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Abstract 

Background and Aims 

The importance of the uptake of nitrogen in organic form by plants and mycorrhizal fungi has been 

demonstrated in various ecosystems including temperate forests.  However, in previous experiments, 

isotopically labeled amino acids were often added to soils in concentrations that may be higher than those 

normally available to roots and mycorrhizal hyphae in situ, and these high concentrations could contribute 

to exaggerated uptake. 

Methods 

We used an experimental approach in which we added 13C-labeled and 15N-labeled whole cells to root-

ingrowth cores, allowing proteolytic enzymes to release labeled organic nitrogen at a natural rate, as roots 

and their associated mycorrhizal fungi grew into the cores.  We employed this method in four forest types 

representing a gradient of soil pH, nitrogen mineralization rate, and mycorrhizal type.   

Results 

Intact uptake of organic nitrogen was detected in mycorrhizal roots, and accounted for at least of 1-14% 

of labeled nitrogen uptake.  Forest types did not differ significantly in the importance of organic uptake. 

Conclusions 

The estimates of organic N uptake here using 13C-labeled and 15N-labeled whole cells are less than those 

reported in other temperate forest studies using isotopically labelled amino acids, and likely represent a 

minimum estimate of organic N-use.  The two approaches each have different assumptions, and when 

used in tandem should complement one another and provide upper and lower bounds of organic N use by 

plants. 

 

Keywords:  organic nitrogen uptake, ingrowth core, dual label, temperate forest 

Abbreviations: AA – amino acid 

  DIN – dissolved organic nitrogen 

fintact – fraction of N uptake in organic form  
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Introduction 

Primary production in forest ecosystems is often limited by nitrogen (N) availability (LeBauer 

and Treseder 2008; Vadeboncoeur 2010; Harpole et al. 2011).  Studies conducted in culture and in the 

field have demonstrated some degree of plant access to organic nitrogen in the soil across many different 

ecosystem types, which has been described as a “short-circuit” of the microbial mineralization 

“bottleneck” in the nitrogen cycle as it was traditionally understood (Chapin et al. 1993; Chapin et al. 

2003; Näsholm et al. 2009).  Organic nitrogen use in plants could be important to ecosystem productivity 

when soil temperature, moisture, litter quality, and secondary chemistry limit the rate of microbial 

nitrogen mineralization, such as in polar (Chapin et al. 1993; Hill et al. 2011a; Inselsbacher and Näsholm 

2012), boreal (Näsholm et al. 1998; Persson et al. 2003; Mayor et al. 2012), alpine (Lipson et al.1999), 

and heathland ecosystems (Stribley and Read 1980; Paungfoo-Lonhienne et al. 2008).  In temperate 

forests, the N economy was traditionally thought to be dominated by inorganic forms, but a number of 

studies have shown substantial uptake rates (Finzi and Berthrong 2005; Gallet-Budynek et al. 2009; 

Averill and Finzi 2011; Rothstein 2014). 

Better understanding of organic N uptake is important in both community ecology and global 

change studies.  Differential access to organic nitrogen among plant species or via mycorrhizal fungi play 

a role in determining plant community composition (McKane et al. 2002; Clark et al. 2005; Wurzburger 

and Hendrick 2009; Jacob and Leuschner 2015).  Furthermore, competition of mycorrhizal fungi for 

organic nitrogen and the consequent nitrogen limitation of the saprotrophic microbial community may 

reduce overall decomposition rates and indirectly increase soil carbon storage (Orwin et al. 2011; Averill 

et al. 2014). 

To measure organic N uptake in the field organic substrates (often glycine, but sometimes other 

amino acids or oligopeptides) labeled with 13C and 15N are typically added to the soil, with roots harvested 

for isotopic analysis after a period of hours.  The ratio of 13C excess to 15N excess in the roots is then used 

to apportion uptake of added N between intact organic uptake and uptake after mineralization.  Studies 

which apply amino acids labeled only with 15N (e.g. Jacob and Leuschner 2015) cannot distinguish 
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between direct uptake in organic form vs. uptake of inorganic N after microbial mineralization of the 

amino acid. 

Such studies assume that the added label does not substantially change the available 

concentration of the substrate, and does not affect uptake kinetics (Kirkham and Bartholomew 1954; 

Blackburn and Knowles 1992).  However, substantial doubt has been cast on methods commonly used to 

measure available amino acid concentrations in soils.  Hobbie and Hobbie (2012; 2013) argued that the 

large populations of bacteria in soils should maintain amino acid concentrations in the nanomolar range, 

while measured concentrations in soil are often orders of magnitude greater.  They suggest that most of 

what is measured as available in soil extracts may be physically or chemically protected from absorption 

in situ.  The difference is attributed to disturbance effects of soil sampling, which may be especially large 

in forest soils dominated by ectomycorrhizal species, due to high extraradical mycelium biomass in the 

soil (Jones et al. 2005a).   

