-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Servicio de Coordinacién de Bibliotecas de la Universidad Politécnica de Madrid

ARCHITECTURAL PATTERNS
FOR THE SEMANTIC GRID ~

loannis Kotsiopoulos, Paolo Missier, Pinar Alper, Oscar Corcho,
Sean Bechhofer, and Carole Goble

School of Computer Science

The University of Manchester

United Kingdom

{ ioannis, pmissier, penpecip, ocorcho, seanb, carole} @cs.man.ac.uk

Abstract The Semantic Grid reference architecture, S-OGSA, inclsdesantic provi-
sioning servicethat are able to produce semantic annotations of Grid resources,
andsemantically aware Grid servicéisat are able to exploit those annotations in
various ways. In this paper we describe the dynamic aspects of S-OGSA by pre-
senting the typical patterns of interaction among these services. A use case for
a Grid meta-scheduling service is used to illustrate how the patterns are applied
in practice.

Keywords: Semantic Grid, Grid services, architectural patterns.

https://core.ac.uk/display/148653588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The Grid aims to support secure, flexible and coordinated resource sharing
by providing a middleware platform for advanced distributed computing
[6] . Grid middleware architectures aim to allow collections of any kind of
resourcescomputing, storage, data sets, digital libraries, scientific instruments,
people, etc to easily form Virtual Organizations (VOs) that cross organiza-
tional boundaries in order to work together to solve a problem. However,
existing Grid middleware architectures and the standards on which they are
based on, fall short of addressing some of the original vision of configurable,
self-healing, adaptive, and interoperable middleware [6]. This is due mainly
to the following reasons:

Knowledge burial. Knowledge and metadata regarding Grid entities is
currently generated and used in an ad hoc fashion, much of it buried in the
middleware’s code libraries and database schemas. This esoteric expression
and use of knowledge hinders interoperability when it comes to building open,
interoperable and adaptive systems. Existing Grid middleware is therefore
considerably affected by syntactic changes in protocols and representations,
and it becomes highly dependent on human intervention during its operation.

Dominance of XML-based vocabularies and protocols. The Grid com-
munity has developed a number of specifications and standards that aim to
increase interoperability among middleware components. XML has become
the de-facto language not only for expressing these specifications, but also
for describing Grid entities and their behaviour. However, XML-based
specifications do not provide a complete solution to the problem of knowledge
burial due to the lack of a shared formal interpretation of XML documents.

Lack of models for Grid processes.Many aspects of the Grid are still not
formally defined, therefore it becomes difficult to identify the challenges
and even more difficult to find solutions. Take as an example the formation
of Virtual Organizations (VOs); creating a model for forming VOs can
help setting-up a community-wide terminology, highlight differences among
existing systems and bring about previously unforeseen issues to be solved
for interoperability. This model should be the product of a knowledge
acquisition process, similar to those being undertaken by the Web [4], Web
Services [3]and Semantic Web Services communities [9, 14]. The outcome
of the modeling process can be used for the development of interoperable
metadata based on explicit semantics.

The Semantic Grid is an extension of the current Grid in which information
and services are given well defined and explicitly represented meaning, better
enabling computers and people to work in cooperation [8]. In the Semantic
Grid, the goal of sharing virtualized computational and data resources is ex-
tended to include explicit metadata and knowledge. During the last few years,
several projects have embraced this vision and there are already successful pi-
oneering applications that combine the strengths of the Grid and of semantic
technologies [15]. As a result of some of these efforts, the S-OGSA refer-
ence architecture has been recently proposed [5], with the aim of providing a
systematic approach for designing Semantic Grid applications.

This paper is focused on the dynamic aspects of semantic Grid. We begin
by presenting a summary of S-OGSA (“semantically enhanced OGSA"); then
introduce a use case for Semantic Grid, namely semantic meta-scheduling of
Grid resources [11]. With the help of the use case, we present two service inter-
action patterns that demonstrate the key aspects of Semantic Grid dynamics in
S-OGSA. Finally, we provide some conclusions and future research directions.

