
Journal of Computer and System Sciences 77 (2011) 262–281

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Network-aware heuristics for inter-domain meta-scheduling in Grids

Agustín Caminero a, Omer Rana b,∗, Blanca Caminero a, Carmen Carrión a

a The University of Castilla La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
b Cardiff School of Computer Science, 5 The Parade, Cardiff, CF24 3AA, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2009
Received in revised form 3 September 2009
Available online 29 January 2010

Keywords:
Grid computing
Network-aware
Inter-domain
Peer-to-peer
Meta-scheduling

Grid computing generally involves the aggregation of geographically distributed resources
in the context of a particular application. As such resources can exist within different
administrative domains, requirements on the communication network must also be taken
into account when performing meta-scheduling, migration or monitoring of jobs. Similarly,
coordinating efficient interaction between different domains should also be considered
when performing such meta-scheduling of jobs. A strategy to perform peer-to-peer-
inspired meta-scheduling in Grids is presented. This strategy has three main goals:
(1) it takes the network characteristics into account when performing meta-scheduling;
(2) communication and query referral between domains is considered, so that efficient
meta-scheduling can be performed; and (3) the strategy demonstrates scalability, making it
suitable for many scientific applications that require resources on a large scale. Simulation
results are presented that demonstrate the usefulness of this approach, and it is compared
with other proposals from literature.

© 2010 Published by Elsevier Inc.

1. Introduction

Grid systems are highly variable environments, made of a series of independent organizations that share their resources,
creating what is known as Virtual Organizations (VOs), and keeping their independence and autonomy [1]. Through the use
of Grid technologies it is possible to aggregate dispersed heterogeneous resources for solving various kinds of large-scale
parallel applications in science, engineering and commerce [2]. A well-known example of such applications is the Grid-based
worldwide data-processing infrastructure deployed for the Large Hadron Collider (LHC) experiments at CERN [3].

The variability of Grids makes Quality of Service (QoS) highly desirable, though often very difficult to achieve in prac-
tice [4]. One of the reasons for this limitation is the lack of control over the network that connects various components of
a Grid system. Achieving an end-to-end QoS is often difficult, as without resource reservation any guarantees on QoS are
often hard to satisfy. However, for applications that need a timely response (such as collaborative visualization [5]), the Grid
must provide users with some kind of assurance about the use of resources – a non-trivial subject when viewed in the
context of network QoS. In a VO, entities communicate with each other using an interconnection network – resulting in the
network playing an essential role in Grid systems [4].

As a VO is made of different organizations (or domains), the interactions between different domains become important
when executing jobs, since jobs belonging to a user with particular QoS requirements may need to be executed in a com-
puting resource from a different administrative domain. This can be graphically seen in Fig. 1, which depicts such sharing
of resources across organizational boundaries.

* Corresponding author.
E-mail addresses: agustin@dsi.uclm.es (A. Caminero), o.f.rana@cs.cardiff.ac.uk (O. Rana), blanca@dsi.uclm.es (B. Caminero), carmen@dsi.uclm.es

(C. Carrión).
0022-0000/$ – see front matter © 2010 Published by Elsevier Inc.
doi:10.1016/j.jcss.2010.01.006

https://core.ac.uk/display/82697548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jcss.2010.01.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:agustin@dsi.uclm.es
mailto:o.f.rana@cs.cardiff.ac.uk
mailto:blanca@dsi.uclm.es
mailto:carmen@dsi.uclm.es
http://dx.doi.org/10.1016/j.jcss.2010.01.006

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 263
Fig. 1. A Grid, made of several administrative domains.

Fig. 2. Match-making between job requirements and computing resources.

A resource broker may be utilized to discover computing resources fulfilling the particular job properties required by
a user, as shown in Fig. 2. A user wishing to execute a job with particular QoS requirements, such as execution time or
response time, must contact a resource broker in order to get a computing resource fulfilling those requirements. It now
becomes necessary to consider an alternative administrative domain, if local resources cannot be found to fulfill these QoS
requirements.

The main contribution of this paper is a heuristic intended to manage QoS in a Grid system, concerned with the in-
teractions between administrative domains when performing the meta-scheduling of jobs to computing resources. It is
implemented in an entity called Grid Network Broker (GNB), first presented in [6], and which has been extended in this
paper to perform inter-domain meta-scheduling. The heuristic utilizes Peer-2-Peer (P2P) ideas centered on query routing,
for identifying suitable neighbouring domains which may contain the required resources. P2P and Grid systems share many
properties – for instance, they involve resource sharing across different administrative domains to support particular appli-
cation behaviours. Traditionally, in Grid computing, such resource sharing has been undertaken through the use of specialist
security infrastructure, limiting access by users to particular types of resources. In P2P systems however, resource sharing
has been less constrained, enabling more ad hoc modes of interaction between resource users and providers. The query
referral mechanism used in P2P content sharing networks is of most interest to us in this context. Primarily, this is under-
taken by enabling requirements for particular types of resources (or data) to be forwarded to the appropriate peer (or in the
context of Grid computing – administrative domain). In P2P systems, a variety of mechanisms are available to achieve this,
ranging from network flooding, more constrained gossiping protocols, to the use of structured overlays based on distributed
hash tables. In this work, our focus is similar, i.e. to utilize properties of domains to determine where a request for re-
sources should be forwarded, akin to the approach adopted in P2P systems. To achieve this, we make use of a heuristic, the
main goals of which are: (1) to take the network into account to perform meta-scheduling; (2) to focus on communication

264 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
between domains, so that efficient meta-scheduling can be performed; and (3) do this in a scalable way, making it suitable
for realistic deployments.

The paper is structured as follows: Section 2 reviews current efforts on network QoS in Grids, and the lack of attention
paid to inter-domain relationships. Existing proposals for inter-domain meta-scheduling are also reviewed, along with work
that combines P2P and Grid computing. Section 3 explains our approach for inter-domain meta-scheduling, and Section 4
provides an evaluation, demonstrating the usefulness of this work. Finally, Section 5 provides conclusions and Section 6
provides directions for future work.

