Store Message

OR

Store Message ID,

([¬Published(Message ID)]

Publish message to subscribers)

Server→ Client : Pubrec
Client→ Server : Pubrel

Server Actions : ([¬Published(Message)]

Publish message to subscribers),

Delete Message

OR

Delete Message ID

Server→ Client : Pubcomp
Client Action : Discard Message

Where Published(Message) is a predicate on the local state
of the server in which the message or its id is stored.
This predicate checks whether a message has already been
published. We also overload the predicate in the case of
Published(Message ID) to check whether a message corre-
sponding to an ID has been already published or not. If this
predicate is not true, the publish action is neglected and the
next action in line is applied.

In order to incorporate the predicate Published(Message)
in our TPi-based specification, we need to modify the
syntax of the language to include a new term P / p . Q,
where p is any local predicate, which is True, the process
will evaluate as P and if False, it will evaluate as Q. The
substitution semantics then will also include an additional
rule on this new term,

S([P / p . Q]) ρ φS =

{
S([P]) ρ φS , if p = True
S([Q]) ρ φS , if p = False

This will then lead to the redefinition of the early and
late publish semantics specification to include the additional
expected conditional predicate, published(x), as shown in
Figure 4. We assume that the predicate is able to consider
the contents of the parameter x containing the message and
its id.

Repeating the analysis for the case of the presence of
the attacker and for the early and late publish semantics
renders the following two subsets of the final φ environment:

φatk1 = {x1 7→ {Publish}, x′1 7→ {Publish}, y′1 7→
{Pubrecx}, x2 7→ {PublishDUP }, y 7→ {Pubrecx},
q1 7→ {Pubrelu}, w 7→ {Pubcompq}, . . .}

φatk2 = {x1 7→ {Publish}, x′1 7→ {Publish}, y′1 7→
{Pubrecx}, x2 7→ {PublishDUP }, y 7→ {Pubrecx},
v1 7→ {Pubrelu}, w 7→ {Pubcompv}, . . .}

Both of which clearly show no instantiation of the second
and further copies of the x′ input variable for the subscriber
process, in which case we assume that the modification of
Figure 4 achieves its intended aim.

VII. RELATED WORK

Publish/subscribe is increasingly becoming an important
communication paradigm [8], in particular within the do-
main of sensor device networks and the Internet-of-Things
where messages can be communicated with more efficiency
and less consumption of the devices’ limited computational
power. IBM’s MQTT-S protocol [9] was one of the first
industrially backed lightweight publish/subscribe protocols
that was deployed for wireless sensor and actuator networks.
This was followed in year 2010 by version 3.1 [1], which
is currently undergoing standardisation by OASIS.

There has been very little effort in applying formal analy-
sis tools to low-level communication protocols, mainly due
to the novelty of such protocols and their very recent arrival
at the scene of communication protocols. An early attempt
in [10] was made to model formally publish/subscribe proto-
cols to capture their essential properties such as minimality
and completeness, however, without any attempt to incorpo-
rate hostile environments within which these protocols may
run. One aspect of their model is the use of an incrementing
global clock T , similar to our concept of the function ð(P),
which is needed in order to model the passing of time.

In [11], the authors define a formal model of pub-
lish/subscribe protocols, within the domain of Grid comput-
ing, based on Petri-Nets. Their model offers a mechanism for
the composition of existing publish/subscribe protocols with
model, hence offering a friendly approach for the validation

of such protocols. Nonetheless, the focus of their work is
mostly on Grid computing scenarios.

The work of [12] is an early attempt in discussing security
properties and requirements desirable in publish/subscribe
protocols, in particular within the domain of Internet-based
peer-to-peer systems, where such protocols became popular
in their early forms.

Within the domain of sensor network protocols, there is
more focus of effort on the formal analysis and verification
of such protocols. For example, in [13], the authors apply
model checking techniques in the verification of a medium
access control protocol called LMAC. Similarly, in [14]
propose a formal model of flooding and gossiping proto-
cols for analysing their performance probabilistic properties.
More recently, [15] proposed a formal model and analysis
of clock-synchronised protocols in sensor networks based
on timed automata.

Finally, the static analysis technique proposed in this
paper builds on previous works by the author, such as [6] and
[6]. More specifically, the analysis of the timed π-calculus
was defined and used successfully in [5] for detecting in a
precise manner man-in-the-middle attacks in timed systems.

VIII. CONCLUSION AND FUTURE WORK

We have modeled and analysed in this paper the MQ
Telemetry Transport version 3.1 protocol, which is a
lightweight broker-based publish subscribe protocol that is
used in communications with small devices that exhibit
limited computational and storage power. As far as we
know, this is the first attempt to formally analyse the MQTT
protocol. MQTT is maintained by the Organization for the
Advancement of Structured Information Standards (OASIS).

We found that the first two QoS modes of operation in
the protocol are clearly specified and their message delivery
semantics to subscribers can be easily verified to hold.
However, according to the results of the analysis, the last
case of an “exactly once” delivery semantics has potential
vulnerabilities where a simple attacker model that adheres
to the specified threat model of the protocol can cause
the semantics to be undermined. At best, this semantics is
vaguely specified in the standard [1], particularly in relation
to issues to do with the choice of server-side behaviour.