If labeled amino acid addition experiments violate the tracer assumption by substantially 

increasing free amino acid concentrations in soil solutions, then plants may be relatively more 

competitive with microbes for amino acids than under natural conditions (Jones et al. 2005b; Hobbie and 

Hobbie 2012).  Such studies also implicitly assume that the added substrate(s) (most commonly glycine) 

are representative of other forms of organic nitrogen (e.g., all free amino acids) in their availability to 

plant roots or mycorrhizal fungi relative to free-living microbes.  However, among amino acids, glycine 

may be both a poor carbon source for microbes due to its low ratio of C to N, and more available to plants 

due to its high diffusion rate (Lipson et al. 1999; Lipson and Näsholm 2001).  On the other hand, other 

forms of organic nitrogen such as oligopeptides and amino sugars may also be quantitatively important 

nitrogen sources to plants or mycorrhizal fungi (Hill et al. 2011b; Whiteside et al. 2012), so amino acid 

studies may miss important organic nitrogen fluxes (Xu et al. 2006). 

Due to these shortcomings, the methods commonly used are insufficient to unequivocally 

demonstrate and quantify fluxes of organic versus inorganic nitrogen to plants in ecosystems.  Additional 

complimentary experimental approaches that avoid the problematic assumptions discussed above, even 
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while potentially making others, are required to gain a full understanding of the importance of organic N 

uptake.  Here, we use an approach involving 13C-labeled and 15N-labeled whole-cell substrate to quantify 

uptake of isotopically labeled organic nitrogen by tree roots or associated mycorrhizal fungi in four 

temperate forest types.  We hypothesized that we would be able to detect intact organic N uptake with this 

method, and that sites with lower nitrogen mineralization rates would rely more on organic nitrogen than 

sites with greater mineralization rates. 

Our approach is similar to that employed in an alpine meadow by Xu et al. (2006), and involves 

adding a double-labeled (13C and 15N) whole-cell substrate to root ingrowth cores and incubating for 

several weeks.  The added substrate is subject to natural rates of proteolysis and mineralization, while 

roots are growing in the cores.  This approach avoids the need for potentially problematic measurements 

of the bioavailable concentrations of dissolved organic nitrogen compounds, and requires only that the 

tracer addition be small relative to the total organic matter pool available for proteolysis and 

mineralization.  By employing root ingrowth cores, we ensure that the roots analyzed are a single cohort 

of actively growing fine roots, improving the potential to compare across sites and soil depths, and 

avoiding the difficult task of separating live from recently dead roots.  This method requires several  

assumptions as well, chiefly regarding the suitability of ingrowth cores as a proxy for the intact soil 

environment, but is valuable as a complement to previous tracer and natural abundance isotope studies 

and should provide further constraints to estimates of organic N uptake in forest ecosystems. 

Methods 

Site Description 

We selected forest stands representing a gradient of species composition, soil C:N ratios, pH, and 

nitrogen mineralization rates in Strafford County, New Hampshire, USA (Table 1; Vadeboncoeur 2013).  

We selected two stands in each of four targeted species assemblages: (1) “maple” (Acer saccharum L. 

with some Fraxinus americana L.); (2) “oak-beech” (Quercus rubra L. and Fagus grandifolia Ehrh.); (3) 

“pine” (Pinus strobus L.); and (4) “spruce” (Picea rubens Sarg. with some Tsuga canadensis L.).  All 
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study sites were mature second-growth forest stands which had been at least partially cleared for grazing 

by the mid-19th century and abandoned by about 1930.  In the USDA soil classification system, soils were 

predominantly mapped as Inceptisols (Dystrudepts) developed in glacial till, except at site JP which was 

an Udorthent developed on sandy outwash.  The soil profiles we examined occasionally included 

incipient eluviated horizons diagnostic of Spodosols (Haplorthods) at sites BJ, PS, and KF. 

Root ingrowth cores were established in three replicate blocks in each stand.  Block locations 

were selected for high local dominance of target species (ideally >80% of basal area within 5 m of the 

cores) and a lack of obstructions or evidence of recent disturbance in the top 20 cm of the soil profile. 

Field Methods 

Ingrowth Core Establishment 

In each of three replicate blocks per study stand, two cores 5.7 cm in diameter were taken to a 

depth of 10–12 cm after removal of the litter (Oi) layer.  Core locations within a block were separated by 

30–50 cm. Each core was marked with three aluminum rods around its perimeter as guides for eventual 

re-coring.  Soil removed from the ingrowth cores was gently sieved to 4.75 mm, picked carefully for fine 

roots and litter, and mixed in approximately a 1:2 ratio with soil that had been previously collected from 

several exploratory cores at each site, air-dried, and sieved to 2 mm.  This was done to provide sufficient 

volume without an excessive amount of field sieving, which does not easily yield large volumes of root-

free soil.  Soil horizons sampled were predominantly mineral horizons, except in the spruce sites 

(especially JB), where the top 10cm was highly organic.  Cores were covered with leaf litter at the surface 

to reduce drying and prevent erosion of the fill soil.  Ingrowth cores were installed between 30 June and 3 

July 2011 across the 8 sites. 