2. Related work

The provision of QoS in Grids has been addressed by several research projects, but only General-purpose Architecture for
Reservation and Allocation (GARA) and Network Resource Scheduling Entity (NRSE) deal explicitly with inter-domain relations.
The General-purpose Architecture for Reservation and Allocation (GARA) [4] system can perform reservations on a variety of
resources, such as computing, storage or networks. It is however difficult to scale, since users (or a broker acting on his
behalf) needs to authenticate with all domains. Besides, GARA does not consider the network when performing the match-
making between jobs and computing resources. On the other hand, Network Resource Scheduling Entity (NRSE) [7] is similar to
GARA but limited to network reservations. It is able to automatically negotiate a multi-domain reservation by communicating
with its counterpart on the remote network, on behalf of its client. Reservations across multiple domains are made using
two NRSEs, one at each end (improving on GARA’s limitation), but it relies on the assumption that the core network is over-
provisioned. Besides, NRSE is only aimed at performing network reservations, not meta-scheduling of jobs to computing
resources. The proposal presented in this paper is aimed at the provision of QoS in Grids by means of efficient and network-
aware inter-domain meta-scheduling, it does not perform reservations yet, but this is considered as a part of the future
work.

Interactions between different administrative domains have been studied, among others, in [8–11], but they are mainly
concerned with security issues, not scheduling. Furthermore, the combination of Grid computing with P2P has been studied,
among others, in [12–15]. Talia et al. [12] propose a P2P protocol for efficient invocation of Grid Services, and an architec-
ture for resource discovery that adopts a P2P approach to extend the model of the GT3 information service. They propose
a modified Gnutella discovery protocol – Gridnut – which makes it suitable for Grids following the Open Grid Services Ar-
chitecture (OGSA). In particular, Gridnut uses appropriate message buffering and merging techniques to support interaction
between Grid Services in a P2P fashion.

Xion et al. [13] develop an algorithm for finding services in a P2P Grid. In this algorithm, Grid resources are at first
aggregated into a GridPeer. Subsequently, when a Grid resource is needed, a genetic algorithm is used to find the closest
GridPeer. The authors also discuss the use of an ant-based optimization algorithm for improving the choice of resources
that may be made available within a GridPeer. Similarly, Xu et al. [14] presented a framework for the QoS-aware discovery
of services, where QoS is based on feedback from users. Gu et al. [15] proposed a scalable aggregation model for P2P
systems to automatically aggregate services to support distributed application delivery, which satisfy user specified QoS
guarantees.

Given the scenario where no suitable computing resource is available in the local administrative domain, a major issue is
choosing the neighbor domain to which the query should be re-submitted. The e-Protein Project [16] makes use of a Job Yield
Distribution Environment (JYDE) [17] to achieve this. One of its components is the Grid Distribution Manager (GriDM), a P2P
system that performs inter-domain meta-scheduling and load balancing, extending the capability of intra-cluster schedulers
like SGE and Condor. On the submission server, GriDMs form a P2P network and attempt to balance the load across them.
GriDM works by constantly checking the lengths of the wait queues at each site. When a queue on a particular site falls
below a threshold, new permits are issued for that site, so that more jobs can be submitted to that site. The aim of this
strategy is to keep every CPU at every site running jobs, and to keep a few jobs waiting at each site at any time, but not so
many that it would hinder the DM’s ability to make meta-scheduling decisions [17]. Thus, network QoS provision cannot be
considered as one of the aims of this proposal.

Gnutella [18] uses flooding, requiring each peer to forward the query to all its neighbors. Every query has a time-to-live
(TTL), which is decremented each time a peer receives a query. When the TTL reaches 0, the query will be rejected, and the
user informed of the rejection. When one of the peers accepts the query, it also informs the user. Due to the fact that the
number of queries increase each time they are forwarded by a peer – many different peers may accept the same query. In
this case, the job will be executed in the peer whose answer reaches the user first.

DIANA [19] performs global meta-scheduling in a local environment, typically in a LAN. In DIANA, a set of meta-
schedulers are used that work in a P2P manner. Each site has a meta-scheduler that communicates with all other meta-
schedulers on other sites. DIANA has been developed to make decisions based on global information. This makes DIANA
unsuitable for a realistic Grid testbed, such as the LHC Computing Grid [20], which has around 200 sites and tens of thou-
sands of CPU (for a map showing real time information, see [21]).

Assunção et al. [22] provide an architecture for the inter-networking of islands of Grids, which identifies and proposes
an architecture, mechanisms, and policies that allow the inter-connectivity of Grids, and allows Grids to grow in a similar
manner to the Internet – referred to as the InterGrid. The proposed InterGrid architecture is composed of Gateways respon-

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 265
Fig. 3. Inter-domain meta-scheduling architecture.

sible for managing peering arrangements between Grids. It is useful to note that the current focus in the Grid community
towards Cloud computing share many commonalities with such an architecture.

The proposal presented in this paper is aimed at the provision of QoS in Grids by means of efficient meta-scheduling. It
is primarily concerned with the efficient communications and referral between administrative domains using concepts from
P2P systems.

3. Inter-domain meta-scheduling

The architecture presented in this work provides meta-scheduling of jobs to computing resources in different admin-
istrative domains. When a user queries the GNB for a computing resource to run a job, the GNB will proceed with a
selection procedure. If there is a suitable resource in the local domain, the job will be allocated to that resource – al-
ternatively, a resource in another domain may be required – requiring the GNB to determine which domain should be
chosen.

Fig. 3 shows the intra-domain meta-scheduling architecture. When the GNB of a domain receives a job to be scheduled,
and no suitable computing resource exists locally, the GNB chooses one of the neighbor domains, and forwards the query to
it. Apart from the GNB, each domain has other entities, such as a resource monitor (for instance, Ganglia [23]), a bandwidth
broker (BB, such as [24]), and a Grid Information Service (GIS, such as [25]).

A number of assumptions are necessary for the effective deployment of such an architecture. The first assumption is
that each domain must be capable of providing the resources it advertises, i.e. when a domain publishes that it has, e.g.,
X machines with speed Y , those machines must be available within the domain, and conform to the advertised specification.
Hence, a domain must not contain a pointer to machines held in other domains, but should be able to offer these machines
locally. A pointer to machines held elsewhere is not useful, as this does not reveal the effective bandwidth and the number
of hops from the current domain to each neighbor. The second assumption is that the resource monitor should provide
exactly the same measurements in all the domains. Otherwise, no comparison between resources available within different

266 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Table 1
HRI for peer P1.

Peer P2 P3

1 hop S2.1 S3.1

2 hops S2.2 S3.2

3 hops S2.3 S3.3

domains can be made. When more than one network path exists from one domain to another, the Border Gateway Protocol
(BGP) [26] will decide which is the optimal path.

