
RESEARCH Open Access

Facilitating the creation of IoT applications
through conditional observations in CoAP
Girum Ketema Teklemariam, Jeroen Hoebeke*, Ingrid Moerman and Piet Demeester

Abstract

With the advent of IPv6, the world is getting ready to incorporate smart objects to the current Internet to realize
the idea of Internet of Things. The biggest challenge faced is the resource constraint of the smart objects to directly
utilize the existing standard protocols and applications. A number of initiatives are currently witnessed to resolve
this situation. One of such initiatives is the introduction of Constrained Application Protocol. This protocol is
developed to fit in the resource-constrained smart object with the ability to easily translate to the prominent
representational state transfer implementation, hypertext transfer protocol (and vice versa). The protocol has several
optional extensions, one of them being, resource observation. With resource observation, a client may ask a server
to be notified every state change of the resource. However, in many applications, all state changes are not
significant enough for the clients. Therefore, the client will have to decide whether to use a value sent by a server
or not. This results in wastage of the already constrained resources (bandwidth, processing power,…). In this paper,
we introduced an alternative to the normal resource observation function, named Conditional Observation, where
clients tell the servers the criteria for notification. We evaluated the power consumption and number of packets
transmitted between clients and servers by using different network sizes and number of servers. In all cases, we
found out that the existing observe option results in excessive number of packets (most of them unimportant for
the client) and higher power consumption. We also made an extensive theoretical evaluation of the two
approaches which give consistent result with the results we got from experimentation.

Keywords: IoT; Conditional observation; Resource observation; REST; CoAP

1 Introduction
Remarkable advances in microelectromechanical systems
(MEMS) have led to the creation of tiny but crucial
embedded devices such as sensors and actuators. The
wireless communication capability of these devices turns
them into smart objects that can interact with the virtual
world. Coupled with the explosive expansion of wireless
and mobile technologies, there are very good reasons
to consider these objects as corner stones of the future
internet rather than mere add-ons to the current commu-
nication networks. The resulting Internet is now commonly
referred to as the internet of things (IoT). However, the
severe limitations of these smart objects in terms of
memory, processing capacity, power, and bandwidth
pose great challenges in realizing this. A typical smart
object may have a few kilobytes of memory (random

access memory (RAM) and read-only memory (ROM)),
slow microcontrollers, and limited bandwidth (around 250
kbps). On top of this, most of the smart objects are battery
operated and have limited lifetime. The protocols and
applications that are widely used in the current internet
are too heavy for such constrained devices to be applied
directly. Several initiatives exist to alleviate these prevailing
problems by proposing new lightweight protocols suitable
for constrained devices and networks. The internet
engineering task force (IETF) is the pioneer in producing
standards and protocols that fit the strict requirements of
such constrained environments by establishing working
groups that address different aspects of the requirements
of the constrained objects and networks.
The IPv6 for low power and lossy wireless personal

area network (6LoWPAN) working group of IETF has
produced standards that enable IPv6 to be used in the
most constrained devices [1]. Montenegro et al. [2]
introduce the 6LoWPAN adaptation layer which resides

* Correspondence: jeroen.hoebeke@intec.ugent.be
Department of Information Technology (INTEC), Ghent University – iMinds,
Gaston Crommenlaan 8 Bus 201, Ghent 9050, Belgium

© 2013 Teklemariam et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177
http://jwcn.eurasipjournals.com/content/2013/1/177

mailto:jeroen.hoebeke@intec.ugent.be
http://creativecommons.org/licenses/by/2.0

between the network and link layer and provides three
basic services: IPv6 header compression, fragmentation,
and mesh under routing support. These basic services
ensure that constrained devices can talk to unmodified
IPv6 hosts in the internet, and the other way around, while
the 6LoWPAN adaption layer overcomes the differences
in protocol design between these two worlds, necessitated
by the constraints of the low power and lossy networks
(LLNs). Further, current routing protocols and algorithms
are not suitable for constrained environments for several
reasons: high resource (memory, processing, and band-
width) requirement, absence of uniform metric in LLNs
and unreliability of intermediate routing nodes. The routing
in low power and lossy networks (ROLL) working group
is tasked with proposing routing solutions suitable for
constrained networks and devices. The routing protocol
for low-power and lossy networks (RPL) is a proposed
standard by this working group [3].
Both IETF groups have realized the interconnectivity

between tiny objects and the current internet in a stan-
dardized way. However, this connectivity is merely an
enabler required to unlock all potential of the IoT in the
form of novel applications and services. Web service
technology made the success of the current internet.
Now, it is expected that an embedded counterpart of
web service technology is needed in order to exploit all
great opportunities offered by the internet of things,
since existing application layer protocols, such as hypertext
transfer protocol (HTTP), SOAP, and XML are even
heavier than the protocols defined in layers below.
Therefore, the constrained RESTful environments (CoRE)
working group was established to specifically work on the
standardization of a framework for resource-oriented
applications, allowing the realization of RESTful embedded
web services in a similar way as traditional web services
[4]. Their work resulted in the Constrained Application
Protocol (CoAP), a specialized RESTful web transfer
protocol for use with constrained networks and nodes. It
uses the same RESTful principles as HTTP, but it is much
lighter so that it can be run on constrained devices [4]. In
addition, the group designed observe functionality in
order to allow a device to publish a value or event to
another device that has subscribed to be notified of
changes in the resource representation [5].
CoAP, together with its observe functionality, provides

the basis for the integration of constrained devices with
the internet at the service level and the realization of
embedded web services. However, in order to really
facilitate IoT application design, additional CoAP-related
functionalities are expected to appear. For instance, many
applications can benefit from a lightweight solution for
subscribing for very specific events. Ideally, this is built
into the CoAP protocol as an extension, avoiding the need
to implement such functionality on a per resource basis.

This facilitates the realization of many sensor–actuator
interactions which typically have the following pattern: if
‘condition fulfilled’ then ‘take action’. The contribution of
this paper is that we present an extension of the CoAP
observe functionality that exactly facilitates realizing this
behavior by including notification criteria to be specified
along with observation request. This way, the server
will not just send notifications whenever the state of a
resource changes. It will first check if the change is signifi-
cant enough for the client by comparing the new value
with the notification criteria sent by the client. Only
then, a notification will be sent. The design is compact,
lightweight, and can be easily shared across all resources.
Further, we are the first to implement such an extension to
CoAP on constrained devices and to evaluate in detail the
potential reduction in power consumption and number of
packets transmitted that can be achieved, which is of great
importance to constrained networks.
Section 2 of the paper first introduces the CoAP protocol,

followed by the existing CoAP Observe option, its limita-
tions, and possible approach to tackle these limitations.
Related work will be discussed in section 3. In section 4,
an alternative method, called conditional observation,
is presented, and the approach is explained in great
details. The next section discusses our implementation
on constrained devices, followed by section 6 presenting a
detailed experimental and mathematical evaluation. In
section 7, we further illustrate some potential IoT applica-
tions that can benefit from our proposal. Finally, the paper
draws conclusions and suggests future work.

