587 research outputs found

    Sea state and rain: a second take on dual-frequency altimetry

    Get PDF
    TOPEX and Jason were the first two dual-frequency altimeters in space, with both operating at Ku- and C-band. Each thus gives two measurements of the normalized backscatter, sigma0, (from which wind speed is calculated) and two estimates of wave height. Departures from a well-defined relationship between the Ku- and C-band sigma0 values give an indication of rain.This paper investigates differences between the two instruments using data from Jason's verification phase. Jason's Ku-band estimates of wave height are ~1.8% less than TOPEX's, whereas its sigma0 values are higher. When these effects have been removed the root mean square (r.m.s.) mismatch between TOPEX and Jason's Ku-band observations is close to that for TOPEX's observations at its two frequencies, and the changes in sigma0 with varying wave height conditions are the same for the two altimeters. Rain flagging and quantitative estimates of rain rate are both based on the atmospheric attenuation derived from the sigma0 measurements at the two frequencies. The attenuation estimates of TOPEX and Jason agree very well, and a threshold of -0.5 dB is effective at removing the majority of spurious data records from the Jason GDRs. In the high sigma0 regime, anomalous data can be cause by processes other than rain. Consequently, for these low wind conditions, neither can reliable rain detection be based on altimetry alone, nor can a generic rain flag be expected to remove all suspect data

    Pointing errors in solar absorption spectrometry - correction scheme and its validation

    Get PDF
    A method for quantification of sun-pointing inaccuracies in solar absorption spectrometry is presented along with a correction scheme for the resulting errors in trace gas vertical column or profile retrievals. A posteriori correction of pointing errors requires knowledge of both coordinates of the mispointing vector on the solar disk. In principle, quantitative information on the mispointing can be retrieved from Doppler shifts of solar lines derived from measured spectra. However, this yields only one component of the mispointing vector, namely the one which is perpendicular to the solar rotation axis. Missing information on the second vector component has hindered a posteriori correction of mispointing errors so far. Our idea to overcome this problem is to obtain estimates of both coordinates of the mispointing by combining subsequent measurements with differing orientations of the solar rotation axis relative to the zenith direction. An implementation of this original concept is demonstrated using measurements from the solar absorption Fourier transform infrared (FTIR) spectrometer at the Zugspitze (47.42° N, 10.98° E, 2964 m a.s.l.). Soundings in the September 2012 to September 2014 time interval were impacted by mispointing problems due to a non-optimum solar tracking optics configuration. They show a mean mispointing in zenith direction of -0.063°. This causes biases in vertical soundings of trace gases, e.g. -2.82 ppb in monthly means of dry-air column-averaged mole fractions of methane (XCH4). Measurements made with the more stable pre-September 2012 and post-September 2014 optics configurations show considerably smaller mispointing effects. Applying the mispointing correction, the April 2006-March 2014 XCH4 trend determined from Zugspitze measurements is reduced from 6.45 [5.84, 7.04] to 6.07 [5.55, 6.59] ppb yr-1. The correction thereby restores consistency with results from the nearby Garmisch FTIR site (47.48° N, 11.06° E, 743 m a.s.l.). The mispointing correction is applicable to solar absorption measurements in the mid infrared and near infrared. It will be of particular benefit for refining existing records of high-accuracy-and-precision greenhouse gas soundings for the purpose of improved trend analysis or source-sink inversions

    Improving the altimetric rain record from Jason-1 & Jason-2

    Get PDF
    Dual-frequency rain-flagging has long been a standard part of altimetric data analysis, both for quality control of the data and for the study of rain itself, because altimeters can provide a finer spatial sampling of rain than can passive microwave instruments. However, there have been many varied implementations, using different records of the surface backscatter and different thresholds. This paper compares four different measures available for the recently-launched Jason-2. The evaluation compares these measures against clearly desired properties, finding that in most cases the adjusted backscatter and that from the ice retracker perform much better than that recommended in the users' handbook. The adjusted backscatter measure also provides a much better link to observations from Jason-1, opening up a much longer period for consistent rain investigations, and enabling greatly improved analysis of the short-scale variability of precipitation. Initial analysis shows that although the spatial and temporal gradients of backscatter increase at very low winds, the spatial gradients in rain attenuation are concentrated where rainfall is greatest, whilst the temporal changes have a simple broad latitudinal pattern