Future research will be focused on studying the properties
of the protocol under more aggressive attacker models and
we plan to propose refined versions of the protocol, includ-
ing the use of lightweight cryptography in scenarios where
authentication of the small devices is required. In addition,
although we carried out a simple modification to the QoS
= 2 case that removes the duplicated publish message
vulnerability, we would like to further investigate in-depth
additional mechanisms for improving further the protocol
specification. Such in-depth investigation will most probably
utilise automated toolkits such as the AVISPA (www.avispa-
project.org) or Rodin (www.event-b.org/) toolkits.

Client(Publish) | Server(), where:
Client(z) def

= c〈z〉.timert(c(y).ClientCont(y),Client(PublishDUP))

ClientCont(u)
def
= c′〈Pubrelu〉.timert

′
(c′(w),ClientCont(u))

Server()def= !c(l).(ServerLate(l) + ServerEarly(l))

ServerLate(x)
def
= c〈Pubrecx〉.c′(v).

(pub〈x〉.c′〈Pubcompv〉.!(c′(v′).c′〈Pubcompv′〉)) / (¬ published(x)) . (c′〈Pubcompv〉.!(c′(v′).c′〈Pubcompv′〉))
ServerEarly(x)

def
=

pub〈x〉.c〈Pubrecx〉.c′(q).c′〈Pubcompq〉.!(c′(q′).c′〈Pubcompq′〉) / (¬ published(x)).

c〈Pubrecx〉.c′(q).c′〈Pubcompq〉.!(c′(q′).c′〈Pubcompq′〉)

Figure 4. The modified model for the case of QoS = 2.

ACKNOWLEDGMENT

The author would like to thank the anonymous review-
ers for their valuable feedback on the initial form of
this paper. Thanks also to Paul Fremantle, WSO2, for
providing useful comments on the MQTT specification
and for raising the issue to OASIS (https://tools.oasis-
open.org/issues/browse/MQTT-209).

REFERENCES

[1] D. Locke, “MQ Telemetry Transport (MQTT) V3.1 Protocol
Specification,” 2010.

[2] K. Birman and T. Joseph, “Exploiting Virtual Synchrony in
Distributed Systems,” SIGOPS Oper. Syst. Rev., vol. 21, no. 5,
pp. 123–138, Nov. 1987.

[3] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile
Processes,” Information and Computation, vol. 100(1), pp.
1–77, Sep. 1992.

[4] M. Berger and K. Honda, “The Two-Phase Commitment
Protocol in an Extended Pi-Calculus,” Electronic Notes in
Theoretical Comp. Science, vol. 39, no. 1, 2000.

[5] B. Aziz and G. Hamilton, “Detecting Man-in-the-Middle
Attacks by Precise Timing,” in Proceedings of the 2009 Third
International Conference on Emerging Security Information,
Systems and Technologies, ser. SECURWARE ’09. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 81–86.

[6] B. Aziz, “A static analysis framework for security properties
in mobile and cryptographic systems,” Ph.D. dissertation,
School of Computing, Dublin City University, Dublin, Ire-
land, 2003.

[7] B. Aziz and G. Hamilton, “A Privacy Analysis for the π-
calculus: The Denotational Approach,” in Proceedings of the
2nd Workshop on the Specification, Analysis and Validation
for Emerging Technologies, ser. Datalogiske Skrifter, no. 94.
Copenhagen, Denmark: Roskilde University, Jul. 2002.

[8] A. J. Stanford-Clark and G. R. Wightwick, “The Application
of Publish/Subscribe Messaging to Environmental, Monitor-
ing, and Control Systems,” IBM J. Res. Dev., vol. 54, no. 4,
pp. 396–402, Jul. 2010.

[9] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S
- A publish/subscribe protocol for Wireless Sensor Networks,”
in Proceedings of the Third International Conference on
COMmunication System softWAre and MiddlewaRE (COM-
SWARE 2008). IEEE, 2008, pp. 791–798.

[10] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Vir-
gillito, “Modelling Publish/Subscribe Communication Sys-
tems: Towards a Formal Approach,” in 8th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2003). IEEE Computer Society, 2003, pp. 304–
311.

[11] L. Abidi, C. Cerin, and S. Evangelista, “A Petri-Net Model
for the Publish-Subscribe Paradigm and Its Application for
the Verification of the BonjourGrid Middleware,” in Proceed-
ings of the 2011 IEEE International Conference on Services
Computing, ser. SCC ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 496–503.

[12] C. Wang, A. Carzaniga, D. Evans, and A. Wolf, “Security
Issues and Requirements for Internet-Scale Publish-Subscribe
Systems,” in Proceedings of the 35th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’02)-Volume
9 - Volume 9, ser. HICSS ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 303–.

[13] A. Fehnker, L. V. Hoesel, and A. Mader, “Modelling and
Verification of the LMAC Protocol for Wireless Sensor Net-
works,” in Proceedings of the 6th International Conference on
Integrated Formal Methods, ser. IFM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 253–272.

[14] A. Fehnker and P. Gao, “Formal Verification and Simulation
for Performance Analysis for Probabilistic Broadcast Pro-
tocols,” in Proceedings of the 5th International Conference
on Ad-Hoc, Mobile, and Wireless Networks, ser. ADHOC-
NOW’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
128–141.

[15] F. Heidarian, J. Schmaltz, and F. W. Vaandrager, “Analysis
of a clock synchronization protocol for wireless sensor net-
works,” Theor. Comput. Sci., vol. 413, no. 1, pp. 87–105,
2012.