Furthermore, since this architecture relies on the coordinated work of different administrative domains, issues related to
authentication, authorization and accounting clearly arise. GNBs from different administrative domains must authenticate
with each other prior to any information exchange. Existing techniques developed to provide security in P2P systems, such
as [27], can be used. Additionally, trust and reputation must be dealt with when resources are accessed from a third party
– enabling the use of techniques such as [28] may be considered. Trust issues are necessary to ensure that the capability
being advertised by a provider is accurate, and reflects the true capability of the provider at the time.

The concept of Routing Indices (RI) [29] is used in order to forward queries to neighbors that are more likely to have the
required resources. Forwarding decisions use the local RI value of neighbouring domains, rather than selecting neighbors at
random or by flooding the network by forwarding the query to all neighbors.

3.1. Routing Indices

Routing Indices (RI) [29] were initially developed for document discovery in P2P systems, and have also been used to
implement a Grid information service in [30]. The goal of RIs is to help users find documents with content of interest across
potential P2P sources efficiently.

RI are used to make query forwarding decisions between domains in the system, and to avoid the need for flooding the
entire network. The RI represents the availability of data of a specific type in the neighbor’s information base. A version
of RI called Hop-Count Routing Index (HRI) [29] is used, which considers the number of hops needed to reach a datum.
This implementation of HRI calculates the aggregate quality of a neighbor domain, based on the number of machines, their
power, current load and the effective bandwidth of the link between the two domains, as described in Eq. (1).

Il
p =

(num_machinesp∑
i=1

max_num_processesi

current_num_processesi

)
× eff _bw(l, p) (1)

where Il
p is the information that the local domain l keeps about the neighbor domain p; num_machinesp is the num-

ber of machines domain p has; current_num_processesi is the current number of processes running on the machine;
max_num_processesi is the maximum number of processes that can be run on that machine, and will be explained later
on; eff _bw(l, p) is the effective bandwidth of the network connection between the local domain l and the peer domain p,
and is calculated by considering measurements obtained by SNMP [31], as pointed out in [6]. Predictions on the values of
the current number of processes and the effective bandwidth can be used, for example, and calculated as pointed out in [6].
This formulation emphasizes that both computing and network capability are equally important, and both parameters must
be considered in order to decide the quality of an administrative domain to run a particular job.

The max_num_processesi metric is used to determine the processing capability of a particular machine. It is calculated
by considering the speed of the CPU and the amount of memory available at a machine. Eq. (2) shows the actual formula
used.

max_num_processes = k1 × memory

max(memory)
+ k2 × cpu_speed

max(cpu_speed)
. (2)

In Eq. (2), k1 and k2 are two weighting constants that show the importance of each normalized parameter (memory and CPU
speed) when calculating the maximum number of processes. Also, k1 + k2 represents the maximum number of processes
the best of the machines should have. That is, if we consider the machine with the fastest CPU and the machine with
the largest memory, k1 + k2 should represent the maximum number of processes in that machine. This is done in order
to allow local administrators to set limits on the use of resources. The maximum value for memory and CPU speed must
be propagated between peers, so that all the peers share the same values for them – thereby enabling a more objective
comparison between resources held by different peers.

Eqs. (1) and (2) show why the two assumptions mentioned before are needed. As the effective bandwidth between
domains is needed in Eq. (1), it is important that a domain correctly report its resource capabilities. Otherwise, the actual
links used to transmit the job could not be accurately characteized. The second assumption requires that the domains must
report the same monitoring metrics (such as CPU speed, current load and effective bandwidth), as otherwise no comparison
could be made between domains.

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 267
Fig. 4. Peer-to-peer relations between several administrative domains.

Table 2
Detailed HRI for peer P1.

Peer P2 P3

1 hop I P1
P2

I P1
P3

2 hops I P2
P4

+ I P2
P5

I P3
P6

+ I P3
P7

3 hops I P4
P8

+ I P4
P9

+ I P5
P10

+ I P5
P11

I P6
P12

+ I P6
P13

+ I P7
P14

+ I P7
P15

HRI have been used as described in [29]: in each peer, the HRI is represented as an M × N table, where M is the number
of neighbors and N is the horizon (maximum number of hops) of the Index: the nth position in the mth row is the quality
of the domains that can be reached going through neighbor m, within n hops. As an example, the HRI of peer P1 are
provided in Table 1 (for the topology depicted in Fig. 4), where Sx.y is the value for peers that can be reached through
peer x, and are y hops away from the local peer (in this case, P1), and calculated as in Eq. (3). Hence, S2.3 represents the
quality of domains which can reached through peer P2, whose distance from the local peer is 3 hops.

Sx.y =
{

I Pl
Px

, when y = 1,∑
i I

Pt
Pi

, ∀Pi , d(Pl,Pi)=y∧d(Pl,Pt)=y−1∧d(Pt ,Pi)=1,
otherwise. (3)

In Eq. (3), d(Px, Pi) is the distance (in number of hops) between peers P x and Pi . Sx.y is calculated based on the distance

from some local peer. When the distance is 1, then Sx.y = I Pl
Px

, because the only peer that can be reached from local peer Pl
through Px within 1 hop is Px . Otherwise, for those peers Pi whose distance from the local peer is y, the information that
each peer Pt (which is the neighbor of Pi) keeps about them has to be added. Hence, the HRI of peer P1 will be calculated
as shown in Table 2.

3.2. Goodness function

In order to use RIs, a key component is the goodness function [29], which is needed to decide the quality of each neighbor
domain. This is done by considering the quality of peers that can be reached through each neighbor, and their distance from
the local peer. In other words, for each direct neighbor of the local peer, the goodness function will decide how good each
of them is.

For example, consider the topology depicted in Fig. 4. If peer P1 needs to forward a job to one of its neighbors, it will
have to decide between P2 and P3. So, P1 will apply the goodness function to both of them, and one of them will be
chosen. When applying the goodness function to P2, the quality of peers that can be reached through it (namely P4, P5,
P8, P9, P10, and P11) will be considered. In the same way, the quality of P3 depends on the quality of P6, P7, P12, P13,

268 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Table 3
Calculation of Il

p .