2. Semantic Grid concepts

In this section we provide a summary of the fundamental properties of S-
OGSA; a more comprehensive discussion can be found in [5]. S-OGSA con-
sists of (i) an information model of semantic resources, which extends the
OGSA model, and (ii) two new types of Grid servic&emantic Provision-
ing ServiceandSemantically Aware Grid Services

2.1 A Semantic Grid Information Model

Two types of entities are at the basis of the information model:

Grid Entities (G-Entitieg are anything that carries an identity on the Grid,
including resources and services [19];

Knowledge Entitiesare special types of Grid Entities that represent or could
operate with some form of knowledge. Examples of Knowledge Entities
are ontologies, rules, knowledge bases or even free text descriptions that
encapsulate knowledge that can be shared. Knowledge services are those that
provide access to or operate over those knowledge resources, e.g. rule engines
and automated reasoners.

Semantic Bindings (S-Binding¥ are the entities that come into existence
to represent the association of a Grid Entity with one or more Knowledge
Entities. The existence of such an association transforms the subject Grid
entity into aSemantic Grid Entity. Semantic Bindings represent metadata

assertions on web resources. In our model, Semantic Bindings are first
class citizens as they are modelled as Grid resources with an identity and
manageability features as well as their own metadata.

Semantic Grid Entities are those Grid Entities that are either the subject of

a semantic binding, are themselves a semantic binding, or a Knowledge En-
tity. In keeping with our design principles, Grid entities can simultaneously
be associated with zero or multiple knowledge entities of different forms and
capabilities, and can acquire and discard associations with knowledge entities
through their lifetime. It should be noted that S-OGSA does not prescribe any
specific technology for the realisation of these.

2.2 Semantic Provisioning Services

These are services that provision semantic entities. These Semantic Services
are themselves Grid Services. Following the aforementioned classification of
semantic entities, two major classes of services are:

Knowledge provisioning serviceg KPS, which can produce (and in some
cases store) knowledge resources, and that can be used to manage knowledge
resources. KPS support the creation, storage and access of different forms
of knowledge resources. For example: ontology services (a major form of
knowledge) and reasoning services.

Semantic Binding provisioning services which can produce (and in some
cases store) S-Binding resources, and that can be used to manage S-Binding
resources. For example: semantic binding index services, for accessing and
storing metadata associating Grid entities with knowledge entities; and an-
notation services for generating metadata from different types of information
sources, like databases, files or provenance logs. S-Bindings are stateful, so
they are subject to soft state processes; i.e. they will time out, get deleted or be
removed. A typical way of producing S-Bindings is by annotating Grid entities

as is shown in the Grid entities annotation pattern (Section 4).

2.3 Semantically Aware Grid Services

This class of Grid Services are able to exploit semantic technologies to con-
sume semantic bindings in order to deliver their functionality. Their role is
complementary to the role &emantic Provisioning Servicesice they con-
sume the semantic entities held Kkgowledge provisioning servicesandSe-
mantic Binding provisioning servicesand use their services. The combina-
tion of Semantic Provisioning ServicasdSemantically Aware Grid Services
can address the knowledge burial problem discussed in Section 1 since explic-
itly shared knowledge can be consumed by third party services. Semantically

Aware Grid Services are able to exploit explicit semantics, and therefore can
benefit from the additional context it provides for service operation. Examples
include:

= A VO Manager servicethat can perform semantics-aware service ac-
cess authorization;

= A Grid resource cataloguethat supports semantic searches;

= An ontology servicethat is capable of incorporating new concepts into
an ontology.

3. The Grid scheduling use case

We illustrate the use of semantic grid concepts in practice, by describing an
existing Grid service that is currently being enhanced as a semantics-aware ser-
vice. The service addresses a real and common problem in the area of resource
co-allocation on the Grid. The problem of resource co-allocation emerges
when dealing with complex workflows that require multiple data, computing
and network resources; these resources are commonly highly distributed, and
are subject to autonomous and independent management by different organi-
zations.

