76,745 research outputs found

    Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing

    Get PDF
    A combination of hydrodynamic cavitation and heterogeneous advanced Fenton process (AFP) based on the use of zero valent iron as the catalyst has been investigated for the treatment of real industrial wastewater. The effect of various operating parameters such as inlet pressure, temperature, and the presence of copper windings on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that increased pressures, higher operating temperature and the absence of copper windings are more favourable for a rapid TOC mineralization. A new approach of latent remediation has also been investigated where hydrodynamic cavitation is only used as a pre-treatment with an aim of reducing the overall cost of pollutant degradation. It has been observed that approach of latent remediation works quite well with about 50–60% removal of TOC using only minimal initial treatment by hydrodynamic cavitation

    Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Get PDF
    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices

    Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches

    Get PDF
    The coupling of an hydrological and a crop model is an efficient approach to study the impact of the interactions between agricultural practices and catchment physical characteristics on stream water quality. We analyzed the consequences of using different modeling approaches of the processes controlling the nitrogen (N) dynamics in a small agricultural catchment monitored for 15 years. Two agro-hydrological models were applied: the fully distributed model TNT2 and the semi-distributed SWAT model. Using the same input dataset, the calibration process aimed at reproducing the same annual water and N balance in both models, to compare the spatial and temporal variability of the main N processes. The models simulated different seasonal cycles for soil N. The main processes involved were N mineralization and denitrification. TNT2 simulated marked seasonal variations with a net increase of mineralization in autumn, after a transient immobilization phase due to the burying of the straw with low C:N ratio. SWAT predicted a steady humus mineralization with an increase when straws are buried and a decrease afterwards. Denitrification was mainly occuring in autumn in TNT2 because of the dynamics of N availability in soil and of the climatic and hydrological conditions. SWAT predicts denitrification in winter, when mineral N is available in soil layers. The spatial distribution of these two processes was different as well: less denitrification in bottom land and close to ditches in TNT2, as a result of N transfer dynamics. Both models simulate correctly global trend and inter-annual variability of N losses in small agricultural catchment when a sufficient amount data is available for calibration. However, N processes and their spatial interactions are simulated very differently, in particular soil mineralization and denitrification. The use of such tools for prediction must be considered with care, unless a proper calibration and validation of the different N processes is carried out

    Geological applications of LANDSAT-1 imagery to the Great Salt Lake area

    Get PDF
    The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs

    Predicting nitrogen mineralization from soil organic matter - a chimera?

    Get PDF
    Predicting nitrogen (N) mineralization from soil organic matter is difficult because N mineralization is affected by several environmental factors, while being the net outcome of concurrent N processes that produce and consume mineral N. One aim of the present thesis was to study the effects of freezing and thawing on carbon (C) and N mineralization. A second aim was to elucidate if, and how, the quantity and quality of organic matter inputs affect N mineralization from the pool of soil organic matter. C and net N mineralization were determined in soils from the Ultuna Long-Term Soil Organic Matter Experiment exposed to repeated freezing and thawing (temperatures ranging from –5 °C to +5 °C). C, gross and net N mineralization in relation to quantity and quality of organic matter inputs were determined during long-term laboratory incubations at 20 °C. Gross N mineralization rates were estimated using the 15N isotope dilution technique, which is based on several assumptions. The assumption of ‘equilibrium between added and native N’ was tested by using a published data set in a dynamic compartmental model. Freezing and thawing of soils resulted in a flush in C and N mineralization, but the effect was only short-lived. It was concluded that freezing and thawing of soils during late winter and early spring is unlikely to be of importance to crop N availability in spring. Both quantity and quality of organic matter were major determinants of C and gross N mineralization, and these were proportional suggesting that C mineralization may be used as a predictor for gross N mineralization. Preferential use of added N may be a more common occurrence in 15N isotope dilution studies than hitherto thought and the assumption of ‘equilibrium between added and native N’ needs therefore critical evaluation. The data analysis presented in this thesis offers a way to estimate the potential effects of preferential use on gross N mineralization rate estimates. This thesis indicates that studies based on the mechanisms underlying N processes may improve our understanding of the relation between soil organic matter and N mineralization. Further mechanistic studies should therefore be considered in future N research

    Numerical Simulation Based Targeting of the Magushan Skarn Cu-Mo Deposit, Middle-Lower Yangtze Metallogenic Belt, China