Peer P2 P3

1 hop I P1
P2

= (100
40 + 100

40) ∗ 0.5 = 2.5 I P1
P3

= (100
40 + 100

40) ∗ 1 = 5

2 hops I P2
P4

= (100
40 + 100

40) ∗ 0.2 = 1 I P3
P6

= (100
40 + 100

40) ∗ 0.5 = 2.5

I P2
P5

= (100
40 + 100

40) ∗ 0.9 = 4.5 I P3
P7

= (100
40 + 100

40) ∗ 0.5 = 2.5

3 hops I P4
P8

= (100
40 + 100

40) ∗ 0.2 = 1 I P6
P12

= (100
40 + 100

40) ∗ 0.2 = 1

I P4
P9

= (100
40 + 100

40) ∗ 0.9 = 4.5 I P6
P13

= (100
40 + 100

40) ∗ 0.9 = 4.5

I P5
P10

= (100
40 + 100

40) ∗ 0.2 = 1 I P7
P14

= (100
40 + 100

40) ∗ 0.2 = 1

I P5
P11

= (100
40 + 100

40) ∗ 0.9 = 4.5 I P7
P15

= (100
40 + 100

40) ∗ 0.9 = 4.5

Table 4
Example HRI for peer P1.

Peer P2 P3

1 hop 2.5 5
2 hops 5.5 5
3 hops 11 11

Table 5
Calculating goodness function.

goodness(P2) = 2.5
30 + 5.5

31 + 11
32 = 5.5

goodness(P3) = 5
30 + 5

31 + 11
32 = 7.8

P14, and P15. This is done by means of the HRI, since it keeps information on the peers that can be reached through each
neighbor peer. Consider that the best resources belong to peer P6, and all the resources belonging to the other peers are
overloaded. In this case, P1 would choose to forward the job to P3, because although P3 does not have a suitable resource,
it is closer to P6 than P2.

The goodness function developed can be seen in Eq. (4), where p is the peer domain to be considered; H is the horizon
for the HRIs; and F is the fanout of the topology. As explained in [29], horizon provides an upper bound on the distance
(number of hops) searched; peers whose distance from the local peer is greater than the horizon will not be considered.
Meanwhile, the fanout (F) of the topology is the maximum number of neighbors a peer has.

goodness(p) =
∑

j=1...H

S p. j

F j−1
. (4)

3.3. Example

The use of HRIs is demonstrated through an example based on the topology depicted in Fig. 4. Suppose that all the peers
(recall that each peer represents an administrative domain) in Fig. 4 have 2 machines, each one with a speed of 1 GHz and
1 GB of memory; k1 = k2 = 50 and the current number of processes is 40 for all of them. Link bandwidths appearing in the
figure have been calculated as [6] suggests. Finally, the horizon is 3, and fanout is 3. In order to calculate the HRI of peer P1,
each Il

p is calculated as shown in Table 3. These Il
p produce the HRI depicted in Table 4 by adding the results presented in

each cell of Table 3.
If a computing resource is required at peer P1, then the goodness function in Table 5 is applied:
The goodness function produces a higher value for P3 compared to P2. This occurs because the network connection to

P3 makes it more suitable to execute jobs than P2. Thus, the job would be forwarded to P3.

3.4. Search technique

Several techniques are used for searching in P2P networks, including flooding (e.g. Gnutella) or centralized index servers
(e.g. Napster). More effective searches are performed by systems based on distributed indices. In these configurations, each
node holds a part of the index. The index optimizes the probability of finding quickly the requested information, by keeping
track of the availability of data at each neighbor.

Algorithm 1 shows the way that the architecture performs the scheduling of jobs to computing resources. In this system,
when a user wants to run a job, a query is submitted to the GNB of the local domain. This query is stored (line 7) as it
arrives for the first time to a GNB. The GNB looks for a computing resource in the local domain matching the requirements

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 269
Algorithm 1. Search algorithm.

1: q: new incoming query
2: LocalResource: a resource in the local domain
3: NextBestNeighbor: a neighbor domain selected by the goodness function
4: ToTry: the next neighbor domain to forward the query to
5: for all q do
6: LocalResource := null
7: if (QueryStatus(q) = not present) then
8: {the first time the query arrives at this domain, store the query}
9: QueryStatus(q) := 1

10: {look for a computing resource in the local domain}
11: LocalResource := MatchQueryLocalResource(q)
12: end if
13: if (LocalResource == null) then
14: {no computing resource in the local domain, so forward the query to a

neighbor domain}
15: ToTry := QueryStatus(q)
16: NextBestNeighbor := HRI(q, ToTry)
17: if (NextBestNeighbor == null) then
18: {the query must be bounced back}
19: Recipient := Sender (q)
20: else
21: Recipient := NextBestNeighbor
22: QueryStatus(q) + = 1
23: end if
24: ForwardQueryToRecipient(q, Recipient)
25: else
26: {tell the requester a computing resource has been found}
27: SendResponseToRequester(q)
28: end if
29: end for

Fig. 5. A query (Q) is forwarded from p1 to the best neighbors (p3, p6, and p7).

of the query (line 11). If the GNB finds a computing resource in the local domain that matches the requirements, then it
tells the user to use that resource to run the job (line 27). Otherwise, the GNB will forward the query to the GNB of one
of the neighbor domains. This neighbor domain will be chosen based on the Hop-Count Routing Index, HRI, explained before
(line 16). The parameter ToTry is used to decide which neighbor should be contacted next, as shown in Fig. 5 (where p3
will contact p6); if the query is bounced back, then the 2nd best neighbor will be contacted (p3 will contact peer p7), and
so on. Hence, a neighbor domain is only contacted if no suitable local computing resources are available.

4. Evaluation

Two types of evaluations have been undertaken to validate this approach. The first focuses on how HRIs evolve when
varying system parameters – an evaluation from the point of view of the system. The second evaluation is carried out
to evaluate the approach from the point of view of the users. The first evaluation is conducted in order to evaluate the
general approach in a controlled environments. The aim is to validate whether the meta-scheduling approach uses network
bandwidth effectively, in order to choose the most suitable neighbour peer to forward a query to. The second evaluation
is more involved, and focuses on a users’ perspective. Such an evaluation also enables ease of comparison with related
approaches, such as GriDM and flooding.

4.1. System point of view

For the first evaluation, the topology presented in Fig. 5 is used; all the data presented here refer to peer p1. In the
simplest case, all link bandwidths are assumed to be 1 Gbps, and all the peers have 1 resource with a single machine, with
4 Gb of memory and a CPU speed of 1 GHz.

270 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Fig. 6. Variation of link usage.

Fig. 7. Variation of the number of processes (Uniform distribution).

For Eq. (1), the values of current_num_processesi have been approximated as a uniform distribution between 10 and 100,
and the max_num_processesi as 100. Regarding the eff _bw(l, p), a Poisson distribution has been considered for those links
that are heavily loaded, and a Weibull distribution for those links which are not, as [32] suggests. In [32], an study is
presented which shows that an increasing number of simultaneous active connections causes a dramatic change in the sta-
tistical properties of packet traffic on an Internet link. Starting at low connection loads on an uncongested link, packet
arrivals tend toward Poisson as the load increases. Besides, this study also says that the marginal distribution of the
inter-arrivals is well approximated by the Weibull distribution across all values of the average number of active connec-
tions.