2 The Constrained Application Protocol and observe
Representational state transfer (REST) uses mechanisms
that are less memory and processing power intensive [6].
As a result, many systems are now becoming RESTful
[4]. In this approach, data or resources that must be
exchanged between client and server are encoded as
representations of the resource. In addition, all states
required to complete a request must be provided along
with the request. The desired communication result is
achieved by transferring the representations and the
states between the client and the server using HTTP
operations such as GET, PUT, POST, and DELETE [6].
However, today's web service technology is a poor
match for the vast majority of constrained networks,
machine-to-machine (M2M) applications and embedded
devices because of their overhead and complexity. For
applications that involve smart objects, such as industry
automation, transport logistics, and building automation,
an embedded alternative would be ideal since it is in line
with current web services, facilitating the integration of
objects into the Internet.
CoAP is a protocol proposed by the IETF CoRE working

group allowing these RESTful web services to be

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 2 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

implemented on constrained objects. CoAP provides exactly
the subset of HTTP methods (GET, PUT, POST, and
DELETE) that is necessary to offer RESTful web services
in a WSN-compatible manner [4]. This implies that a sim-
ple mapping between HTTP and CoAP can be realized
(and vice versa) in a similar way that 6LoWPAN can be
translated into IPv6 and the other way around. The
main advantage is that CoAP has a much lower header
overhead and parsing complexity than HTTP. It uses a
4-byte base binary header that may be followed by compact
binary options and a payload. In addition, CoAP provides
optional transport reliability, normally a core functionality
of TCP, which is due to the resource constraints by nature
not available in wireless sensor networks (WSNs). This is
particularly useful, since CoAP is designed to be used in
combination with UDP, which does not offer any reliability
but is adequate for WSNs due to its low impact on
resources. CoAP can run on top of 6LoWPAN networks,
but also on top of proprietary networks that are connected
to IPv6 internet. Figure 1 shows the CoAP message format
as specified in version 13 of the draft [4]. The 4-bytes
base header consists of the following fields: Version,
Type, Token length, Code, and Message ID. The 2-bit
Type field indicates whether the message is a confirmable,
non-confirmable, acknowledgement, or reset message. The
Code field indicates if the message carries a request
(specifying the method: GET, PUT, POST, or DELETE),
response (specifying the response code) or is empty. The
base header may be followed by one or more optional
fields: first of all, there is the optional Token field having a
length between 0 and 8 bytes; next, a variable number of
options can follow; and finally, if there is a payload, a
Payload Marker and the Payload complete the message.
The format of a single CoAP option is shown in Figure 2.

To be able to offer communication needs that cannot be
satisfied by the base binary header alone, CoAP defines a
number of options which can be included in a message.
Each option instance in a message specifies the option
number of the defined CoAP option. Instead of specifying
the Option Number directly, the instances must appear in
order of their Option Numbers and a delta encoding is
used between them. The Option Length indicates the
length of the Option Value in bytes, and the Option Value
is the actual representation of the option (e.g., an unsigned
integer, a code representation, etc.). If the delta value or
length is larger than 12, 1 or 2 additional bytes are used to
represent the delta or the length.

Since CoAP is recommended for M2M interaction,
automatic resource discovery is made part of the protocol
using the CoRE link format. A well-known URI, ‘/.well-
known/core’, is defined as an entry point for all links to
resources hosted by a server [7]. Once the list of resources
is identified, clients may send requests to find out specific
values for the resources. As Figure 3 depicts, the client
first requests the list of resources using GET, and the ser-
ver replies with the list of resources it has. At a later time,
the client requests for the current temperature value using
another GET, to which the server replies with a response
containing the temperature value of 23.5°C. All exchanges
use the message format shown in Figures 1 and 2.
In addition to the main CoAP draft, a number of ex-

tensions have been proposed. One of those extensions
is the observation of resources through the use of the
Observe option. The Observe option may be used by
clients interested to have up-to-date information about
the state of a resource as stated in [5]. This draft specifies
a simple protocol extension to CoAP that gives clients the
ability to observe changes of a resource. It uses the
well-known observer design pattern, where clients that
are interested in the state of a resource register their
interest with the server that hosts the resource by sending
a CoAP request containing the Observe option. Once
registered, clients will receive notifications - CoAP re-
sponses containing the Observe option - upon every
state change of the resource. In addition, if the state of a
resource does not change over time, the server will send a
new notification latest after MAX-AGE of the resource
expires. Since the CoAP option MAX-AGE indicates the
freshness of the resource, it is clear that through this,
observe extension clients will always have a fresh and
up-to-date representation of the resource. Figure 4 shows
how the observe option is used to get up-to-date resource
states.
As such, when Observe is used, the CoAP client will get

a notification response whenever the state of the observed
resource changes or its MAX-AGE expires. For frequently
changing resources or resource with a low MAX-AGE
value, this results in frequent notifications, which is not
ideal in constrained networks. Also, it is unclear how
non-cacheable (MAX-AGE equal to 0) resources should
be handled. In many cases, an observer will typically be
interested in state changes that satisfy a specific condition,
instead of receiving all state changes or notifications that
only update the freshness.

Figure 1 CoAP message format consisting of a 4-byte base binary header followed by optional extensions.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 3 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

However, the current observe draft stresses on providing
the clients with up-to-date information about the state of
a resource. Applications that are interested in values that
exceed some thresholds will simply drop the transmitted
packets upon reception if they do not meet their criteria
(client side filtering). This unnecessary data transmission
can be costly to the already constrained objects. The in-
creased number of packet transmissions in highly dynamic
environment will also increase the network congestion
and for larger networks the impact can be significant. In
addition, the power consumption (processing, transmission,
and listening) can be higher for the overall network.
Therefore, in several cases, one could benefit from a

solution for subscribing to very specific events only, i.e.,
conditional observations. Since we are dealing with
constrained devices, such a solution should satisfy several
requirements. The functionality should have a sufficiently
small footprint, allowing the implementation on very
constrained devices. It should be usable by all resources
on a constrained device without additional programming
complexity. Further, it should offer sufficient expressive-
ness in order to be able to express conditions that are
encountered frequently across resources and across IoT
use cases. Finally, if needed, extensions should be possible
in order to cope with future requirements. Based on these
requirements, we have chosen to realize this conditional
observe functionality by embedding it in the CoAP

protocol as a new CoAP option. Before presenting our
solution, we will first discuss related work that aims to
achieve similar functionality, and position it against our
approach.

3 Related work
There are a number of research activities under way on
resource observation in WSNs. Different groups are using
different approaches to come up with outstanding solu-
tions and technologies. Publish/subscribe systems are
widely used in the Internet already for a while. The basic
concept of such systems is similar to normal observation
where subscribers register at publishers (notifiers) and get
responses depending on the original request made by the
subscribers [8]. Different authors have proposed similar
solutions to be used in wireless sensor networks. MQTT-S
is a protocol proposed to handle publish/subscribe issues
in WSNs. The protocol is based on the MQTT protocol,
an established protocol for lightweight publish/subscribe
reliable messaging transport, optimized to connect physical

Figure 2 CoAP option format.