Substrate Addition 

Four weeks after establishment (2-4 August 2011), all sites were visited for pre-treatment soil 

sampling and label addition. A plug of soil 2 cm in diameter and 2 cm in depth was removed from each 

core for pH and N availability analysis and composited by block.  The surface of the core was re-filled 

with reserved sieved soil.   
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Each experimental replicate included a control core (no addition) and a paired core to which 

double-labeled organic nitrogen was added.  To teach treated core, we injected 1 ml of a suspension of 

13C and 15N universally-labeled cyanobacteria (Agmenellum quadruplicatum strain PR-6; Cambridge 

Isotope Labs, Andover, MA, USA), using a 5-hole template and a 22 gauge, 35 mm syringe needle.  The 

labeled substrate contained approximately 2.5 mg N (98% 15N), and 11.5 mg C (98% 13C) per core.  The 

magnitude of label addition ranged from 0.3% to 0.5% of total soil organic N. 

Core Harvesting 

Cores were harvested to a depth of 10 cm approximately 6 weeks after substrate addition (10-13 

September 2011) with a sharpened PVC pipe 40.5 mm in inside diameter.  Nitrile gloves were worn and 

changed between treatments for harvesting and for all lab processing steps.  Separate corers were used for 

each isotope treatment and rinsed between sites.  Any roots not fully cut and found protruding into the 

cored volume were collected carefully with scissors.  Samples were stored at 4ºC for up to 48 hours until 

processing.  

Laboratory Methods 

Roots were gently cleaned of soil in 1 mM CaCl2 and first-order through third-order roots of the 

target species separated from other roots. Root species was determined by gross morphology, branching 

pattern, color, and the presence of ectomycorrhizal fungi.  Root samples were freeze-dried and weighed.  

Dried roots were examined at 20x magnification, rinsed and re-dried if necessary before further being 

subsampled with scissors (1-4 mg), for analysis on a Costech 4010 Elemental Analyzer coupled to a Delta 

Plus XP isotope ratio mass spectrometer.  For a subset (n=8) where sufficient sample was available, 

multiple fine root subsamples from the same core were analyzed.  Enriched samples were run separately 

from control samples.  To reduce isotopic carryover between enriched root samples, root analyses 

alternated with ~5 mg of a low C:N natural-abundance reference material. 

For a subset of treatment root samples with sufficient mass (n=12), we extracted structural protein 

to more precisely measure its 13C enrichment.  Samples were first extracted with hexane to remove non-

polar compounds, then with isopropanol to remove soluble polar compounds, and finally with 6 M HCl at 
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110ºC to hydrolyze non-soluble protein (Hobbie et al. 2013).  Amino acids were purified from the 

hydrolysate on cation exchange resin (Dowex 50WX8) and analyzed on the IRMS in silver capsules.  

Three archived samples of homogenized unlabeled roots from the Bartlett Experimental Forest were 

extracted in the same way to examine the difference between bulk root δ13C and root protein δ13C. 

Site and soil characterization data 

Soil plugs were stored in sealed bags at 4ºC for up to 4 days before being picked through for roots 

and other litter and gently mixed.  Because moisture content was low at the time of sampling and quite 

variable among samples, 3 ml of distilled water was added to each sample and well mixed before further 

processing.  A 5 g subsample of each was placed in a sealed polyethylene plastic bag to be incubated for 

31 days in a dark cabinet at ~20ºC, and a separate 5 g subsample was extracted for exchangeable ions in 

50 ml of 1 M KCl.  Three blank KCl solutions were run with each set (pre-incubation and post-

incubation).  Concentrations of NH4 and NO3 were determined colorimetrically on an Astoria 

autoanalyzer.  Separate subsamples of soil were oven-dried at 60 ºC to determine moisture content and 

then milled for C and N analysis.  Core soil bulk density was estimated from %C data based on the 

relationship published by (Federer et al. 1993) for sandy-loam till soils in New Hampshire.  The 

remaining soil was pooled by block or site (as dictated by remaining sample mass) and pH was measured 

in a 1:2 solution with deionized water.  

Organic nitrogen uptake calculations   

For bulk root samples and the extracted amino acids, we calculated fintact, the fraction of nitrogen 

label that was taken up as an intact organic molecule (i.e. with its associated labeled carbon), based on the 

ratio of excess 13C to excess 15N in each sample.  Excess was calculated as the difference in atom fraction 

of each heavy isotope from the baseline natural abundance (Coplen 2011).   

Based on control samples, mean background root 13C ranged from -28.9‰ to -26.2‰ across 

stands (Table 2).  In the control sample roots, there was evidence of lateral transfer of N within root 

systems from 15N labeled cores to control cores; 15N ranged from -2.8‰ to +34.7‰, with the high end of 
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this range well beyond natural variability.  Such unusually high root 15N values occurred across all forest 

types.  Because of this, we used the pre-treatment soil 15N values for each site as the background value 

instead, since shallow roots closely track bulk soil 15N (Högberg et al. 1996; Ouimette et al. 2012).  Site 

averages of bulk soil 15N ranged from +0.3‰ to +4.3‰ (Table 1).  Due to the degree of isotopic 

enrichment in labeled root samples (Table 2), the calculations that follow are insensitive to uncertainties 

on the order of several per-mil in baseline 15N, but more sensitive to variation in baseline 13C. 