In Fig. 5, links with even numbered labels will be heavily used, and are depicted with a thicker line. To calculate the
mean μ for the Poisson distribution, and scale β and shape α for the Weibull distribution, it has been considered that the
level of use of heavily used links is 80%, whilst less heavily used links exhibit a 10% usage. Hence if a heavily used link
transmits 800 Mb/s and the maximum transfer unit of the links is 1500 bytes, then the inter-arrival time for packets is
0.000015 seconds – corresponding to μ of the Poisson distribution. In the same way, the value for the β parameter of the
Weibull distribution is calculated to be 0.00012 seconds.

A measurement period of 7 days has been simulated, with measurements collected every 30 minutes. These measure-
ments are represented by the horizontal axis in all Figs. 6, 7, 8 and 9. Figs. 6 and 7 show the variation in the use of links
and the number of processes, following the mathematical distributions explained before. Fig. 6 represents the level of use
of links compared to the actual bandwidth (1 Gbps), per measurement. This data is used to determine along which link a
query may be forwarded.

Figs. 8 and 9 present the variation of the Sx.y for both heavily/less heavily loaded links. These figures have been calcu-
lated by means of the formulas explained in Section 3.1, and applied to the mathematical distributions mentioned above.
From Tables 1 and 2, S2.1 = I p1

p2, and S3.1 = I p1
p3. It can be seen that the network performance affects the HRI, as was ex-

pected. A higher HRI is better, as it means that the peer is powerful and well connected. Also, when the link is not heavily
loaded, S takes higher values and has a greater spread. Conversely, when the link is heavily loaded, more values are grouped

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 271
Fig. 8. Variation of Sx.y for loaded/unloaded links.

Fig. 9. S2.2 (S3.2 would also look like this).

Fig. 10. Variation of the goodness function.

together at the bottom of the figure. Also, for Fig. 9, S2.2 = I P2
P4

+ I P2
P5

, and S3.2 = I P3
P6

+ I P3
P7

, which means that to calculate
S2.2 and S3.2, both heavily and less heavily used links are used.

Fig. 10 shows the variation of the goodness function for the 2 neighbors of peer p1. Recall that the link between p1 and
p2 is unloaded, and the link between p1 and p3 is loaded. It can be seen that the goodness function for p2 has higher
values, and for p3 it has more values grouped at the bottom of the figure. Thus, peer p2 will be chosen more often than p3.
This is depicted in Fig. 11. Fig. 11(a) shows the peer that is chosen each time, and Fig. 11(b) shows an aggregate count of
how often a particular peer was chosen. Peer p2 is chosen 242 times out of 336 (around 72%), and peer p3 is chosen 94
times (around 28%).

272 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Fig. 11. Peer chosen (link p1 − p2 unloaded, link p1 − p3 loaded).

Fig. 12. EU DataGRID Testbed 1.

4.2. Users’ point of view

A complementary evaluation from a users’ point of view is now presented. This approach is compared with other ap-
proaches from literature, namely GriDM and flooding, which were explained in Section 2. The aim of such a comparison is
to emphasise that the network is an important resource that influences the performance received by users in a Grid. Thus,
approaches that do not consider the network will not perform as efficiently as possible. Besides, when a query must be
forwarded, the process of finding a suitable destination must be performed in a scaleable manner, so that it can efficiently
fit into such a dynamically changing environment. Furthermore, considering only the direct neighbors of an administra-
tive domain (instead of the whole Grid system) considerably reduces the scope of the search, making the approach more
scaleable.

4.2.1. Experiments and results
A network scenario based on the EU DataGRID Testbed has been created, as shown in Fig. 12 [33]. The original topology

has been modified (3 links have been removed) to avoid loops when constructing Routing Indices (the issue of keeping
HRI working and avoiding loops has already been described in [29], but this is not related to this Grid meta-scheduling
proposal). The topology shows eleven computing resources spanning several locations in Europe. Each location is an ad-

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 273
Fig. 13. Peer-to-peer topology.

Table 6
Resource specifications.

Peer ID Res. (Location) # Nodes CPU Rating # Users

0 RAL (UK) 41 49,000 12
1 Imp. College (UK) 52 62,000 16
2 NorduGrid (Norway) 17 20,000 4
3 NIKHEF (Netherlands) 18 21,000 8
4 Lyon (France) 12 14,000 12
5 CERN (Switzerland) 59 70,000 24
6 Milano (Italy) 5 70,000 4
7 Torino (Italy) 2 3000 2
8 Rome (Italy) 5 6000 4
9 Padova (Italy) 1 1000 2

10 Bologna (Italy) 67 80,000 12

ministrative domain, with the structure shown in Fig. 3. For the sake of clarity, only routers and computing resources are
depicted.

Boundaries between administrative domains are shown in circles in Fig. 12, and the bandwidth of the link connecting
the GNB is the same as that of the computing resource in that domain. Hence, the connectivity structure leads to the P2P
topology depicted in Fig. 13, where links between peers are the bottleneck of the network paths between GNBs. From now
on, link bandwidths mentioned in this section are those appearing in Fig. 13. The three proposals (ID-GNB, GriDM and
flooding) have been implemented in GridSim. The following decisions have been made:

• Meta-scheduling is performed in meta-scheduling rounds, with an interval of 20 seconds.
• The monitoring of neighbors (ID-GNB and GriDM) is undertaken every 10 seconds. This has been chosen to allow 2

monitoring rounds to complete for every meta-scheduling round, so that more accurate information on the status of
the neighbors is compiled.

• Peers accept a job to be executed in their local resource when the resource has idle CPUs at the moment the query
reaches the peer. If a query reaches the peer more than once, this is done every time the query reaches the broker.

• Job queries in both GriDM and flooding experiments have a TTL, which has been chosen to allow queries to reach all
the peers in the topology. For GriDM, it is equal to 11; for flooding, the TTL is 5.

• For GriDM, the load of the computing resource provided by GridSim is used to decide which neighbor a query must be
forwarded to. The least loaded computing resource is chosen each time.

• Several computing resources have full local (non-Grid) computing load, in the same way as in the intra-domain scenario.
These computing resources are Res_0, Res_1, Res_2, Res_3, Res_4, and Res_5. Their local load covers around
95% of the computing power of the resources. That is, only around 5% of the computing power of each CPU at those
resources is available for Grid users. For the other resources, the local load is nearly 0%. This has been decided in order
to simulate a real Grid scenario, in which resources may have local load that may differ between resources.