Figure 3 CoAP client/server communication. Figure 4 Normal observation.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 4 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

world devices/messages and events with enterprise servers
and other consumers. The protocol introduces MQTT-S
gateways and forwarders to communicate publish/subscribe
information between clients and the MQTT broker, which
ultimately responds with the required information [9]. With
this approach, a 3rd party is required to realize the desired
functionality, whereas we want to allow direct end-to-end
interactions with the constrained devices. There are also
middleware-based pub/sub solutions such as Mires [10]
and PSWare [11]. Most of these solutions introduce a
new protocol specifically addressing this issue while our
approach, however, is an extension of an existing protocol
that is being developed in an open standardization or-
ganization. This way, our approach significantly reduces
the additional memory and processing requirement for
realizing this new functionality, since it builds upon
functionality already present in any CoAP implementation.
The European telecommunications standards institute

(ETSI) has also proposed a standard to address observa-
tion relationships in Machine-to-Machine (M2M) com-
munications. The ETSI Machine-To-Machine (M2M)
Communications functional architecture [12] states how
RESTful web services can be used in M2M communica-
tions. Subscription management is one of the areas the
document addresses. In the document, a client may
subscribe for a specific resource or an attribute of a
resource by specifying filtering criteria, if required. The
ETSI standard follows its own functional architecture that
is totally different from the IETF approach. Our solution
is based on the work of the IETF CoRE working group.
Another related work is [13] where conditional obser-

vation requests are represented by URI queries. An im-
portant problem with this approach is its complexity.
The queries that are generated may have limited read-
ability and could be difficult to represent. Furthermore,
URI queries are very resource specific complicating
automatic processing of conditional observations or
code reuse over several resources. Using a CoAP option
for conditional observations makes this functionality
independent of any specific resource implementation,
whereas URI queries can be used for resource-specific
functionalities. Further, the link with the Observe option
is lost by spreading this functionality over both URI
queries and options and the multitude of URI queries
that can occur makes it more complex for intermediaries
to process this information.
Finally, the Open Geospacial Consortium (OGC), Inc.

has been developing different standards in the area of
geospatial data. One of the standards developed by the
OGC is the sensor observation service (SOS) that deals
with the specifications of data observation from different
sensors in different, possibly geographically scattered,
sensor networks [14]. The standard specifies that a
GetObservation request may have several mandatory

and optional parameters. One of the optional parameters is
featureOfInterest, which is similar to our observation type.
However, this approach is more focused for geographical
observations and is a subset of a bigger framework, which
significantly differs from the IETF recommendation.

4 Conditional observe
To avoid transmission of unwanted notifications to clients,
the authors of this paper have proposed a new CoAP
option ‘Condition’ as an extension to the Observe Option
in order to support conditional observations [15]. This
option can be used by a CoAP client to specify the condi-
tions the client is interested in. Now, only when the condi-
tion is met, the CoAP server will send a notification
response with the latest state change. When the condition
is not met, the CoAP server will not send the notification
response. Figure 5 shows the operation of conditional
observation.
The Condition option has to be used in combination

with the Observe option and can be used both in request
and response messages. In a GET request message, the
Condition option represents the condition the client
wants to apply to the observation relationship. It is used
to describe the resource states the client is interested in.
In response to the initial GET request message, the Con-
dition option, together with the Observe option, indicates

Figure 5 Conditional observation.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 5 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

that the client has been added to the list of observers and
that notifications will be sent only when the resource state
meets the condition specified in the Condition option.
In all further notifications, the Condition option identifies
the condition to which the notification applies. In the
following subsections we will further describe the seman-
tics and usage of the Condition option, illustrating the
capabilities of this extension.

4.1 The Condition option format
The Condition option is an elective and proxy unsafe
option [4,15]. The Option (see Figure 6) may have length
between 1 and 5 bytes. The most significant 5 bits of the
first byte indicate the condition type allowing up to 32
different condition types; the following bit is reliability
flag indicating if the response should be acknowledged
or not and the last two bits indicate type of the value in
the following bytes. Currently, integer, float, and duration
are identified as condition value types. The subsequent
bytes, which are optional, store the conditional values to
be exchanged.

4.2 Condition types
Li et al. [15] identified nine condition types, some of
which are time-based while others are value-based.
Minimum Response Time, Maximum Response Time,
and Periodic option types are time-based conditions,
whereas AllValues<, AllValues>, Value=, Value<>, and
Step use the sensor reading values as notification criteria.

The Time Series condition type is neither related to time
nor to sensor readings.
To further illustrate how different condition types

generate notifications, we show an example where a client
and a server node establish a temperature observation
relationship. Sensor readings drawn every 5 s will be
notified to the client depending on various conditions.
Figure 7 shows the temperature (in °C) and the time the
data is drawn from the sensors. In the figure, the triangles
indicate the sensor reading values. For instance, the graph
shows that when the first GET request was sent (at Time
0), the temperature was 22, and after 5 s, the value is still
the same. The next figure (Figure 8) represents which
notifications are generated for different condition types
using small diamonds. For the purpose of this illustration,
the CoAP MAX-AGE option value is set to the default
value of 60 s. This means that, for normal observe, the
client must be notified if the last notification was 60 or
more s ago irrespective of the resource state change, as
described in [5]. For the sake of comparison, we will first
present the notification trend when using normal observe.

4.2.1 Normal observe
According to the CoAP draft document [4], a server sends
notifications to observers in three cases: first, a notification
is sent to clients when the observation relationship is
established for the first time to indicate that the client is
added to the observers list; second, whenever the
resource state changes the server sends notifications;

0 1 2 3 4
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0…7 0…7 0…7

Type R V Value

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0…7 0…7

Type R V Value

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0…7

Type R V Value

0 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Type R V Value

0
0 1 2 3 4 5 6 7

Type R V

Figure 6 Format of the option value of the Condition option.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 6 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

finally, a notification is also sent when the data previously
sent to the client is not fresh as indicated by the CoAP
MAX-AGE option which by default is set to 60. In such
cases, the server sends the notification, if the previous
notification is older than the MAX-AGE value (even if the
resource state stays the same).
Accordingly, given the values in Figure 7, the server

sends notifications at the establishment of the observation
relationship (at time 0) every time the value changes
(at times 10, 15, 20, 25, 30, and 120 s), and the MAX-AGE
expires (at time 90 s) as shown in the top row of Figure 8.

4.2.2 Condition type 1: time series
With Time Series condition type, every change of resource
state triggers notification. The notification criteria are
similar to normal observation. The only difference is that
Time Series option ignores the CoAP MAX-AGE option
while normal Observe sends a notification when the
MAX-AGE timer expires.
The T-Series row of Figure 8 shows the packet trans-

mission for conditional observation type Time Series.
According to the sensor readings of Figure 7, the client
is notified at time 0 (during establishment of the

Figure 7 Temperature (°C) data over 120 s.

Figure 8 Notifications generated while using different condition types.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 7 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

relationship) and at times 10, 15, 20, 25, 30, 120 s (when
the resource state changes).