For bulk roots, we calculated protein-carbon concentration assuming that protein was the only 

source of measured bulk-root nitrogen, and that protein was 16% N and 45% C by mass.  We then 

calculated the molar ratio of 15N excess to 13C excess in root protein, assuming that all labeled carbon 

occurred in protein.  This ratio was then converted to a ratio of labeled amino acid (AA) uptake to total 

labeled nitrogen uptake, based on a molar C:N ratio of 3.34 in protein (Hobbie et al. 2012), and assuming 

that 50% of AA-carbon is respired on uptake; this estimate falls towards the high side of the range 

observed in microbial cultures (Hobbie and Hobbie 2012), and was chosen to allow for the possibility of 

respiration by both the fungal and plant symbionts.  Calculation steps are detailed in Online Resource 1.  

The fraction of total labeled nitrogen uptake that occurred in organic form (fintact) was averaged by core 

(for the cores in which we analyzed multiple root samples) and then by site.   

With protein extractions of root samples, we directly measured the 15N and 13C of root protein, 

to provide a check on bulk-root estimates.  For protein, we again assumed that baseline 15N was equal to 

that of the bulk soil, but that baseline 13C was enriched by 2.1‰ relative to the mean 13C of bulk roots 

from control cores at each site.  Subsequent calculations proceeded as described above for bulk roots.  

Statistics and Uncertainty Analysis 

Metrics of organic N uptake were related to individual site characteristics including 0-10 cm soil 

%C, C:N, pH, exchangeable NH4
+, N mineralization, nitrification, and total root ingrowth mass with  

linear regression. Regressions were examined at both the site scale (n=8) and the core scale (n=23; one 
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core contained no target species roots).  Differences in fintact and soil characteristics among sites were 

assessed with one-way ANOVAs. 

In order to assess two of the larger potential sources of error in our calculation, we used a Monte 

Carlo approach (Yanai et al. 2012).  The two sources of error we assessed were 1) uncertainty in site-

mean control root δ13C and 2) the estimate of amino acid C lost to respiration or transamination in 

extraradical fungal tissue. 

The error of our estimate of the mean δ13C of control roots at each site comes predominantly from 

sampling a variable population.  We modeled control root δ13C as a normal distribution using the mean 

and standard deviation of control roots (Table 2), and generated 10,000 random values to carry through 

the calculation of intact organic uptake of the N label.  Calculated ratios of organic:inorganic uptake of 

the N label scale linearly with the difference between the labeled sample and the corresponding control 

sample, and potential error was therefore symmetric and means were unchanged. 

Another potential source of error is our estimation that 50% of amino acid C is respired or lost 

between uptake and our measurement of stable C isotope ratios in mycorrhizal fine roots (Hobbie and 

Hobbie 2012).  Because this term appears in the denominator when calculating fintact, the uncertainty 

associated with it is nonlinear, and scales as 1/(n-1) (Online Resource 1).  We modeled the uncertainty in 

this parameter as a uniform distribution with a fairly wide range between 0.25 and 0.75, based on data 

reviewed by Hobbie and Hobbie (2012), and the possibility that some amino acid C might be retained in 

unsampled extraradical parts of the mycorrhizal fungus.  Uncertainty is reported based on the 2.5 and 97.5 

percentiles of the Monte Carlo distribution for each site. 

Results 

Soil differences among stand types 

Our data indicate large and statistically significant differences among study sites in soil pH, C:N, 

and organic matter percentage (Table 1, single-factor ANOVA p values all <0.001).  Spruce stand soils 

had the highest C:N ratios and lowest pH, while maple stand soils had the lowest C:N and highest pH; 
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oak-beech and pine soils were intermediate.  Spruce soils had by far the greatest concentrations of organic 

carbon (the top 10 cm was mostly or entirely in the Oa horizon where sampled), and maple soils had 

relatively thick and organic-rich A horizons relative to the oak-beech and pine soils.  Bulk nitrogen 

concentrations were similar in spruce and maple soils, and greater than in oak-beech and pine soils.  

Exchangeable NH4
+ and potential N mineralization per gram of soil was greatest in the maple and spruce 

stands and lowest in the oak stands. However, because bulk density was estimated to be 35-50% lower in 

the spruce soils than at the other sites (Table 1), dissolved inorganic nitrogen (DIN) availability was 

greatest in the maple sites.  Soils removed from the cores did not have detectable nitrate prior to the lab 

incubation.  Net mineralization (including nitrate production) per g soil varied widely within a site, but 

significantly differed across stands (n = 8; ANOVA p = 0.01) and across forest types (n = 4; ANOVA p = 

0.02).  In general, the maple (35 ± 11 μg N g-1 soil) and oak-beech soils (23 ± 20 μg N g-1 soil) had 

greater N mineralization than pine and spruce soils (6 ± 12 and 12 ± 18 μg N g-1 soil, respectively).  In the 

lab incubation, net nitrification occurred in some replicates of incubated soils from all stand types and did 

not differ significantly by stand or forest type. 

Root ingrowth mass of target species also varied significantly across the four stand types but not 

across core labeling treatments (Table 2; 2-way ANOVA p < 0.001 and p = 0.50, respectively).  Oak-

beech stands had the greatest root ingrowth, followed by maple.  In the spruce stands our root isotopic 

analyses were sometimes quite sample-limited.  These differences in root production are consistent with 

those observed over several years across a similar species gradient at the Bartlett Experimental Forest 

(Ouimette & Vadeboncoeur; unpublished data). 