Table 6 summarizes the characteristics of simulated resources, which were obtained from a real LCG testbed [34]. The
CPU rating is defined in MIPS (Millions of Instructions Per Second) as per SPEC (Standard Performance Evaluation Corporation)
benchmark. The number of nodes for each resource have been scaled down by 10, due to memory limitations – otherwise
the full experiment would require more than 2 GB of memory, and would take several weeks of processing. Finally, each
resource node has four CPUs. For this experiment, 100 users were created and distributed among the locations, as shown in
Table 6. Each user has multiple jobs, with the processing power of each job being 1,400,000 Million Instructions (MI), which

274 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Fig. 14. Number of succeeded jobs.

means that each job takes about 2 seconds if it is run on the CERN resource. Also, I/O file sizes are 24 MB. All jobs have the
same parameters that are taken from ATLAS online monitoring and calibration system [35].

This experiment is aimed at determining the behavior of the inter-domain meta-scheduling algorithm, and determining
how different algorithms affect the performance received by users in terms of number of queries forwarded, rate of queries
per job, and the overall job execution time. Statistics related to the amount of data transferred between peers to keep HRIs
up-to-date are also presented.

Fig. 14 shows the number of jobs that were successfully completed for each inter-domain meta-scheduling policy, as the
number of jobs each user wants to run varies. It can be seen that there is no difference between the use of GriDM and
ID-GNB approaches, since both of them can find a computing resource for all the jobs in all the experiments. On the other
hand, as the number of jobs per user increases, there is an increase in the number of jobs in the flooding approach that
cannot be allocated to any computing resource. Hence, these jobs remain unexecuted.

Now consider Fig. 15, which depicts the number of queries forwarded per successfully completed job. This statistic has
been calculated by dividing the actual number of queries forwarded by the number of successfully completed jobs. This
statistic therefore includes queries forwarded for those jobs which could not be executed. As expected, flooding requires
more queries per job, since each peer forwards incoming queries it cannot fulfill to all its neighbors. Comparing with ID-
GNB and GriDM, ID-GNB shows the smallest values for this statistic, and the difference gets larger as the number of jobs
per user increases. For the case of 15 jobs per user, ID-GNB requires 30% less queries than GriDM, for the same amount of
successful jobs.

Fig. 16 shows the amount of data forwarded through the network, and includes ping requests made from one peer
to another, in order to support meta-scheduling. However, flooding does not require such information. As expected, ID-
GNB requires less bytes to be forwarded, since it only requires information from the neighbors. Conversely, GriDM requires
information from all the peers, thus increasing the amount of information forwarded through the network.

Fig. 17 illustrates the number of bytes transferred through the network in queries. This is calculated as the sum of
the size of each query that is propagated through the system. Each query has a number of parameters, including a user

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 275
Fig. 15. Number of queries per succeeded job.

identity, identity of the computing resource chosen to run the job, TTL, identity of the GNB that forwarded the query to the
current GNB, the size of the job, and sizes of input and output files. All of these parameters lead to a job request-object
size of 60 bytes. The results in Fig. 17 show that when the number of jobs per user is small, there are negligible differences
between strategies, but as the number of jobs per user increases, differences increase as well. As was expected, the flooding
approach has the highest value for this statistic, followed by GriDM and ID-GNB respectively.

The number of jobs executed in each computing resource for 15 jobs per user is depicted in Fig. 18. When there is
a smaller number of jobs per user (5 and 10 jobs per user) there are negligible differences between strategies since all
the resources run the same number of jobs in each case (these results are not therefore not included here). But when
each user has 15 jobs (see Fig. 18) differences clearly arise. In this last case, it can be seen that there are some comput-
ing resources that execute a high number of jobs for all the strategies (namely, Res_0 (RAL), Res_1 (Imperial College),
Res_5 (CERN) and Res_10 (Bologna)). These are the most powerful computing resources, since they have more nodes
than others.

Apart from this observation, when ID-GNB is being used (see Fig. 18(a)), resource Res_4 (Lyon) runs around 175 jobs,
a considerably higher number of jobs than when GriDM is used (Fig. 18(b)). This is because this resource has a higher
bandwidth link of 2.5 GB (see Fig. 13) which does not get overloaded. As Routing Indices are heavily influenced by the
effective bandwidth of a link, this makes Res_4 a good candidate to execute jobs.

When ID-GNB is being used, resources Res_6 (Milano) and Res_7 (Torino) execute hardly any jobs, as opposed to
the case when GriDM is running. This is explained by the fact that their links have low bandwidth, thus ID-GNB does not
consider them as good candidates to run jobs. But they have low local load, thus GridM considers them as good candidates
to run jobs.

For flooding (depicted in Fig. 18(c)), it can be seen that although computing resource Res_8 (Rome) is less powerful, it
executes more jobs than resource Res_6 (Milano). This is because Res_8 has 5 neighbors (as can be seen in Fig. 13). It
therefore gets flooded with queries from them, and whenever its computing resource gets idle, another request arrives and
is accepted for execution at that resource.

276 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Fig. 16. Data forwarded through the network when getting information.

Fig. 19 depicts the average network latencies of jobs. This statistic is calculated for each job, for example, the average
network latency is calculated for job 0 for all the users. This is undertaken to demonstrate latencies of different jobs which
were submitted in the same order (jobs with the same number for all the users). As before, when each user has 5 jobs
(represented in Fig. 19(a)), differences between approaches are negligible (being ID-GNB slightly worse). When each user
has 10 jobs (represented in Fig. 19(b)), GriDM and flooding approaches show similar results, and ID-GNB performs better.
The reason is that as data traffic increases, network performance becomes more important than in the previous case, and
the resource workload becomes less important. This fact is supported by the number of queries per successfully completed
job (presented in Fig. 15(b)), which shows that GriDM needs more queries to find a suitable resource for each job than
ID-GNB.

When users have 15 jobs (shown in Fig. 19(c)), the average network latency is higher for GriDM than for the other
approaches. Since GriDM does not consider the network load, the resource chosen is not the most suitable one. This is
confirmed by the number of queries per successfully completed job (presented in Fig. 15(c)). Also, flooding presents sim-
ilar latencies than ID-GNB, because of the nature of flooding. Recall that with flooding, every peer forwards each query
to all its neighbors, thus it reaches a suitable computing resource, at the expense of a really high number of queries
per succeeded job (presented in Fig. 15(c)) and a greater amount of interchanged information in queries (presented in
Fig. 17(c)).