4.2.3 Condition type 2: minimum response time (MinRT)
When the condition type Minimum Response Time
(MinRT) is used in observation relationships, the server
sends notification by leaving a fixed minimum amount
of time between successive notifications. This condition
type is highly valuable for systems where the value
changes up and down very frequently and the observer
is not interested in every change. Consequently, the
server does not always send notifications every time the
resource state changes.
The MinRT (10) row of Figure 8 shows a relationship

where the client requests the server to be notified about
state changes, but leaving at least 10 s between notifica-
tions. In this case, the client sends notifications at time 0
(during establishment of relationship), at times 10, 20,
30, and 120 s. If we closely look at the values at times 15
and 25 s, the values are changed after previous notifica-
tions, but since the difference between the current time
and the last notification time is less than 10 seconds,
there will be no notification sent to the clients at those
times. Also note that, the MAX-AGE option has no
impact here.

4.2.4 Condition type 3: maximum response time (MaxRT)
For this condition, the value specified in the condition
value field gives the maximum time in seconds the
server is allowed to leave between subsequent notifications.
What this means is that the server has to send notifications
in three cases: first, just like all other condition types and
normal observation, at the beginning of the observation
relationship; second, whenever there is a resource state
change; and third, when there is no state change but the
maximum response time is reached.
The MaxRT row of Figure 8 shows the notification

pattern for a client requesting notification by setting
Maximum Response Time to 60 s. Accordingly, the
server notifies the client at time 0 (initial notification), at
times 10, 15, 20, 25, 30, and 120 s (notification due to
value changes), and at time 90 s (notification due to
maximum response time). This condition type, in a way,
is similar to normal observe with MAX-AGE set to 60.

4.2.5 Condition type 4: step
Depending on the environment where the server node is
deployed, the state of a resource might change so fre-
quently that excessive packets are generated. However,
the changes may not be significant enough for the client
to trigger any action. In such cases, the client may
inform the server to send notifications only when the
change is more than a specific value by using the Step
condition type.

In the Step (1) row of Figure 8, the client informs the
server to send notifications only when the change in value
is greater than or equal to 1. As a result, notifications are
only sent at time 0, 15, 25, and 30 s. Since the other
changes are not significant enough, the server does not
send notifications.

4.2.6 Condition type 5: all values<
In many cases, clients are not interested in state changes
which result in values above a specific threshold. For
example, to turn on a heater, the temperature should be
below a specific threshold. In such cases, the sensor
node responsible to regulate the behavior of the heater
is not interested in values which are above the threshold.
Hence, they may indicate this preference by using the
AllValues< (All values less).
In the AllValues< row of Figure 8, we can see that the

client is interested to get notified only when the resource
state changes result in value below 23. Thus, notifications
are sent at times 0, 10, 30, and 120 s.

4.2.7 Condition type 6: all values>
This condition type is similar to condition 5 above. The
only difference is that the notification is sent only when
the new value exceeds a threshold set by the client. As
Figure 8 illustrates, the client is interested to receive
notifications only when the resource state is changed and
the resulting value is above 23. Consequently, the server
sends notifications at times 0, 20, and 25 s only.

4.2.8 Condition type 7: value=
This condition indicates that a client is only interested
in receiving notifications whenever the state of the
resource changes and the new value is equal to the value
specified in the condition value field. In our example of
Figure 8, the client is interested in values equal to 23.
This means that the server has to send notifications only
when the value changes, and the new value is 23. Therefore,
the notifications are sent at times 0 and 15 s only.

4.2.9 Condition type 8: value<>
Some applications might require the values they are
monitoring to be constant. In health care system, machines
at intensive care units (ICUs) the machines that monitor a
patient's vital signs could be a good example. In such cases,
there are vital signs including body temperature, heartbeat,
and blood pressure that must be constant, showing that
the patient is in a good condition. However, if the
values differ from the specified value, it might indicate the
patient needs attention. The Value<> (value different
from) condition type indicates that the client should be
notified when the value changes and is below or above the
specified threshold. Once the notification has been sent,
no new notifications are sent for subsequent state changes

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 8 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

where the value remains higher or lower. As such, a single
notification is sent whenever a threshold is passed in
either direction.
The Value<>(23) row in Figure 8 shows that the client

needs to be notified only when resource state changes
result in values other than 23. As a result, notifications
are sent at times 0, 20, and 30 s: notification at time 0 is
the initial transmission; notification at time 20 s is sent
because that was the first change that deviates from 23
(and it was below 23); and notification at time 30 s was
sent because it was the first time the value goes below
23. The value changes at 10 s was not sent because it is
still below the threshold, and value at 25 was not notified
because it is still above the threshold (which was notified
at time 20).

4.2.10 Condition type 9: periodic
Many environment monitoring applications may require
receiving notifications periodically despite the resource
state change. Such applications may use the Periodic con-
dition type along with the period of notification. The Peri-
odic(30) row of Figure 8 shows notification trends where a
client requires to be notified every 30 s. In this example,
notifications are sent at times 0, 30, 60, 90, and 120 s.
One can see clearly that, depending on the condition

of interest, a different number of notifications will be
transmitted over the constrained network. The exact
number will depend on the condition type and, if present,
the value in the condition option.

5 Implementation
Our implementation of conditional observation is based
on Erbium (Er) - a low-power REST engine for Contiki
developed by Matthias Kovatsch together with the Swedish
Institute of Computer Science. The Erbium REST engine
includes a CoAP implementation that supports CoAP
drafts 03, 07, 12, and 13. It also supports block-wise
transfers and resource observation [16]. To support normal
observation, Erbium employs two different mechanisms
at the server side. The first mechanism uses timers that
are used to periodically check states of resources and
notify observers whenever there is a state change. The
other mechanism is event-based. Whenever an event (e.g.,
change in temperature) occurs, an event handler will be
called, which, in turn, calls a function that notifies regis-
tered observers. In the remainder of this paper, we have
used timer based, periodic checks for resource changes.
We extended this CoAP implementation to support

the new Condition option and provided some resources
that allow conditional observations. Figure 9 is a high-
level architectural diagram of Erbium running on a
server node handling normal or conditional observation.
The architecture consists of several components, namely,
the resources, the REST engine, the CoAP (and/or HTTP

framework), and optional modules such as (Conditional)
Observe Module. The REST engine is responsible for
initializing the CoAP framework to store a list of activated
resources and to communicate with the optional modules.
A conditional observe request received by the CoAP
framework will be handled by a service callback function
which is declared in the REST engine. The REST engine
uses the corresponding handler function to access the
states of the resources. As the request is an observation
request, the client needs to be registered as an observer in
the Conditional Observation Module for future notifica-
tions by calling a Post Handler function. The generation of
the first response and subsequent notifications are handled
by the CoAP framework. For subsequent notifications, the
registration of a single observer will trigger the activation
of a function that periodically checks for resource state
changes and informs all registered observers. The period
is defined for each observable resource separately upon
initialization of the resource.
Figure 10 is a zoomed-in architectural diagram of the

Conditional Observation Module. When a client sends a
Conditional Observation request, the CoAP framework
will receive it. The framework, after confirming that it is
a GET request, will call a callback function in the REST
engine. Upon receipt of the request, the REST engine
does two things: first, it prepares the first response by
using the predefined handler function and calls a post
handler function to add the observer to the observer list.
For each observer, the IP address, port number, URI,
and refresh timer are stored for normal observe, while
for conditional observation also condition information,
last notified value and last notification time are stored.
The REST engine then periodically checks for resource
states and calls the Notify Observer function (which is
part of the Conditional Observe Module) to check if the
new value satisfies the filtering criteria set by the client.
If it does, the CoAP framework sends the notification to
the respective observer(s). Similarly, if a client wishes to
stop an observation relationship, it sends a normal GET
request to the specific resource which will be received by

Figure 9 Architecture of Erbium.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 9 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

the CoAP framework and will be sent to the Conditional
observe module to be removed from the list.
One of the constraints of smart objects is memory.