Uptake of organic nitrogen 

Across all study sites, organic uptake of labeled nitrogen averaged 5% of total labeled nitrogen 

uptake; in individual cores it ranged from 0 to 50% (Figure 1).  There was no significant difference by site 

or forest type (single-factor ANOVA p = 0.43 and 0.12, respectively), although the mean value for spruce 

stands (16%) was notably greater than those of the other forest types, which averaged 2% to 4%.  
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Among all the site factors we examined, only soil %C correlated significantly with uptake of 

labeled N in organic form (p < 0.01, r2 = 0.27); these trend was driven largely by the higher mean organic 

N uptake observed at the spruce sites, where the top 10 cm was predominantly in the Oa horizon.  

Regressions against metrics of N availability based on the lab incubation were not significant (data not 

shown). 

Amino acid extractions of roots yielded estimates of organic uptake of the 15N label in the same 

general range as those estimated from bulk roots (Figure 2).  Overall, the two estimates across replicate 

cores were not significantly correlated.  However, the two estimates were strongly correlated in oak-beech 

samples (r2 = 0.74; p = 0.03) and agreed closely with the expected 1:1 relationship (Figure 2).  By 

contrast, for maple, pine, and spruce samples organic label uptake was greater in the bulk analyses than in 

the amino acid analyses (paired t-test, p < 0.01).  Some of this variation likely reflects isotopic 

inhomogeneity within root samples; replicate analyses of 1-4 mg subsamples of non-homogenized bulk 

roots had coefficients of variation ranging from 20-115% in the ratio of 13C excess to 15N excess.   

Uncertainty Analysis 

In the Monte Carlo analysis, the two sources of variation contributed about equally to variation in 

the resulting distribution.  Uncertainty due to baseline δ13C measurements depended on the variation 

among replicate samples analyzed, the degree of enrichment in the labeled samples, and the C:N ratio of 

analyzed fine roots, (Figures 1 and 3). Variation in intact organic uptake estimated with the Monte Carlo 

analysis was generally large relative to the variability among replicate ingrowth cores, except at site PS 

(Figure 3).  As mentioned previously, uncertainty in baseline δ15N is of little consequence due to the level 

of 15N enrichment we observed.  An uncertainty of even 4‰ in baseline δ15N (the full range observed 

across all 8 sites), would only show up in the third significant figure of intact organic uptake for our least-

enriched sample. 
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Discussion 

Organic nitrogen uptake across sites 

Our results clearly indicate intact uptake of organic nitrogen compounds by fine roots or their associated 

mycorrhizal fungi.  However, the contribution of these nitrogen forms to the total root nitrogen budget 

was generally small and highly variable at the fine spatial scale examined.  Among stands, organic uptake 

did not correspond with the soil differences that we expected to correlate with differences in organic 

nitrogen use; there was not a significant correlation between lab mineralization rate and fintact.  However, 

spruce sites had a generally greater fraction of labeled uptake in organic form, as well as high C:N ratios 

and low pH, which are normally associated with slow N cycling.  Functional differences between 

microbial communities and types of organic matter present in the mineral vs. organic horizons may 

complicate the site comparisons between the spruce sites and the other forest types.  However, fine roots 

in the soil horizons examined likely provide the bulk of N uptake in each stand.  

Methodological considerations 

Advantages 

Our method bears similarities to the method employed by Xu et al. (2006) in that it involved the 

addition of double-labeled whole cells (though Xu et al. used 14C rather than 13C and intact cores rather 

than ingrowth cores) for longer-term incubations relative to additions of single- or double-labeled amino 

acids. This method has several advantages over methods that involve short-term additions of isotopically 

labeled single amino acids to the soil.  First and most critically, labeled amino acids and other forms of 

organic nitrogen (including amino sugars and oligopeptides) are released from the added organic substrate 

and mineralized at approximately natural rates, rather than added as a pulse of a single amino acid that 

may or may not be large relative to truly “available” pools.  The ingrowth core method therefore does not 

require assumptions about the relevance of such available concentrations and about whether a given 

amino acid is representative of other forms of organic nitrogen in the soil.  Soluble nitrogen chemistry in 

soil may be more complicated than previously appreciated (Warren 2013) and our approach avoids these 
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difficult methodological issues by allowing complex organic substrates (cyanobacterial cells) to produce 

isotopically labeled material at approximately natural rates and concentrations. 

If organic N uptake varies across the growing season, depending on substrate availability, 

mineralization rates, and competition for uptake, our experiment and most assays of labeled N uptake 

offer a mid-season snapshot of a dynamic process.  Our six-week late-summer incubations were done 

when both enzymatic proteolysis and N mineralization would be expected to be limited by the availability 

of labile substrate and limited at least intermittently by soil moisture, but not by temperature (Brzostek 

and Finzi 2011).  This situation might result in strong competition by soil microbes and mycorrhizal fungi 

for free available organic N compounds.  Longer incubation times could potentially provide results more 

representative of the full growing season.  However, if the characteristic turnover time of the added 

organic substrate is short, the power to resolve this process would diminish with longer incubation times.   