We are specifically interested in resources whose usage is controlled by
schedulers on the Grid, either at the local or the cluster level; allocating mul-
tiple such resources and orchestrating their access requires the introduction of
a new type of Grid service, callednaeta-schedulefMS) or super-scheduler
The MS is responsible for the co-scheduling [17] of resources in order to as-
semble, on demand, a virtual machine that enables the execution of distributed
jobs consisting of many parallel tasks. In particular, the MS provides higher-
level resource management by implementing a consistent interface into various
Grid scheduling systems, and thus hides much of the heterogeneity of the local
schedulers that control the actual underlying resources.

For our use case, we focus on the generic meta-scheduler recently proposed
by Waldrich et al [20], whose design attempts to generalize on the type of
resources that can be scheduled. This MS interfaces with multiple local sched-
ulers, negotiating with theradvance reservationf resources based on user
requirements that may include time and QoS constraints. The goal of the ne-
gotiation is to determine time slots where the required resources are available
for the requested start times of the application or workflow parts. The meta-
scheduler implements two main functionalities: (i) allocation of a single re-
source for a single application for a fixed period of time, and (ii) co-allocation
of multiple resources for the same fixed period of time for single or multiple
applications.

In order to be able to participate in the negotiation, schedulers must satisfy
at least the first of the following requirements:

1 provide advance reservation of resources by offering job execution start
and stop times;

2 allow at least partial access to the local schedules, e.g. the available
timeslots;

3 allow for some control on existing reservations, e.g. by handling re-
quests for cancellation, or time extensions.

Thus, meta-scheduling includes the following main steps:

= discover schedulers that (i) manage resources that are compatible with
the requirements of the Grid workflow, and (ii) satisfy (at least) the first
of the remaining two requirements above;

= negotiate suitable timeslots with the pre-selected schedulers;

= commit to the advance reservation, and interact with the schedulers to
handle any subsequent change in the agreed-upon reservation.

The meta-scheduler interacts with local schedulers through dedicated
adapters that hide the heterogeneity of the schedulers’ native interfaces. These
adapters offer a uniform set of abstract operations to the meta-scheduler, which
include requesting available start time slots for jobs, submitting scheduling re-
guests for a specific time slot, and requesting the state of the current reserva-
tion.

The meta-scheduler described in [20] negotiates with the local adapters us-
ing the WS-Agreement framework [1]. It has been integrated into the UNI-
CORE Grid system, and its functionality has been demonstrated on the VIOLA
testbed for advanced network services [12]. The meta-scheduler is accessible
through UNICORE client plugins, which allow users to specify requests for
co-allocated resources to run a distributed job on VIOLA.

3.1 Limitations of the current meta-scheduling model

The focus of the current implementation is on the meta-scheduling algo-
rithm, rather than on the discovery and pre-selection of the eligible schedulers,
and on the design of the adapters. However, the latter is a serious issue for
the scalability of the proposed approach. Our study of meta-scheduling as a
promising Semantic Grid use case stems from the observation that, while the
adapters provide a uniform set of operations, no shared data model is available
to describe a scheduler’s set of capabilities. For example, there is no explicit
and shared definition of scheduling concepts tikeeslotor schedule queye

or of capabilities liketimeslot reservation changénstead, these concepts are
left implicit in the implementation of the adapters, which only expose a simple
set of scheduling operations.

This arrangement results in an architecture that is vulnerable to changes.
Firstly, when the schedulers’ capabilities change, they are not easily reflected
in the adapters, which leave this knowledge implicit within their code. Sec-
ondly, when the meta-scheduler requirements for the required capabilities
change, eg due to changes in the meta-scheduling negotiation strategy or al-
location decision algorithm, there is no shared vocabulary to describe the new
requirements.

Motivated by these observations, we have proposed [11] a semantic ap-
proach to meta-scheduling on the Grid, which improves upon the current de-
sign by:

= introducing a shared, explicit and lightweight but extensible semantic
model to describe a scheduler’s set of capabilities as well as its current
state (which the meta-scheduler will need to query, see requirement 2).
This is known as thé&rid Scheduling Ontology

= enhancing the adapters so that they can generate metadata regarding the
schedulers’ capabilities;

= enhancing the existing meta-scheduler as a Semantic Grid service, which
is (i) aware of the available schedulers’ semantics annotations, and (ii)
able to exploit them to perform scheduler discovery and pre-selection.