One may wonder about the changes we needed to make
to the existing implementation and the code overhead
introduced to achieve this additional functionality. As
mentioned above, the original Erbium Implementation
supports Normal Observe [5]. Our implementation
requires additional RAM to store additional observers'
information such as observation condition (condition
type, value type, reliability flag, and condition value), last
notification time, and last notified value. In addition, it
requires more ROM to store instructions that are used
to check if the new resource state satisfies the specified
condition. Table 1 shows the TEXT, Data, and BSS section
requirements of both Normal Observe (the original im-
plementation) and Conditional Observe. Note that the
conditional observe implementation also encompasses
normal observe functionality.
It can be seen from the table that the Text segment

(ROM) requirement for Conditional Observe is slightly
larger than Normal Observe. Similarly, the size of the
BSS segment, which stores uninitialized variables, is
larger in case of conditional observe just by a few bytes.
As our findings in the following sections illustrate, 720

bytes overhead is affordable for the advantage that can
be gained through the use of conditional observation, either
from a performance viewpoint or from an application
developer viewpoint.

6 Evaluation
6.1 Scenario 1: basic evaluation
We used different scenarios to illustrate the relevance
of Conditional Observe as an extension to the Normal
Observe functionality of CoAP. In the first set of experi-
ments, we used Zolertia Z1 motes to be used as client and
server nodes in Cooja. To capture the impact of network
size on performance, we used between 0 and 6 intermedi-
ate Z1 nodes, which merely exist to act as routers between
the client and server nodes. We selected the AllValues>
(value-based) and Periodic (Time-based) condition types
to compare the performance against Normal Observe.
For every hop, and every condition value, we run the
test 10 times to average the results. For sensor values,
we generated 288 pseudo-random numbers between 17
and 26 (representing temperature values). The average
of the values is 20. For AllValues> condition type, we
tested three condition values: the minimum (17), the
average (20), and the maximum (26). Every 5 s, the server
is made to retrieve a value from an array of 288 numbers
sequentially as a new sensor reading. As CoAP supports
both confirmable and non-confirmable requests, we
repeated the same experiment twice to see the impact of
reliable communication on network performance.
Figure 11, shows the number of packets transmitted

for different condition types, while Figure 12 shows the
power consumption where the requests are sent as non-
confirmable. Figure 13 shows the power consumption in
the case of confirmable communication.

Figure 10 Conditional Observation Module.

Table 1 Memory requirements of Normal Observe and
Conditional Observe

Text
(Byte)

Data
(Byte)

BSS
(Byte)

Total
(Byte)

Normal Observe 50,398 386 6,050 56,834

Conditional Observe 51,096 386 6,072 57,554

Delta 698 0 22 720

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 10 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

We may learn two basic lessons from Figures 11,
12, and 13: first, this simple scenario shows that the
solution we proposed works and is implementable in
constrained devices such as Z1 motes; second, for
such a simple scenario, using Normal Observe as
mechanism to collect all resource state change in com-
bination with client side filtering generates a larger

amount of packets as compared to all other conditional
observation methods. This leads to higher power con-
sumption and, hence, low battery life. From these findings
we can conclude that, even though the exact impact is
heavily dependent on specific use cases, conditional obser-
vation can be considered a useful extension to normal
observation.

Figure 11 Number of packets transmitted vs. hop count.

Figure 12 Power consumption vs. hop count (non-confirmable communication).

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 11 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

6.2 Scenario 2: non constrained client - gateway – multiple
servers
In most applications, the clients run on non-constrained
devices such as normal computers, smart phones, or
similar other devices. To illustrate the use of conditional
observation in scenarios where multiple constrained servers
are communicated from a non-constrained device and
network, we combined Cooja servers running Erbium
with our COAP++ client, part of our modular C++ CoAP
framework developed in Click Router [17]. We used two
servers and a border router running Contiki in Cooja. We
established a tunnel between the boarder router and the
computer so that the COAP++ client can communicate
with the Cooja servers. Figure 14 shows the connection
between the sensor nodes and click. As in the case of the
above test, Z1 motes were used in Cooja and AllValues>
condition type was used to compare the result with
Normal Observe. The data to be generated by the servers
is the same pseudo-random numbers used in the previous
tests. The test was run 10 times with condition value 20,

which is the average of the data set. The test showed that
the average power consumption of the two servers is 4787
mJ and 4936 mJ for normal observation and 4672 mJ
and 4856 mJ for conditional observation. These results
confirm the results we achieved in the previous scenario.
The tests above show that the new implementation

can be run in constrained devices such as Zolertia Z1
motes which have 8-KB RAM and 92-KB ROM. The
slight increase in memory requirement, especially to
filter packets on the server, is an affordable trade-off to
gain substantial energy saving and avoid congestion of
the constrained networks.

6.3 Mathematical evaluation
The previous tests show that conditional observation
can achieve a significant gain in terms of the reduction
of the number of transmitted packet and subsequently
of the reduction in power consumption of constrained
devices. Of course, the exact gain depends largely,
amongst others, of the frequency of resource states and
the specific conditions interested in. In this subsection, we
will show this potential gain of conditional observation
through a mathematical evaluation.
The total power consumed in a given period by a device,

E, is the sum of the consumption of the radio and the
microcontroller chips. For simplicity, we will assume that
the power consumption of other peripheral devices, such
as sensors, is insignificant. Therefore,

E ¼ ERadio þ EProcessing:

The Radio could be either in active transmitting (Tx),
active receiving (Rx), and idle transmitting or idle listening

Figure 13 Power consumption of nodes (confirmable transmission).

Figure 14 Experimental setup consisting of non-constrained
client and two constrained servers.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 12 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

state, and the microcontroller will be either in Active
Mode (CPU-Active) or Low Power Mode (CPU-LPM).
Assuming that the radio consumes equal amount of
power during idle listening and idle transmitting state, we
have:

E ¼ ETx þ ERx þ EIDLE þ ECPU#Active þ ECPU#LPM:

Energy, power consumption in a given period of time,
can be computed as,

Energy ¼ Power$ Time:

Therefore, the total power consumption in a particular
period of time will be:

E ¼ PTx $ TTx þ PRx $ TRx þ PIDLE $ T IDLE

þ PCPU#Active $ TCPU#Active þ PCPU#LPM

$ TCPU#LPM

and

TTx þ TRx þ T Idle ¼ TCPU#Active þ TCPU#LPM:

The power consumption values are all known from
the datasheets of the chips of the constrained devices,
the time values for the radio can be derived from the
MAC protocol and the number of packet transmis-
sions and receptions and the time values for the CPU
can be derived from experimental results. To compare
the power consumption difference between Normal
and Conditional Observe and to keep the mathemat-
ical model sufficiently simple, we make the following
assumptions:

% We use value-based condition types.
% The resource state changes every S seconds.
% The device uses a duty-cycled low power listening

protocol. The length of the duty cycle is L, and the
duty cycling value is d (only d% of the time the
radio is active, listening for incoming packets in
order to save energy). When the device needs to
transmit a packet, it has to turn on the radio for the
entire period L.

