450 research outputs found

    Network-aware heuristics for inter-domain meta-scheduling in Grids

    Get PDF
    AbstractGrid computing generally involves the aggregation of geographically distributed resources in the context of a particular application. As such resources can exist within different administrative domains, requirements on the communication network must also be taken into account when performing meta-scheduling, migration or monitoring of jobs. Similarly, coordinating efficient interaction between different domains should also be considered when performing such meta-scheduling of jobs. A strategy to perform peer-to-peer-inspired meta-scheduling in Grids is presented. This strategy has three main goals: (1) it takes the network characteristics into account when performing meta-scheduling; (2) communication and query referral between domains is considered, so that efficient meta-scheduling can be performed; and (3) the strategy demonstrates scalability, making it suitable for many scientific applications that require resources on a large scale. Simulation results are presented that demonstrate the usefulness of this approach, and it is compared with other proposals from literature

    Secure Integration of Desktop Grids and Compute Clusters Based on Virtualization and Meta-Scheduling

    Get PDF
    Reducing the cost for business or scientific computations, is a commonly expressed goal in today’s companies. Using the available computers of local employees or the outsourcing of such computations are two obvious solutions to save money for additional hardware. Both possibilities exhibit security related disadvantages, since the deployed software and data can be copied or tampered if appropriate countermeasures are not taken. In this paper, an approach is presented to let a local desktop machines and remote cluster resources be securely combined into a singel Grid environment. Solutions to several problems in the areas of secure virtual networks, meta-scheduling and accessing cluster schedulers from desktop Grids are proposed

    The Inter-cloud meta-scheduling

    Get PDF
    Inter-cloud is a recently emerging approach that expands cloud elasticity. By facilitating an adaptable setting, it purposes at the realization of a scalable resource provisioning that enables a diversity of cloud user requirements to be handled efficiently. This study’s contribution is in the inter-cloud performance optimization of job executions using metascheduling concepts. This includes the development of the inter-cloud meta-scheduling (ICMS) framework, the ICMS optimal schemes and the SimIC toolkit. The ICMS model is an architectural strategy for managing and scheduling user services in virtualized dynamically inter-linked clouds. This is achieved by the development of a model that includes a set of algorithms, namely the Service-Request, Service-Distribution, Service-Availability and Service-Allocation algorithms. These along with resource management optimal schemes offer the novel functionalities of the ICMS where the message exchanging implements the job distributions method, the VM deployment offers the VM management features and the local resource management system details the management of the local cloud schedulers. The generated system offers great flexibility by facilitating a lightweight resource management methodology while at the same time handling the heterogeneity of different clouds through advanced service level agreement coordination. Experimental results are productive as the proposed ICMS model achieves enhancement of the performance of service distribution for a variety of criteria such as service execution times, makespan, turnaround times, utilization levels and energy consumption rates for various inter-cloud entities, e.g. users, hosts and VMs. For example, ICMS optimizes the performance of a non-meta-brokering inter-cloud by 3%, while ICMS with full optimal schemes achieves 9% optimization for the same configurations. The whole experimental platform is implemented into the inter-cloud Simulation toolkit (SimIC) developed by the author, which is a discrete event simulation framework

    An Inter-Cloud Meta-Scheduling (ICMS) simulation framework: architecture and evaluation

    Get PDF
    Inter-cloud is an approach that facilitates scalable resource provisioning across multiple cloud infrastructures. In this paper, we focus on the performance optimization of Infrastructure as a Service (IaaS) using the meta-scheduling paradigm to achieve an improved job scheduling across multiple clouds. We propose a novel inter-cloud job scheduling framework and implement policies to optimize performance of participating clouds. The framework, named as Inter-Cloud Meta-Scheduling (ICMS), is based on a novel message exchange mechanism to allow optimization of job scheduling metrics. The resulting system offers improved flexibility, robustness and decentralization. We implemented a toolkit named “Simulating the Inter-Cloud” (SimIC) to perform the design and implementation of different inter-cloud entities and policies in the ICMS framework. An experimental analysis is produced for job executions in inter-cloud and a performance is presented for a number of parameters such as job execution, makespan, and turnaround times. The results highlight that the overall performance of individual clouds for selected parameters and configuration is improved when these are brought together under the proposed ICMS framework

    Architectural Patterns for the Semantic Grid

    Get PDF
    The Semantic Grid reference architecture, S-OGSA, includes semantic provisioning services that are able to produce semantic annotations of Grid resources, and semantically aware Gridservices that are able to exploit those annotations in various ways. In this paper we describe the dynamic aspects of S-OGSA by presenting the typical patterns of interaction among these services. A use case for a Grid meta-scheduling service is used to illustrate how the patterns are applied in practice

    QoS Provisioning by Meta-Scheduling in Advance within SLA-Based Grid Environments

    Get PDF
    The establishment of agreements between users and the entities which manage the Grid resources is still a challenging task. On the one hand, an entity in charge of dealing with the communication with the users is needed, with the aim of signing resource usage contracts and also implementing some renegotiation techniques, among others. On the other hand, some mechanisms should be implemented which decide if the QoS requested could be achieved and, in such case, ensuring that the QoS agreement is provided. One way of increasing the probability of achieving the agreed QoS is by performing meta-scheduling of jobs in advance, that is, jobs are scheduled some time before they are actually executed. In this way, it becomes more likely that the appropriate resources are available to run the jobs when needed. So, this paper presents a framework built on top of Globus and the GridWay meta-scheduler to provide QoS by means of performing meta-scheduling in advance. Thanks to this, QoS requirements of jobs are met (i.e. jobs are finished within a deadline). Apart from that, the mechanisms needed to manage the communication between the users and the system are presented and implemented through SLA contracts based on the WS-Agreement specification

    Meta-scheduling Issues in Interoperable HPCs, Grids and Clouds

    Get PDF
    Over the last years, interoperability among resources has been emerged as one of the most challenging research topics. However, the commonality of the complexity of the architectures (e.g., heterogeneity) and the targets that each computational paradigm including HPC, grids and clouds aims to achieve (e.g., flexibility) remain the same. This is to efficiently orchestrate resources in a distributed computing fashion by bridging the gap among local and remote participants. Initially, this is closely related with the scheduling concept which is one of the most important issues for designing a cooperative resource management system, especially in large scale settings such as in grids and clouds. Within this context, meta-scheduling offers additional functionalities in the area of interoperable resource management, this is because of its great agility to handle sudden variations and dynamic situations in user demands. Accordingly, the case of inter-infrastructures, including InterCloud, entitle that the decentralised meta-scheduling scheme overcome issues like consolidated administration management, bottleneck and local information exposition. In this work, we detail the fundamental issues for developing an effective interoperable meta-scheduler for e-infrastructures in general and InterCloud in particular. Finally, we describe a simulation and experimental configuration based on real grid workload traces to demonstrate the interoperable setting as well as provide experimental results as part of a strategic plan for integrating future meta-schedulers
    • 

    corecore