    Including antenna mispointing in a semi-analytical model for delay/Doppler altimetry

    Get PDF
    International audienceDelay/Doppler altimetry aims at reducing the measurementnoise and increasing the along-track resolution in comparison with conventional pulse limited altimetry. In a previous paper, we have proposed a semi-analytical model for delay/Doppler altimetry which considers some simplifications as the absence of mispointing antenna. This paper first proposes a new semi-analytical model for delay/Doppler altimetry. The proposed analytical expression for the flat surface impulse response considers antenna mispointing angles, a circular antenna pattern, no vertical speed effect and a uniform scattering. The two dimensional delay/Doppler map is obtained by a numerical computation of the convolution between the proposed analytical function, the probability density function of the heights of the specular scatterers and the time/frequency point target response of the radar. The approximations used to obtain the semi-analytical model are analyzed and the associated errors are quantified by analytical bounds for these errors. The second contribution of this paper concerns the estimation of the parameters associated with the multi-look semi-analytical model. Two estimation strategies based on the least squares procedure are proposed. The proposed model and algorithms are validated on both synthetic and real waveforms. The obtained results are very promising and show the accuracy of this generalized model with respect to the previous model assuming zero antenna mispointing

    A Generalized Semi-Analytical model for delay/Doppler altimetry

    Get PDF
    International audienceThis paper introduces a new model for delay/Doppler altimetry, taking into account the effect of antenna mispointing. After defining the proposed model, the effect of the antenna mispointing on the altimetric waveform is analyzed as a function of along-track and across-track angles. Two least squares approaches are investigated for estimating the parameters associated with the proposed model. The first algorithm estimates four parameters including the across-track mispointing (which affects the echo's shape). The second algorithm uses the mispointing angles provided by the star-trackers and estimates the three remaining parameters. The proposed model and algorithms are validated via simulations conducted on both synthetic and real data

    Silica in Protoplanetary Disks

    Full text link
    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found in the cometary dust samples collected from the STARDUST mission to Comet 81P/Wild 2. The silica in these protoplanetary disks may arise from incongruent melting of enstatite or from incongruent melting of amorphous pyroxene, the latter being analogous to the former. The high temperatures of 1200K-1300K and rapid cooling required to crystallize tridymite or cristobalite set constraints on the mechanisms that could have formed the silica in these protoplanetary disks, suggestive of processing of these grains during the transient heating events hypothesized to create chondrules.Comment: 47 pages, 9 figures, to appear in the 1 January, 2009 issue of the Astrophysical Journa

    Dust Processing and Grain Growth in Protoplanetary Disks in the Taurus-Auriga Star-Forming Region

    Full text link
    Mid-infrared spectra of 65 T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope are modeled using dust at two temperatures to probe the radial variation in dust composition in the uppermost layers of protoplanetary disks. Most spectra indicating crystalline silicates require Mg-rich minerals and silica, but a few suggest otherwise. Spectra indicating abundant enstatite at higher temperatures also require crystalline silicates at temperatures lower than those required for spectra showing high abundance of other crystalline silicates. A few spectra show 10 micron complexes of very small equivalent width. They are fit well using abundant crystalline silicates but very few large grains, inconsistent with the expectation that low peak-to-continuum ratio of the 10 micron complex always indicates grain growth. Most spectra in our sample are fit well without using the opacities of large crystalline silicate grains. If large grains grow by agglomeration of submicron grains of all dust types, the amorphous silicate components of these aggregates must typically be more abundant than the crystalline silicate components. Crystalline silicate abundances correlate positively with other such abundances, suggesting that crystalline silicates are processed directly from amorphous silicates and that neither forsterite, enstatite, nor silica are intermediate steps when producing either of the other two. Disks with more dust settling typically have greater crystalline abundances. Large-grain abundance is somewhat correlated with greater settling of disks. The lack of strong correlation is interpreted to mean that settling of large grains is sensitive to individual disk properties. Lower-mass stars have higher abundances of large grains in their inner regions.Comment: 84 pages, 27 figures, submitted to the Astrophysical Journal on 7 November, 200
    corecore