% The probability that the condition is not fulfilled is p.
% The value of MAX-AGE is equal to 60 s.
% The transmission of a notification requires only a

single packet.
% The notifications are non-confirmable messages, so

the server generating the notifications is not
receiving any packets.

For Normal Observe, every S seconds the device will
do some processing and transmit a notification. In case
S becomes larger than Max-Age, a notification is also
sent every time MAX-AGE expires. This brings the

total number of notifications sent, N, equal to CEIL (S/
Max-Age).
Hence, for Normal Observe, TCPU−LPM is:

TCPU#LPM ¼ S−TCPU#Active:

For Conditional Observation, the transmission of a
packet in the interval S depends on the condition value
and is probabilistic. We know that conditional observa-
tions require some additional processing for checking
the condition. However, in case no notification must be
sent, no processing is needed to prepare the packet
transmission. To incorporate both effects, we introduce
ΔProc giving an estimate for the difference in processing.
Thus, the time, T0

CPU−LPM is:

T
0

CPU#LPM ¼ TCPU#LPM−ΔProc ¼ S−T
0

CPU#Active

¼ S− TCPU#Active þ ΔProcð Þ:

Similarly, the time the radio chip spent in the different
states, can be computed from the period S, the duty
cycle length L the duty cycling value d and the number
of packets to be transmitted. For Normal Observation,
the time for TX, RX, and Idle states is given by:

TRx ¼ S−N $ Lð Þ $ d

T IDLE ¼ S−N $ Lð Þ $ 1−dð Þ

TTx ¼ N $ L ¼ S− T IDLE þ TRXð Þ

Here, we have assumed that if a device has to transmit
packets, it will use the whole period L for the transmis-
sion. The formula for conditional observation will have to
take the probability of transmission into consideration.
For probability value p (condition not fulfilled), the time
spent will be:

TTx ¼ 0

T IDLE ¼ S $ 1−dð Þ

TRx ¼ S $ d

For probability values 1 to p (condition fulfilled), the
overhead will be the same as normal observation, with
N equal to 1. Therefore, the total energy consumption,
based on our equations above, during S seconds for
Normal Observe, O(S) and Conditional Observe, CO(S)
will be:

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 13 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

E ¼ PTx $ TTx þ PRx $ TRx þ PIDLE $ T IDLE

þ PCPU#Active $ TCPU#Active þ PCPU#LPM

$ TCPU#LPMO Sð Þ ¼ PCPU#Active $ TCPU#Active

þ PCPU#LPM $ S−TCPU#Activeð Þ
þ PTx $ N $ Lþ PRx $ S−N $ Lð Þ $ d
þ PIDLE $ S−N $ Lð Þ $ 1−dð ÞCO Sð Þ

¼ PCPU#Active $ TCPU#Active þ ΔProcð Þ þ PCPU#LPM

$ S−TCPU#Active−ΔProcð Þ þ p
$ PTx $ 0þ PRx $ S $ d þ PIDLE $ S $ 1−dð Þ½)
þ 1−pð Þ $ ½PTx $ Lþ PRx $ S−Lð Þ $ d þ PIDLE

$ S−Lð Þ $ 1−dð Þ)

In order to be able to evaluate the above values for
different parameter values of S and p, we used the
parameters shown in Table 2.
From the values O(S) and CO(S), one can easily cal-

culate the energy consumed during 1 s and compare
the difference in energy consumption between Normal
Observe (assuming the collection of all values using
Normal Observe and client side filtering) and Conditional
Observe. Figure 15 shows the reduction in energy con-
sumption that can be achieved this way, for different
values of S and p.
We see that for increasing values of the probability p,

i.e., the probability that the condition is not fulfilled, the
reduction in energy consumption also increases. For a
fixed time S between resource changes, and thus a fixed
amount of potential notifications, an increasing prob-
ability p implies that less notifications have to be sent

compared to normal observe, leading to a reduction of
the energy spent on transmitting these notifications and
thus of the overall energy consumption. This is in line
with our experimental evaluation. Further, we notice
that, for a fixed value of p, smaller values of S, the time
between resource changes, leads to major reductions in
energy consumption. On the other hand, for larger
values of S, the potential energy reduction gradually
decreases as can be seen from the zoomed-in area of the
chart. For values larger than 30 s the average reduction
varies between approximately 2% and 6%. The fact that
the curves periodically rise and fall is due to the impact
of the MAX-AGE value, which causes the number of
notifications to be sent by Normal Observe to be a step
function expressed by CEIL(S/MAX-AGE).
The impact of S on the energy reduction can be further

explained by looking at the contribution of all different
energy consumers to the overall energy consumption as
shown in Figure 16. For frequently changing resource
values and thus more frequent notifications for a given
value of p, the power consumed for transmitting notifica-
tions makes up a large part of the total energy budget. For
increasing values of S, and thus less notifications, this part
becomes smaller and smaller compared to other energy
consumers such as the idle energy consumption of the
radio. Since conditional observe almost solely impacts the
TX part of the energy budget, its impact is reduced for
larger values of S. Of course, it should be noted that the
frequency with which values (e.g., sensor readings) can
change also depends on the granularity of the measure-
ments and/or the application on the device. For instance,
the device can be programmed to retrieve the latest sensor
reading only every 5 min, but it could also read out the
temperature every 10 s. Further, if the granularity of the
readings is higher, e.g., a granularity of 0.1 Centigrade
instead of 1 Centigrade, readings will more often result in
notifications.
The above mathematical evaluation reveals that a

mechanism such as Conditional Observe is extremely
useful for resources that change very frequently. One
could (falsely) conclude that it is not that useful for
larger values of S. However, this is not true. First of all,
the concept of conditional observations remains very
useful for application developers, which are now offered
easy to use primitives to collect sensor data based on con-
ditions, and can serve as an enabler for IoT applications.
Next to this, the above mathematical evaluation has been
made in the assumption of a single server with a single
resource that sends its notifications directly to the sink or
gateway of the sensor network. In case a single
constrained device hosts multiple resources (temperature,
light, humidity,…) that are conditionally observed, one will
experience the combined effect of having less packet
transmissions for every resource individually. This means

Table 2 Parameter values
Parameter Value Explanation

ICPU−LPM 0.0005 mA Taken from the data sheets of the Z1 mote.

ICPU−Active 8 mA

IRx 18.8 mA

ITx 17.4 mA

IIDLE 0.426 mA

V 3 V

PCPU−LPM 0.0015 mW Power = Current × Voltage

PCPU−Active 24 mW

PRx 56.4 mW

PTx 52.2 mW

PIDLE 1.278 mW

L 125 ms Based on ContikiMAC LPL

d 0.01

∆Proc 1 ms Approximation based on extensive
experiments.