Limitations 

The greatest limitation associated with the method we developed is that ingrowth cores do not 

perfectly represent the typical soil environment.  Substantial disturbance effects may be associated with 

sieving roots from soil, including perhaps enhanced organic matter mineralization and altered microbial 

communities, and the reduced root density in the ingrowth core may increase the supply of inorganic N 

relative to plant demand.  Additionally, in longer-term incubations it is necessary to account for 

respiration of amino acid carbon.  We used a value of 50% of amino acid carbon respired when estimating 

organic uptake of labeled N.  Along with sampling error of baseline δ13C, this assumption is responsible 

for a considerable amount of uncertainty in the mean intact organic uptake at each site, but does not 

change our conclusions that organic uptake is at least a small and possibly significant component of the N 

budget in these temperate forest stands. 

Another assumption that could cause this approach to underestimate organic N uptake is the 

assumption that the N transfer compound from mycorrhizal fungi to their plant host is organic.  If a large 

portion of organic N taken up by mycorrhizal fungi is de-aminated and transferred as an inorganic N 

compound, then our method based on the ratio of 13C excess to 15N excess in mycorrhizal fine roots will 
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underestimate the level of organic uptake.  The forms of N transferred from the mycorrhizal fungus to the 

plant host appear to vary; evidence supports both ammonium and organic forms such as glutamate and 

arginine (Chalot and Brun 1998; Govindarajulu et al. 2005; Chalot et al. 2006; Lambers et al. 2008; Jin et 

al. 2012).  If organically acquired N is transferred to other amino acids for transport from the extraradical 

fungal structures towards the fungal/plant interface, some of the 13C label will be separated from the 15N 

with which it was taken up.  Our fine-root samples included at least some of the ectomycorrhizal mantle 

and intraradical arbuscular fungal structures.  The removal of the majority of extraradical fungal biomass 

with rhizosphere soil prior to analysis may mean that the measured 13C excess to 15N excess ratio 

underestimates the importance of organic N uptake by the whole mycorrhizal system, possibly by a large 

amount. 

Calculations of fintact calculated from protein extracts of the roots samples was of the same general 

magnitude of those calculated from bulk analysis, but values were systematically greater in the bulk 

analysis (Fig. 2).  This might relate to additional loss of fungal tissue in the additional handling of dried 

samples prior to protein extraction.  The good match between the two methods in the oak-beech samples 

may mean that these samples lost more of their surface fungal tissue prior to the bulk analysis.  In any 

case, the ability to detect enriched 13C is greatly improved by isolating the non-soluble protein fraction for 

analysis.    The consequences of measurement error in 13C enrichment on the fintact calculation is greatest 

where uptake of the N label is lowest (Fig. 1). 

Improvements 

This method would be improved by reducing within-core heterogeneity of label application, 

perhaps by  injecting the substrate when soil is at or above field capacity.  The fairly dry soils we 

encountered when applying the label likely contributed to the observed heterogeneity.  Also, grinding the 

root samples would lead to more representative isotope measurements – we did not do this avoid 

laboratory contamination with 13C- and 15N-enriched material.  A longer root-ingrowth period prior to the 

addition of the labeled substrate, or using intact cores, would mitigate concerns about low root biomass in 

the cores and roots being less competitive with microbes than in the intact soil.  A shorter incubation 
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time, or a series of incubation times would provide additional information about how time factors in the 

proportion of the label that is taken up in inorganic form, as more of it is mineralized over time (Rothstein 

2014).  

Comparison to other organic N uptake studies 

In temperate forests, N mineralization frequently explains much of the observed variation in 

primary production (Pastor et al. 1984; Carlyle and Nambiar 2001; Newman et al. 2006), suggesting an 

often dominant role for inorganic N uptake in meeting plant N requirements (Wu 2011).  In contrast, in 

colder climates where N mineralization is slow, plants in boreal and tundra ecosystems appear to rely 

heavily on organic N forms (Schimel and Chapin 1996; Näsholm et al.1998).  Our temperate forest sites 

were selected to span a range in N mineralization rates, from spruce sites with recalcitrant litter and thick 

organic horizons to maple sites with high-quality litter and high N mineralization.  We saw non-

significantly greater reliance on organic N in the spruce sites, though the very low root production in 

these cores limited our ability to assess uptake. 

Direct uptake experiments involving short-term isotope label uptake in comparable study systems 

show a similar pattern, in which sites with higher mineralization rates rely somewhat less on organic N.  

Maple-ash forests in Connecticut took up relatively little labeled glycine relative to inorganic N (about 

20% of total), while glycine represented 48-77% (by horizon) of total uptake in nearby hardwood-

hemlock forests (Gallet-Budynek et al. 2009).  Excised roots from these and a pine-dominated site took 

up DIN at 2-6 times the rate of glycine (Finzi and Berthrong 2005).  Similarly, recovery of 13C from 

labeled glycine indicated a higher importance of amino acid uptake in a Michigan oak stand relative to a 

paired maple-dominated stand with a higher mineralization rate, though % organic uptake was not 

calculated (Rothstein 2014).  In spruce-fir-birch forests ~100 km north of our study area, uptake of added 

glycine-N increased with elevation and exceeded DIN at high elevations, where temperature presumably 

limited N mineralization to a greater degree (Averill and Finzi 2011).  On the other hand, no evidence of 

intact glycine uptake was seen in either pine or maple in South Carolina, possibly due to greater P than N 

limitation in those soils (Jin et al. 2010).   
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Our estimates of organic N uptake are generally lower than those provided by short-term labeled 

uptake studies in similar systems, though this might be attributable to stand-scale or temporal differences 

in mineralization and uptake processes.  The relative uptake of labeled single amino acids and inorganic 