3.2 The Grid Scheduling semantic model

The design of the enhanced meta-scheduler is based on a semantic model of
Grid scheduling concepts. A detailed presentation of the model can be found
in [11]; what follows is a brief summary.

At the core, the model includes conceptsdetedulers, scheduler capabilities,
scheduler reservation, and additional concepts to represent the state of a local
schedule; each of these classes is the root of an extensible hierarchy. Fur-
thermore, relationships amongst these root classes are establishedhjeatg
properties used for instance to associate sets of capabilities to a scheduler.

The model is defined as an ontology in OWL DL [12]; using the OWL DL
operators, scheduler classes can be defined to contain all and only schedulers
with a defined set of capabilities. For exampldim#ted-disclosure-scheduler, a
subclass o§cheduler, is the class of all schedulers that allow their local sched-
ule to be queried.

These intensional definitions provide a focused way tosssdantic annota-
tionsto individual schedulers, which are instances of one or more of the sched-
uler classes. In their simplest form, annotations include capabilities metadata,

which may state for instance that that “a scheduler is both capable of offering
advance reservation, and allows queries on its current schedule”.

These annotations facilitate the schedulers’ pre-selection by a meta-
scheduler. More precisely, they allow a Description Logic reasoner [2] for the
type of DL supported by OWL, to automatically classify a scheduler whose se-
mantic annotations are known, as a member of one or more scheduler classes,
defined intensionally as shown above. Once this classification has taken place,
it is easy to show that scheduler discovery using this model amounts to (i)
selecting from the ontology a scheduler class whose definition satisfies the se-
lection criteria, and (ii) querying the ontology class to retrieve all the individual
schedulers in the class.

Casting this discovery pattern within the Semantic Grid context is straight-
forward: local schedulers (LS) are Grid entities, and their semantic annotations
can be defined as knowledge entities using the terminology introduced earlier;
they are maintained in a metadata store as first-class Grid Entities themselves.
Semantic bindings in this case embody the association between schedulers and
their annotations; the bindings are exploited by the meta-scheduler, which be-
comes a semantically -aware and -capable Grid service.

Figure 3 shows how the meta-scheduler may make use of the S-OGSA se-
mantic services suite presented in Section 4. In the next section, S-OGSA style
interactions are described in a principled way, using the Grid meta-scheduling
case study as an example.

Grid Scheduling
— s
[‘— P
el
Onlology management
service
_17.
-~ matadata
Metadata eervice | Query reasoner
interface inlerface
12 @2 neillier seheduler classification & Reasoning
| A reguests ¥ serice
metad “'*’T H
upload H : advance
interface : RDF representation u re::a:’a;c;n
of state and capabilities '
"
H scheduler state
LS semantic and capabililies Local
""""""" Scheduler

Figure 1. Casting meta-scheduling in the S-OGSA context

4, Service interaction patterns for the Semantic Grid

The description given in Section 2 provides a static view of the S-OGSA
architecture. Ultimately, however, the goal of provisioning and consuming
semantics in the Grid is realized when S-OGSA services interact with one
another and with Grid entities. We now present the two most relevant service
interaction patterns that define these dynamic aspects of the Semantic Grid.
The patterns follow the main steps in semantic information processing in S-
OGSA, namely:

= Producing semantic annotations, i.e., ontology-referenced metadata for
some Grid entity (resources or services), and representing those annota-
tions as persistent knowledge entities. Grid entities and their annotations
are thus both first-class Grid citizens, and can participate in a semantic
binding;

= Resolving the semantic bindings in order to retrieve annotations for
given Grid entities.

These patterns describe the preparatory actions that any semantically-aware
Grid service, such as the meta-scheduler and the adapters that are responsible
for producing the metadata, would carry out before semantics can be exploited.

The patterns are presented according to the well-known format discussed
in [16]. The dynamics of each pattern are explained with UML sequence dia-
grams while additional comments are used inside the sequence diagrams wher-
ever the interaction is complex or needs some clarification, so as to make the
diagrams as self-contained as possible.