Fig. 20 depicts the average wall clock time for jobs, and represents the total time jobs spend in computing resources,
including waiting time (when no CPU is idle when the job arrives at the resource), and execution time. As before, when each
user has 5 jobs (Fig. 20(a)) differences between strategies are negligible. When users have 10 jobs (Fig. 20(b)) differences
start to arise, and ID-GNB performs slightly worse than the other strategies. When users have 15 jobs (Fig. 20(c)), GriDM
shows the best results. This is explained by the fact that GriDM always chooses the least loaded computing resource. But
differences are almost negligible (a few tens of seconds), compared with the differences in network latencies (shown in
Fig. 19).

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 277
Fig. 17. Data forwarded through the network in queries.

The last statistic presented is the average total latency for jobs, which is shown in Fig. 21. This statistic includes the
elapsed time since users submitted the job to the computing resource, until the output of the job reaches the user. It
includes the transmission time, queueing time at the resource (if no CPU is idle at the moment), and the execution time of
the job. Thus, it is the result of adding the statistics presented in Figs. 19 and 20. They show a similar trend as network
latencies (presented in Fig. 19).

The results of this evaluation show that ID-GNB outperforms both GriDM and flooding in terms of number of queries
required for each job, and network and total latency times. ID-GNB achieves a better rate of successfully completed jobs and
lower latencies, with less queries per job. It is also useful to note that less information must be sent through the network to
keep the architecture working. This therefore demonstrates that ID-GNB is scalable, hence it is a more appropriate technique
for realistic Grid environments.

5. Conclusions

Grid computing involves use of resources in different administrative domains connected with each other. Thus, relations
between domains are key, and must be considered when performing meta-scheduling. An extension to an existing meta-
scheduling framework has been proposed to allow network-aware multi-domain meta-scheduling based on peer-to-peer
techniques.

More precisely, the proposal is based on Routing Indices (RI). Using this approach, nodes are allowed to forward job
queries to neighbors that are more likely to have suitable computing resources. If a node cannot find a suitable computing
resource for a user’s job within its domain, it forwards the query to a subset of its neighbors, based on its local HRI, rather
than by selecting neighbors at random or by flooding the network by forwarding the query to all neighbors.

Results presented here demonstrate the better performance and the scalability of Inter-Domain GNB, ID-GNB. The results
of the evaluation show that ID-GNB outperforms existing approaches in terms of number of queries required for each job,

278 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Fig. 18. Number of jobs submitted to each computing resource, for 15 jobs per user.

Fig. 19. Average network latencies.

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 279
Fig. 20. Average wallclock latencies.

network time and total latency. ID-GNB achieves better rate of succeeded jobs and better latencies, with less queries per
job. Also, less overhead is caused to keep the infrastructure working, which makes this strategy scalable.

6. Future work

In the presented approach a combination of data on the status of the network and the status of the computing resources
is used to perform inter-domain meta-scheduling, but this may not be enough. For example, a job may have the following
requirements: 〈OS = Linux, SW = Java 5, MatLab 7, HW = 200 GB available hard disk〉. In this case, the most powerful
unloaded computing resource, whose network is also powerful and unloaded cannot execute this job unless this computing
resource fulfills the requirements of the job. Trying to identify how job properties precisely match resource properties
has already been the subject of considerable research in matchmaking (e.g. Condor ClassAds). Without the use of such
approaches, utilizing the inter-domain scenario presented here still has limitations, as GNBs must decide which information
to provide to their neighbor GNBs, and this must be done in an efficient and scalable manner. The use of a summarization
process may be a useful approach to summarize capabilities of multiple resource properties or job requirements, before
forward requests to neighbors. Thus, further research can be conducted following this direction.

Another further extension is related to how the network topology is created. Generally peer-to-peer connectivity utilizes
physical topology, which may not be the most efficient for query forwarding. Consider the case when different peers with
similar characteristics are connected to opposite ends of the topology. If a query needs to be propagated and an intermediate
peer is busy, the query may have to go through the whole system in order to reach the required peer. The creation of an
overlay networks [36] based on node-content attributes would be useful, as peers with similar characteristics would be
neighbors.

This paper demonstrates the influence of the network on the performance received by users, so it must be taken into
account when providing QoS in Grid application. The only way to provide real QoS is by means of advanced reservations,
including network, CPU and/or storage – and supported through meta-scheduling for future time slots, i.e. performing the

280 A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281
Fig. 21. Average total latencies.

meta-scheduling before jobs are actually submitted. Thus, the creation of a complete QoS framework supporting meta-
scheduling in advance, and reservations of resources (with an special focus on the network resources) are also important
tasks to support further efforts in this area.

Acknowledgments

This work has been jointly supported by the Spanish MEC and European Commission FEDER funds under grants “Con-
solider Ingenio-2010 CSD2006-00046” and “TIN2009-14475-C04-03”; jointly by JCCM and Fondo Social Europeo under grant
“FSE 2007-2013”, and a post-doctoral contract; and by JCCM under grants “PBI08-0055-2800” and “PII1C09-0101-9476”.

References

[1] I.T. Foster, The anatomy of the Grid: Enabling scalable virtual organizations, in: Proc. of the 1st Intl. Symposium on Cluster Computing and the Grid
(CCGrid), Brisbane, Australia, 2001.

[2] I. Foster, C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure, second ed., Morgan Kaufmann, 2003.
[3] CERN, LHC Computing, Web page at http://www.interactions.org/LHC/computing/index.html. Date of last access: 10th July, 2009.
[4] A. Roy, End-to-end quality of service for high-end applications, PhD thesis, Dept. of Computer Science, University of Chicago, 2001.
[5] F.T. Marchese, N. Brajkovska, Fostering asynchronous collaborative visualization, in: Proc. of the 11th Intl. Conference on Information Visualization,

Washington DC, USA, 2007.
[6] A. Caminero, O. Rana, B. Caminero, C. Carrión, Performance evaluation of an autonomic network-aware metascheduler for Grids, Concurrency and

Computation: Practice and Experience 21 (2009) 1692–1708.
[7] S. Bhatti, S. Sørensen, P. Clark, J. Crowcroft, Network QoS for Grid systems, Intl. J. High Performance Comput. Appl. 17 (3) (2003) 219–236.
[8] F. Barrère, A. Benzekri, F. Grasset, R. Laborde, B. Nasser, Automated inter-domain security policy generation, in: Proc. of the 11th Workshop of the HP

OpenView University Association, Paris, 2004.
[9] B.E. Carpenter, P.A. Janson, Abstract interdomain security assertions: A basis for extra-Grid virtual organizations, IBM Systems Journal 43 (4) (2004)

689–701.

http://www.interactions.org/LHC/computing/index.html

A. Caminero et al. / Journal of Computer and System Sciences 77 (2011) 262–281 281
[10] E. Magaña, J. Serrat, Distributed and heuristic policy-based resource management system for large-scale Grids, in: Proc. of the First Intl. Conference on
Autonomous Infrastructure, Management and Security, (AIMS), Oslo, Norway, 2007.