CPU active 1.48% Average percentage of time the CPU is active,
based on extensive experiments.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 14 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

that even for larger values of S a significant energy reduc-
tion can be achieved. This effect is illustrated in Figure 17.
When the number of resources per device is increased, all
resources being observed conditionally and having their
state changed every S seconds, the reduction in energy
consumption remains significant even for higher values of
S. It is also worth noticing that the gain for S equal to 60
is smaller than the gain for larger values of S. This is

because of the impact of MAX-AGE on the number of
notifications sent using normal observe.
Further, in case one of the resources has a smaller

MAX-AGE value than the default value of 60 s, the
reduction also becomes bigger: between 2% and 6% for S
values between 30 and 300 s and MAX-AGE equal to 60 s;
between 4% and 10% for S values between 30 and 300 s
and MAX-AGE equal to 30 s; and between 20% and 30%

Figure 16 Distribution of the power consumption over all different energy consumers.

Figure 15 Power consumption vs. probability of packet transmission.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 15 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

for S values between 30 and 300 s and MAX-AGE equal
to 10 s. Last but not least, there is also the effect of
larger-scale, multi-hop networks with multiple servers. In
this case, every single notification will result in multiple
packet transmission through the network, increasing the
TX energy consumption in all intermediate nodes and
thus contributing to the overall reduction of the network
lifetime.
A last aspect that has not been discussed so far is the

impact of multiple conditional observation relationships
on a single resource (i.e., by different clients). For normal
observe and in the presence of an intermediary, the inter-
mediary can aggregate multiple observe relationship into a
single one. This means that the intermediary establishes
an observe relationship itself on behalf of multiple clients
and delivers the resulting notifications to all clients. This
way, notifications have to travel through the network
only once. When using conditional observations in the
presence of an intermediary, the possibility to aggregate
different conditional observations into a single conditional
observation relationship strongly depends on the condi-
tion type and associated values. In this case, it is possible
that no optimal aggregation can be found, reducing
somewhat the overall performance.

7 Use cases
From the previous discussion, it has become clear that the
actual advantage in terms of performance gain (energy
reduction) of conditional observations is heavily dependent
on specific-use cases. Apart from that, there is the add-
itional advantage that it offers easy-to-use primitives to
collect sensor data of interest, which have a small

footprint and which are reusable by all CoAP resources
hosted on a device. To concretize the advantage of having
conditional observation as an extension to CoAP, we will
now discuss in more detail three real-life IoT-use cases.

7.1 Heating and cooling systems
Smart buildings, heavy machineries, and greenhouses use
temperature sensors to regulate their environment. Input
from sensors will be used by heating and cooling systems,
i.e., the actuators, to take the necessary actions to maintain
the temperature at a specified level. If the temperature ex-
ceeds beyond a certain level, cooling systems at particular
locations need to be activated to lower the temperature.
Similarly, if it is below a certain threshold, a heating system
has to increase the temperature.
When using wireless embedded systems to monitor and

control the environment, conditional observation may
play a significant role in such systems. Consider a building
equipped with such a system. If the temperature in the
building has to be maintained between 19°C and 22°C, the
sensors have to inform either the heater or the cooler if
the temperature is out of this range. To realize this, the
heating or cooling system that is linked to a sensor may
send two conditional observation requests. The first condi-
tion type should be AllValues < 19 and the second should
be AllValues > 22. When the server receives these
requests, on separate port numbers, it stores them as two
different requests and sends notifications to the client
when one of the two conditions is fulfilled.
To test this scenario using our implementation, we

performed a test involving two instances of CoAP++

Figure 17 Energy consumption reduction of conditional observation (p = 0.75) vs. normal observation for varying number
of resources.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 16 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

clients, a Cooja Border Router, Cooja CoAP server, and
two intermediate nodes, as shown in Figure 18. We used
real-life temperature data collected at Intel Laboratories.
To simplify the test, we used a 1-day data collected every
5 min starting from midnight. The 288 data points were
sent by the CoAP server every 5 s when the simulation
starts. We repeated the experiment 10 times to average
the result. The final result shows that, Normal Observe
consumed 4,936 mJ while Conditional Observe consumed
4,716 mJ showing an improvement in power consumption
by using conditional observation. The above example can
be easily extended to other smart building applications
involving a variety of sensors that need to be observed.

7.2 Smart environment monitoring
There is a growing concern of pollution everywhere in the
world. Pollution, be it air pollution, water pollution, or land
pollution, is the introduction of harmful substances to
clean sources (air, water, etc.). Air quality index (AQI) is
widely used to measure the level of pollution of air by
different pollutants such as ground-level ozone, particulates,
sulfur dioxide, carbon dioxide, carbon monoxide, and
nitrogen monoxide. The AQI values fluctuate substantially
depending on various situations. Most countries divide
the AQI values in different categories and take different
actions depending on the level of AQI.
Smart environment monitoring applications make use

of WSNs to proficiently monitor the pollution level and
come up with the AQI level of the environment. Such
applications can also benefit from conditional observations
in order to realize the desired behavior. Consider a simple
environment monitoring system aimed at collecting the
concentration of pollutants (e.g., CO2) in a particular area
and communicating it to a central station. This solution
may be implemented in various ways. One such implemen-
tation is depicted in Figure 19. Sensor nodes (servers) are
connected with each other and to the gateway node
through wireless links. The gateway connects the central
station with the servers. Every sensor node collects the

data and sends it to the gateway node, which, in turn,
communicates it to the central station. If no (conditional)
observation is employed, the gateway would have to poll
values from the sensors every fixed interval or whenever
the need arises.
Using conditional observation, much more flexibility is

introduced and system efficiency can be. The client (e.g.,
the gateway or an application in the cloud) may establish
conditional observation with the servers (sensor nodes)
stating its interest to be notified periodically. Here, the
periodic condition type can be used for the subscription.
Once this observation relationship is established, the
servers will generate notifications periodically. It is also
possible to further refine notifications based on prevailing
circumstances. For example, in normal situations, where
the concentration of pollutants is very low, there is no
need to send notifications to the gateway very frequently.
So, the notification interval can be set, for instance, to 1 h.
However, as soon as the pollution level increases, which
can be detected by establishing another conditional obser-
vation, the client may opt for more frequent updates (say
every 5 min) by sending an updated conditional
observation request which eventually removes the old
observation relationship and establishes a new one with a
higher frequency.

7.3 Sleepy nodes
Sleepy nodes are devices which occasionally go to a low-
power mode by cutting power to unnecessary components
to save energy. Some devices cut power only to the radio
system while the other components run as usual. At any
time, the device could be at a sleeping state or awake. But,
in most cases the sleeping time is much larger.
Consequently, communication with sleepy nodes is very

problematic, especially if the sleepy node has resources
that a client needs from time to time. The major reason
for this is that, when a node is in the sleep state, it is
disconnected from the network and is unreachable. One
solution to resolve this issue efficiently is to use proxy
nodes and conditional observations. In the proxy model,
all clients get connected to the sleepy node through a
proxy. The proxy, then, relays client requests to the server.
As soon as the server receives a request, it directly sends
back a response to the client via the proxy. However, due
to the sleepy nature of the server, the communication is
not as simple as this, but the conditional observe mechan-
ism offers an elegant solution to this problem as explained
in the Figure 20. In the figure, the red circles are the cli-
ents, the gray circle is the server in sleep mode
(SleepState = 0), the green circle is the server in awake mode
(SleepState = 1), and the middle rectangle is the proxy.

a) A client request arrives at the proxy. The server is
sleeping (SleepState = 0). The proxy buffers the

Figure 18 Experiment setup with two Click++ clients, a Contiki
border router, a Contiki server and two intermediate nodes.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 17 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

request and sends a response to the client telling it
to be patient for the actual response. Next the proxy
starts to continuously check the server to see if it is
awake.

b) As soon as the proxy detects the server is awake
(meanwhile retrieving the value requested by the

client and delivering the response to the client), it
sends a conditional observe request indicating its
need to be notified when the server wakes up
(SleepState = 1). This can be achieved by using the
VALUE = condition type. The server adds the proxy
to the observers list.