    Get PDF
    The Magushan Cu–Mo deposit is a skarn deposit within the Nanling–Xuancheng mining district of the Middle-Lower Yangtze River Metallogenic Belt (MLYRMB), China. This study presents the results of a new numerical simulation that models the ore-forming processes that generated the Magushan deposit and enables the identification of unexplored areas that have significant exploration potential under areas covered by thick sedimentary sequences that cannot be easily explored using traditional methods. This study outlines the practical value of numerical simulation in determining the processes that operate during mineral deposit formation and how this knowledge can be used to enhance exploration targeting in areas of known mineralization. Our simulation also links multiple subdisciplines such as heat transfer, pressure, fluid flow, chemical reactions, and material migration. Our simulation allows the modeling of the formation and distribution of garnet, a gangue mineral commonly found within skarn deposits (including within the Magushan deposit). The modeled distribution of garnet matches the distribution of known mineralization as well as delineating areas that may well contain high garnet abundances within and around a concealed intrusion, indicating this area should be considered a prospective target during future mineral exploration. Overall, our study indicates that this type of numerical simulation-based approach to prospectivity modeling is both effective and economical and should be considered an additional tool for future mineral exploration to reduce exploration risks when targeting mineralization in areas with thick and unprospective sedimentary cover sequences

    Mycorrhizal roots in a temperate forest take up organic nitrogen from 13C- and 15N-labeled organic matter

    Get PDF
    Background and Aims The importance of the uptake of nitrogen in organic form by plants and mycorrhizal fungi has been demonstrated in various ecosystems including temperate forests. However, in previous experiments, isotopically labeled amino acids were often added to soils in concentrations that may be higher than those normally available to roots and mycorrhizal hyphae in situ, and these high concentrations could contribute to exaggerated uptake. Methods We used an experimental approach in which we added 13C-labeled and 15N-labeled whole cells to root-ingrowth cores, allowing proteolytic enzymes to release labeled organic nitrogen at a natural rate, as roots and their associated mycorrhizal fungi grew into the cores. We employed this method in four forest types representing a gradient of soil pH, nitrogen mineralization rate, and mycorrhizal type. Results Intact uptake of organic nitrogen was detected in mycorrhizal roots, and accounted for at least of 1-14% of labeled nitrogen uptake. Forest types did not differ significantly in the importance of organic uptake. Conclusions The estimates of organic N uptake here using 13C-labeled and 15N-labeled whole cells are less than those reported in other temperate forest studies using isotopically labelled amino acids, and likely represent a minimum estimate of organic N-use. The two approaches each have different assumptions, and when used in tandem should complement one another and provide upper and lower bounds of organic N use by plants

    Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model

    Get PDF
    The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15N tracing model Ntrace, which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of depolymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation

    Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals

    Get PDF
    The extent of phenol degradation by the advanced oxidation process in the presence of zero valent iron (ZVI) and zero valent copper (ZVC) was studied using 20, 300 and 520 kHz ultrasonic (US) reactors. Quantification of hydrogen peroxide has also been performed with an aim of investigating the efficacy of different sonochemical reactors for hydroxyl radical production. It has been observed that the 300 kHz sonochemical reactor has the maximum efficacy for hydroxyl radical production. Phenol degradation studies clearly indicate that degradation of phenol is intensified in the presence of the catalyst and hydrogen peroxide, which can be attributed to enhanced production of hydroxyl radicals in the system. Experimental data shows that with ZVI, when the reaction was subjected to 300 kHz, complete phenol removal and 37% TOC mineralization was achieved within 25 min, whereas, in the case of 20 kHz US treatment no phenol was detected after 45 min and 39% TOC mineralization was observed. This novel study also investigated the use of zero valent copper (ZVC) and results showed that with 20, 300 and 520 kHz ultrasonic rectors, phenol removal was 10–98%, however, the maximum TOC mineralization achieved was only 26%. A comparative study between hydrogen peroxide and ozone as a suitable oxidant for Fenton-like reactions in conjunction with zero valent catalysts showed that an integrated approach of US/Air/ZVC/H2O2 system works better than US/ZVC/O3 (the ZOO process)

    The mineralization of commercial organic fertilizers at 8°C temperature

    Get PDF
    In organic production only organic fertilizers and soil conditioners can be used to supply the soil with nitrogen. The mineralization of these products is slow and so there can be problems with the supply of nitrogen, when the demand of the plants is high. The supply of nitrogen from organic products depends on the speed of their mineralization which is primarily influenced by the composition and formulation of their raw material. In apple production in the Alps-region especially during spring problems with nitrogen supply are common. In that period, the weather conditions are sometimes bad, the temperature in the soil is low and mineralization starts slowly - apple trees demand more nitrogen than the soil can deliver. To compensate the demand of the apple tree organic growers can not use mineral fertilizers but only organic fertilizers and soil conditioners whose mineralization rate is often unknown. There is a strong need in organic fruit production to receive more information about the behaviour of fertilizers in the soil especially concerning their N-release under different conditions. To acquire that information, incubation experiments under controlled conditions (temperature, type of soil, humidity of the soil) were carried out in the laboratory to determine the mineralization-rate of different organic fertilizers and soil conditioners which are available in our region
    corecore