[11] Y. Zhao, Y. An, C. Wang, Y. Gao, A QoS-satisfied interdomain overlay multicast algorithm for live media service Grid, in: Proc. of the 4th Intl. Conference
on Grid and Cooperative Computing (GCC), Beijing, China, 2005.

[12] D. Talia, P. Trunfio, A P2P Grid services-based protocol: Design and evaluation, in: Proc. of the 10th Intl. Euro-Par Conference, Pisa, Italy, 2004.
[13] Z. Xiong, Y. Yang, X. Zhang, M. Zeng, Grid resource aggregation integrated P2P mode, in: Proc. of the 4th Intl. Conference on Intelligent Computing

(ICIC), Shanghai, China, 2008.
[14] D. Xu, K. Nahrstedt, D. Wichadakul, QoS-aware discovery of wide-area distributed services, in: Proc. of the First Intl. Symposium on Cluster Computing

and the Grid (CCGrid), Brisbane, Australia, 2001.
[15] X. Gu, K. Nahrstedt, A scalable QoS-aware service aggregation model for peer-to-peer computing Grids, in: Proc. 11th Intl. Symposium on High Perfor-

mance Distributed Computing (HPDC), Edinburgh, UK, 2002.
[16] A. O’Brien, S. Newhouse, J. Darlington, Mapping of scientific workflow within the e-protein project to distributed resources, in: UK e-Science All-hands

Meeting, Nottingham, UK, 2004.
[17] L.J. McGuffin, R.T. Smith, K. Bryson, S.A. Sorensen, D.T. Jones, High throughput profile–profile based fold recognition for the entire human proteome,

BMC Bioinformatics 7 (2006) 288–299.
[18] Gnutella, Web page at http://rfc-gnutella.sourceforge.net/. Date of last access: 10th July, 2009.
[19] A. Anjum, R. McClatchey, H. Stockinger, A. Ali, I. Willers, M. Thomas, M. Sagheer, K. Hasham, O. Alvi, DIANA scheduling hierarchies for optimizing bulk

job scheduling, in: Proc. of the Second Intl. Conference on e-Science and Grid Computing, Amsterdam, Netherlands, 2006.
[20] LCG (LHC Computing Grid) Project, Web page at http://lcg.web.cern.ch/LCG. Date of last access: 10th July, 2009.
[21] GridPP, real time monitor, Web page at http://gridportal.hep.ph.ic.ac.uk/rtm/. Date of last access: 10th July, 2009.
[22] M.D. de Assunção, R. Buyya, S. Venugopal, InterGrid: A case for internetworking islands of Grids, Concurrency and Computation: Practice and Experi-

ence.
[23] M.L. Massie, B.N. Chun, D.E. Culler, The Ganglia distributed monitoring system: Design, implementation, and experience, Parallel Comput. 30 (5–6)

(2004) 817–840.
[24] S. Sohail, K.B. Pham, R. Nguyen, S. Jha, Bandwidth broker implementation: Circa-complete and integrable, in: Tech. Rep., School of Computer Science

and Engineering, The University of New South Wales, 2003.
[25] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke, A directory service for configuring high-performance distributed computa-

tions, in: Proc. 6th Symposium on High Performance Distributed Computing (HPDC), Portland, USA, 1997.
[26] Y. Rekhter, T. Li, S. Hares, A Border Gateway Protocol 4 (BGP-4), Internet proposed standard RFC 4271 (January 2006).
[27] K. Berket, A. Essiari, A. Muratas, PKI-based security for peer-to-peer information sharing, in: 4th Intl. Conference on Peer-to-Peer Computing, P2P 2004,

Zurich, Switzerland, 2004.
[28] T.G. Papaioannou, G.D. Stamoulis, Reputation-based policies that provide the right incentives in peer-to-peer environments, Computer Networks 50 (4)

(2006) 563–578.
[29] A. Crespo, H. Garcia-Molina, Routing Indices for peer-to-peer systems, in: Proc. of the Intl. Conference on Distributed Computing Systems (ICDCS),

Vienna, Austria, 2002.
[30] D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto, F. Silvestri, A Grid information service based on peer-to-peer, in: Proc. of the 11th Intl. Euro-Par

Conference, Lisbon, Portugal, 2005.
[31] K. McCloghrie, M.T. Rose, Management information base for network management of TCP/IP-based internets: MIB-II, RFC 1213 (March 1991).
[32] J. Cao, W. Cleveland, D. Lin, D. Sun, Nonlinear Estimation and Classification, Springer Verlag, New York, USA, 2002, Ch. Internet traffic tends toward

Poisson and independent as the load increases.
[33] W. Hoschek, F.J. Janez, A. Samar, H. Stockinger, K. Stockinger, Data management in an international Data Grid project, in: Proc. of the 1st Intl. Workshop

on Grid Computing, Bangalore, India, 2000.
[34] LCG Computing Fabric Area, Web page at http://lcg-computing-fabric.web.cern.ch. Date of last access: 10th July, 2009.
[35] ATLAS online monitoring and calibration system, Web page at http://dissemination.interactive-grid.eu/applications/HEP. Date of last access: 10th July,

2009.
[36] D. Doval, D. O’Mahony, Overlay networks: A scalable alternative for P2P, IEEE Internet Computing 7 (4) (2003) 79–82.

http://rfc-gnutella.sourceforge.net/
http://lcg.web.cern.ch/LCG
http://gridportal.hep.ph.ic.ac.uk/rtm/
http://lcg-computing-fabric.web.cern.ch
http://dissemination.interactive-grid.eu/applications/HEP

	Network-aware heuristics for inter-domain meta-scheduling in Grids
	Introduction
	Related work
	Inter-domain meta-scheduling
	Routing Indices
	Goodness function
	Example
	Search technique

	Evaluation
	System point of view
	Users' point of view
	Experiments and results

	Conclusions
	Future work
	Acknowledgments
	References