N over short incubation times cannot necessarily be compared to our estimates of organic and inorganic N 

uptake based on longer-term incubations of a complex organic matter substrate.  Moreover, as discussed 

above, our estimates likely represent minimum uptake rates due primarily to the potential for retention of 

labeled C in extraradical fungal tissue. Very high amounts of label respiration would be necessary though 

in order to make our data consistent with the higher rates of uptake reported in some shorter-term 

experiments (e.g. Finzi and Berthrong 2005; Gallet-Budynek et al. 2009; Rothstein 2014).  Label 

retention in extraradical fungal tissues (e.g., if ammonium is the predominant N transfer compound) 

would presumably mask organic uptake by mycorrhizal fungi in both long and short incubation 

approaches, unless the relatively high concentrations of labeled amino acids in short-term incubations 

drive uptake as hypothesized by Hobbie and Hobbie (2012). Given the opposing biases in each method, 

they may bracket a range of realistic uptake rates.  

Direct methods comparisons in the same forest stands may be warranted, and could shed light on 

the relevance of the various assumptions required by each method.  However, comparing short- and 

longer-term rates is inherently difficult, and may require multiple short-term measurements.  The 

difference between adding a short-term substrate to intact soils containing high densities of live and dead 

roots and adding a longer-term substrate to disturbed cores with low root density must also be considered.  

Lateral transfer of labeled N from one treatment location to another nearby (as seen in the 15N enrichment 

of control-core roots in this study) could also confound such a comparison; the optimal spacing to take 

advantage of spatial autocorrelation in stand structure and soil properties but avoid isotopic transfer 

among treated and untreated cores is unclear. 

Conclusions 

We used a six-week double-labeled organic matter incubation to detect a fairly small (1-14%) 

contribution of organic nitrogen uptake to mycorrhizal tree roots in four temperate forest types.  This 
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method allowed us to avoid some potentially problematic assumptions about available concentrations of 

amino acids in soil solution or the identity of quantitatively important plant-available and mycorrhizal-

available organic N compounds.  Our estimates of organic N uptake are notably lower than others from 

similar forests, but likely understate the importance of organic N uptake due to transamination (separation 

of the 13C label from the 15N label) within the part of the mycorrhizal fungus not sampled.  This method 

confirms that the capacity for organic N uptake exists across temperate forest ecosystem types that 

include both ectomycorrhizal and arbuscular mycorrhizal tree species.  Future applications of this method, 

perhaps in concert with shorter-term approaches and culture-based estimates of transamination, could 

further refine estimates of the importance of organic uptake across seasonal and successional time scales, 

as well as across different forest types and disturbance/management histories. 
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Table 1 

Study site description and characteristics of soil used to fill ingrowth cores.  Sites are ordered geographically from south to north. Lat=latitude and 

Lon= longitude.  Soil characteristics are the means of 3 analyses per site.  Mineralization is based on a 31-day lab incubation. 

 

Site Name 

Forest 

type Lat Lon 

Elev 

(m) Aspect Slope 

Soil 

%C 

Soil 

C:N 

Bulk 

density  

(g cm-3) 

Soil 

δ15N 

(‰) pH 

Exch. 

NH4  

(μg N g-1) 

mineralization 

+nitrification 

(μg N g-1 soil) 

 

DP Davis Park maple 43.10 -70.98 30 flat <5% 10.7 15.5 0.41 1.8 5.0 94.8 34.6 

 

CW College Woods pine 43.13 -70.95 20 S 5-10% 10.8 24.7 0.40 1.8 4.4 40.6 9.7 

KF 

 

Kingman Farm oak-beech 43.18 -70.93 40 W 5-10% 6.2 22.3 0.58 3.6 4.4 25.1 7.0 

 

PS Parker Mtn - upper spruce 43.29 -71.16 400 E <5% 19.3 32.8 0.26 0.8 3.6 45.6 17.3 

PO 

 

Parker Mtn - lower oak-beech 43.29 -71.16 390 E 30-40% 9.7 25.8 0.43 4.3 4.5 27.3 38.9 

 

BJ Blue Job Mtn spruce 43.33 -71.12 370 W 15-50% 18.0 27.3 0.27 0.3 3.5 80.0 6.2 

 

JP Jones Prop. - lower pine 43.47 -71.01 170 E 5-15% 8.0 21.4 0.49 4.1 5.1 57.1 1.7 

 

JM Jones Prop. - upper maple 43.48 -71.01 180 NE 0-30% 10.5 18.2 0.41 3.7 5.2 75.3 36.2 
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Table 2  

Mass and stable isotope ratios from roots harvested after approximately 10 weeks of ingrowth, including 

6 weeks with incubating tracer additions in the treatment cores. Values are means 1±SD.  