Figure 20 Panels a) to f) illustrate the establishment of communication with sleepy nodes using conditional observation.

Figure 19 Air quality controlling setup.

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 18 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

c) After some time, the server may go to sleep for a
long time (SleepState = 0). While the server is
sleeping, clients may send GET requests to the
proxy. Since the proxy now knows the server is
sleeping, it buffers all requests and sends back
patience responses.

d) When the server wakes up, it sends a notification to
the proxy indicating its sleep state has changed, back
to Awake.

e) When the proxy gets the notification, it sends all
buffered requests to the server.

f) Finally, the server sends the responses directly to the
clients. As an optimization, the proxy may aggregate
similar requests into a single request.
Communication with the sleepy node will be even
more efficient if the clients themselves register as
observers requesting the server to notify them when
a particular criterion is met. In this case, once the
server is awake and knows clients' requirement
through the proxy, all subsequent notifications will
be made directly to the clients whenever the
criterion is met. This is done without the
involvement of the proxy.

8 Conclusion
In this paper, we presented the concept of conditional
observations as an extension to the CoAP protocol in gen-
eral and the Observe option in particular. We presented
comparative results of using normal observation and
conditional observation by implementing this functionality
on a constrained device. We also presented theoretical
evaluations of normal and conditional observation. From
both the experimental and theoretical results, it is evident
that the conditional observations are very useful extensions
to the basic observe behavior, both from an application
point of view and from a network efficiency point of view.
It enables clients to receive notifications that contain
only state changes they are interested in. This has a twofold
advantage: an application has the expressiveness to select-
ively collect data and the data of no interest does not have
to travel over the network. The latter advantage will
become even more important in larger constrained
networks where notifications have to travel over multiple
hops. As such, conditional observations can greatly
contribute to the reduction of battery consumption
and increase of network lifetime. In addition, many
scenarios can be thought of that can benefit from this
functionality. Finally, our implementation shows the
feasibility of implementing this functionality on very
constrained devices.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The research leading to these results has received funding from the
European Union's Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 258885 (SPITFIRE project). We would also like to
acknowledge our co-authors of the IETF CoRE conditional observe draft.

Received: 21 February 2013 Accepted: 7 June 2013
Published: 24 June 2013

References
1. Z Shelby, Embedded web services. IEEE Wireless Communications

17, 52–57 (2010)
2. G Montenegro, N Kushalnagar, D Culler, RFC4944 - Transmission of IPv6

packets over IEEE 802.15.4 networks, IETF Trust, 2007
3. J Hui, R Kelsey, P Levis, K Pister, R Struik, JP Vasseur, R Alexander, RFC6550 -

RPL: routing protocol for low power and lossy networks, IETF Trust, 2012
4. Z Shelby, K Hartke, C Bormann, Constrained application protocol (CoAP):

draft-ietf-core-coap-13, IETF Trust, 2012
5. Z Shelby, K Hartke, C Bormann, observing resources in CoAP - draft-ietf-core-

observe-07, IETF Trust, 2012
6. JP Vasseur, A Dunkels, Connecting Smart Objects with IP: The Next Internet

(Morgan Kaufmann, San Francisco, 2010)
7. Z Shelby, RFC6690 - Constrained restful environment (CoRE) Link Format, IETF

Trust, 2012
8. AB Roach, RFC3265 - Session initiation protocol (SIP): specific event notification.

IETF Trust, 2002
9. A Stanford-Clark, HL Truong, MQTT for Sensor Networks (MQTT-S) Protocol

Specification Version 1.1 (IBM Corporation, Armonk, 2008)
10. E Souto, G Guimarães, G Vasconcelos, M Vieira, N Rosa, C Ferraz, J Kelner,

Mires: A Publish/Subscribe Middleware For Sensor Networks (Springer, London,
2005)

11. S Lai, J Cao, Y Zheng, PS Ware, A Publish/Subscribe Middleware Supporting
Composite Event In Wireless Sensor Network (IEEE Computer Society,
Washington, 2009)

12. European Telecommunications Standards Institute (ETSI), Machine-to-Machine
communications (M2M). ETSI TS 102 690 V1.1.1 (ETSI, France, 2011), p. 10

13. Z Shelby, M Vial, CoRE Interfaces: draft-shelby-core-interfaces-3, IETF Trust, 2013
14. A Na, M Priest (eds.), Sensor Observation Service (Open Geospatial

Consortium Inc, Wayland, 2007)
15. ST Li, J Hoebeke, AJ Jara, Conditional Observe in CoAP: draft-li-core-

conditional-observe-03, IETF Trust, 2012
16. M Kovatsch, SD Valencia, A low-power CoAP for Contiki, in Proceedings of

the 8th IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS 2011) (IEEE, Amsterdam, 2011), pp. 855–860

17. I Ishaq, J Hoebeke, J Rossey, E De Poorter, I Moerman, P Demeester,
Facilitating sensor deployment, discovery and resource access using
embedded web services, in International Workshop on Extending Seamlessly
to the Internet of Things (esIoT). Palermo, 4–6 July (IEEE, Amsterdam, 2012)

doi:10.1186/1687-1499-2013-177
Cite this article as: Teklemariam et al.: Facilitating the creation of IoT
applications through conditional observations in CoAP. 2013 2013:177.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission
7 Rigorous peer review
7 Immediate publication on acceptance
7 Open access: articles freely available online
7 High visibility within the fi eld
7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Teklemariam et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:177 Page 19 of 19
http://jwcn.eurasipjournals.com/content/2013/1/177

	Abstract
	1 Introduction
	2 The Constrained Application Protocol and observe
	3 Related work
	4 Conditional observe
	4.1 The Condition option format
	4.2 Condition types
	4.2.1 Normal observe
	4.2.2 Condition type 1: time series
	4.2.3 Condition type 2: minimum response time (MinRT)
	4.2.4 Condition type 3: maximum response time (MaxRT)
	4.2.5 Condition type 4: step
	4.2.6 Condition type 5: all values<
	4.2.7 Condition type 6: all values>
	4.2.8 Condition type 7: value=
	4.2.9 Condition type 8: value<>
	4.2.10 Condition type 9: periodic

	5 Implementation
	6 Evaluation
	6.1 Scenario 1: basic evaluation
	6.2 Scenario 2: non constrained client - gateway – multiple servers
	6.3 Mathematical evaluation

	7 Use cases
	7.1 Heating and cooling systems
	7.2 Smart environment monitoring
	7.3 Sleepy nodes

	8 Conclusion
	Competing interests
	Acknowledgements
	References