4.1 Grid entity annotation pattern

Definition: The Grid entity annotation pattern encapsulates the functions
needed to annotate Grid data resources or services, producing either raw or
semantic metadata and store them persistently.raBy metadatawe mean

any annotation that can be associated to a piece of data, or, more generally, to
a Grid entity. Semantic metadatan the other hand, is metadata that carries
explicit references to the semantic models, i.e., reference ontologies, required
for its interpretation. In this work, we are only interested in the latter. When
annotations are stored in a Metadata store they become Grid Resources since
they are given a unique identifier. From this set of annotations, those that link
Grid Entities with Knowledge Entities are called Semantic Bindings.

Example: The capability profile of a scheduler can be expressed using
terminology from a Grid Scheduling Ontology (GSO), so that any user who
has access to the ontology may be able to interpret the profile. The LS (Local
Scheduler) Semantic Adapter shown in Figure 3 supervises and monitors one

local scheduler and produces semantic annotations regarding its capabilities
and state changes. Annotations are used by the metascheduler for service
pre-selection.

Context: Generation and storage of semantic metadata for Grid entities.

Problem: The use of intelligent reasoning mechanisms requires semantic
metadata.

Solution: The annotation process can be either done manually, semi-
automatically or on-demand without any user interaction. This pattern is
concerned with automatic and semi-automatic annotations according to which
an Annotation Service is able to fetch reference ontologies from an Ontology
Service, and use them to create semantic annotations that can be interpreted
using those ontologies. The outcome of the annotation is persistently stored
using the Metadata Service.

Dynamics The annotation process is triggered by a requestor that wants to
annotate a piece of data. First, the annotation service needs to obtain a ref-
erence to a suitable ontology. For this, it invokes the Ontology Service which
returns a handler to this ontology. During the annotation process this handler is
used to retrieve ontologgonceptsandpropertiesfrom the Ontology Service.
Optionally, the Annotation Service may also retrieve existing annotations from
the Metadata Service, for reference or for updating purposes. When the an-
notation process finishes, the annotation is persistently stored in the Metadata
Service and assigned a unique identifier. The annotation has now become a
special type of Grid Entity that links Knowledge Entities (i.e. the ontology) to
Grid Resources. This Grid Entity is calleds@mantic Bindingnd can be re-
trieved from the Metadata Service using the aforementioned unique identifier:
the Semantic Binding ID.

Associated to the annotation is also, potentially, its provenance metadata,
describing the annotation process itself (when it was performed, by whom,
the external resources it is based on, and so forth). Note that this pattern is
only concerned with S-OGSA service interactions, rather than with the spe-
cific annotation process, which may vary depending on the domain of the Grid
resource and the purpose of the annotation.

4.2 Metadata and Knowledge querying Pattern

Definition: This pattern allows an application to retrieve semantic bindings
and/or query the semantic metadata associated to a set of Grid Entities, with

‘
‘
! |
s | |
I
|
|

getCntalogy(URI)

loop tConcept
b The Ontology Sarvice provides

e the functionality for accessing
gatProparty and razsoning with the ontology

e

Figure 2. Data annotation interaction patterns

the help of the metadata and ontology services.

Example: The capabilities required for a scheduler to participate in advance
reservation are represented by one or more scheduler classes in the ontology.
As we have shown, eligible schedulers are all and only the instances of those
classes. Retrieving those instances may require reasoning capabilities, as well
as access to the metadata storage.

Context: Semantically aware Grid services that need to retrieve semantic
bindings in order to perform their function.

Problem: Exploiting semantic bindings involves retrieving semantic metadata
associated to some Grid entity.

Solution: Since semantic metadata can be implemented in a formal language
(e.g., RDF Schema, OWL), reasoning techniques can be used in order to
retrieve the metadata. Depending on the reasoning mechanisms available for
the formal language in which the metadata is implemented, different types
of inferences will be available, from the retrieval of subclasses or ancestors

of a given class to the classification of sets of individuals according to their
most specific class. During the query answering process, we can exploit the
reasoners capabilities in order to infer new facts by aggregating knowledge
already stored in the Metadata Service.