  mean target control treatment treatment 

  root mass root root root 

Site (type) per core (mg) δ13C (‰)  δ13C (‰) δ15N (‰)  

DP (maple) 30.8 ± 40.8 -27.6 ± 1.2 -18.3 ± 6.8 16100 ± 11600 

CW (pine) 6.8 ± 4.5 -26.5 ± 0.8 -23.8 ± 2.2 1760 ± 1500 

KF (oak-beech) 39.1 ± 21.4 -28.1 ± 0.9 -25.1 ± 3.1 2890 ± 1880 

PS (spruce) 8.1 ± 5.0 -26.8 ± 1.1 -21.9 ± 3.3 5110 ± 5660 

PO (oak-beech) 42.7 ± 16.1 -27.8 ± 0.9 -25.2 ± 3.5 6470 ± 6050 

BJ (spruce) 2.1 ± 2.2 -26.5 ± 0.6 -21.1 ± 6.3 3785 ± 5510 

JP (pine) 9.7 ± 6.0 -27.6 ± 0.9 -27.5 ± 1.5 910 ± 790 

JM (maple) 18.9 ± 19.0 -28.0 ± 1.3 -24.7 ± 1.7 1660 ± 1040 
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Figure 1.  Scatter plot of protein 13C excess (estimated from bulk analysis) and bulk 15N excess.  Straight 

lines show 13Cexcess:15Nexcess ratios that correspond to a range of values for the percentage of labeled 

nitrogen taken up in organic form (fintact).  Replicate analyses of root samples are plotted independently 

here, but are averaged in subsequent figures.  Symbols indicate stand type.  Uncertainty in protein 13Cexcess 

(± 2SD) is shown as error bars for four representative data points.   
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Figure 2.  Organic N uptake estimated from amino acid vs. bulk root analyses.  The solid line shows the 

expected 1:1 relationship.  Oak-beech samples show good agreement between the two methods, but 

overall bulk analyses yielded significantly greater estimates of organic N uptake than amino acid 

analyses.  This could be due to sample heterogeneity, surface contamination of the bulk samples, or 

fungal tissue that was lost in the extra processing steps prior to amino acid extraction.   
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Figure 3.  Magnitude of sources of uncertainty in estimating intact uptake of the organic N tracer.  Each 

boxplot shows the median, first and third quartiles, and 95% envelope from a 10,000 iteration Monte 

Carlo analysis where baseline δ13C varied with a normal distribution based on multiple analyses of control 

roots at each site, and amino acid C respiration varied with a uniform distribution between 25% and 75%.  

The uncertainty in organic uptake derived from uncertainty in these values was usually greater than the 

range of variation among the three replicate cores at each site, which is represented by the lightly shaded 

region around each boxplot. 
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Supplemental Material: Calculating the uptake of labeled organic N  

All isotope data were converted to atom fraction for isotope excess calculations.  Notation follows Coplen 

(2011).  “ON” indicates roots from cores with the isotopically labeled organic substrate.   

Excess atom fraction of 15N and 13C in ON treatment root amino acid extracts were calculated as: 

𝑥𝐸 ( N15 )
𝑂𝑁

=  𝑥𝐴𝐴( N15 ) − 𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑜𝑖𝑙( N15 )     [1] 

𝑥𝐸 ( C13 )
𝑂𝑁

=  𝑥𝐴𝐴( C13 ) − 𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑜𝑜𝑡𝑠( C13 )     [2] 

Excess atom fraction of 15N was calculated in the same way from bulk root analyses, based on the 

assumption that non-protein N was negligible in bulk roots: 

𝑥𝐸 ( N15 )
𝑂𝑁

=  𝑥𝑟𝑜𝑜𝑡( N15 ) − 𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑜𝑖𝑙( N15 )    [3] 

Excess atom fraction of 13C in root protein was calculated from bulk root analyses with a mixing equation:  

𝑥𝐸 ( C13 )𝑂𝑁 =  
𝑥𝑏𝑢𝑙𝑘( C13 )− 𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒( C13 )×(1−𝑓𝐴𝐴)

𝑓𝐴𝐴
− 𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒( C13 )   [4] 

where fAA, the fraction of root C in amino acids, is estimated as: 

𝑓𝐴𝐴 =
2.86 ×[𝑁]𝑟𝑜𝑜𝑡

[𝐶]𝑟𝑜𝑜𝑡
      [5] 

assuming a C:N mass ratio of 2.86 in protein (Hobbie et al., 2012) 

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒( C13 ) =  𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑜𝑜𝑡( C13 ) +  0.0000234   [6]  

based on the 13C offset between proteins and bulk analyses of archived fine roots. 

Finally, intact organic N uptake as a fraction of total N uptake was calculated as: 

𝑓𝑖𝑛𝑡𝑎𝑐𝑡 =
 𝑥𝐸 ( C13 )

𝑂𝑁

0.5 × 3.34 × 𝑥𝐸 ( N15 )
𝑂𝑁

      [7] 

assuming a C:N mole ratio of 3.34 in protein (Hobbie et al., 2012), and that half of protein-C is respired 

(Hobbie and Hobbie, 2012).  One ON root sample (from site JP) was more depleted in 13C than the 

control roots in two replicate analyses.  This sample was assigned an organic uptake value of 0. 
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