Dynamics The behaviour of the Metadata Querying Pattern is shown in Fig-

ure 3. Retrieving raw metadata is straightforward. For semantic metadata,
the metadata service uses the ontology service for expanding or restricting the
gueries that are sent in the message, such as adding subclasses of the concepts
used in the query, or detecting inconsistencies in the query before they are
issued to the metadata service.

5. Discussion

In this paper we have provided a dynamic view of the Semantic Grid by
focusing on some of the most common interaction patterns among the seman-
tic middleware components identified in S-OGSA. Our coverage of patterns
here is far from being exhaustive and there are several variations to undertak-
ing the two core Semantic Grid functionalities covered in this paper, namely
annotation and metadata querying.

The annotation (or metadata generation) pattern that we have covered dis-
plays the case, where metadata for grid entities is generated semi-automatically
and on-demand, which in the illustrative scenario corresponds to the LS Se-
mantic Adapter’'s annotation of a scheduler that has recently joined the VO, or
to a scheduler that has just changed its state. On-demand and semi-automatic
characteristics require the metadata generation pattern to include phases for
discovery of annotation resources (e.g. ontologies).

Annotation could also be done automatically and initiated dynamically as
Grid entities come into existence. Cases where VO membership of Grid
entities change frequently; where most middleware activities heavily rely
on existence of grid entity metadata, or where metadata represents histori-
cal/contextual information of a Grid entity (e.g. provenance), all necessitate
annotation to be a sustained activity. In the sustained annotation case, the
resource discovery phase is generally skipped, and the annotation tooling is
configured to use a specific set of resources and methods.

The metadata querying patterns we have covered demonstrated capabilities
ranging from simple retrieval of raw metadata to expansion of semantic meta-
data via ontological inference.

The patterns are intended to be the building blocks of more complex inter-
actions that build-upctivities of middleware and applications in the Semantic
Grid ecosystem. For instance, in our illustrative scenario, the motivation for

MatadataProvider ‘ MetadataService ‘ ‘ OntologyServica ‘

storaMatadata()

Metadata stoved with
nonaad to chadk tha

ontologies if rafers to,
ifany

(=1

-

1

1

1

| stomOntologyBasedhietadatal} oonceplExists{concapt)

1
Matadata stored for data, (SubClassas /I_II
provenance and sevvices, o8 {} I
whera chacks ara mada o
datect possble inconsistences
or o anvich the matadata i !

DI

1
1
1
i
{} conceptExi Yo
1 et of method calle to tha
U ontology service to retrieve
T ontology componants or
getSubClasses(} ! chack inconeizstencias
1
1
siora0) BazedSari } conceplE b
getSubClazsas(} !
A} i
i
L] |:|
i
1
1
1
1

Figure 3. Metadata storage interaction patterns

providing semantic descriptions for local schedulers came from the need for
the Semantic Discovery activity.

Such semantically-enhanced activities are also currently being investigated
in fields such as the Semantic Web (SW) and Semantic Web Services (SWS).
Work in these areas investigat®s suitable technologies and models for
semantically describing resources in their respective distributed environment
(e.g., the Web or the Web services) arndhow these semantic descriptions
can be exploited in the context of a particular activity with special focus

on discovery, negotiation and composition. There are certain aspects of the
Grid that appear to have higher priority when compared to other distributed
environments. These aspects and their effect on semantics can be summarized
as follows:

Dynamism and Dependency Management.Unlike other distributed en-

vironments, the resources in the Grid are very dynamic. Resource state
changes frequently, and information regarding the state of the system has
a definite lifetime. Grid information systems aggregate resource state
information (generally represented as XML based resource properties)
into index services in order to provide an aggregate system snapshot and
enable discovery of resources based on their properties. To the extent that
semantic metadata adds to resource state information, managing the lifetime
of the semantic bindings becomes important. These issues, which have so
far attracted little research attention in the semantic web (SW) and seman-
tic web services (SWS) communities, need to be addressed in the Grid context.

Trust and Consistency.Building a well-controlled resource sharing environ-
ment is the main aim in the Grid. Introduction of metadata and knowledge into
the Grid brings about the issues of trust-ability and consistency of these. These
issues are also under investigation in the SW and SWS communities [7]. The
uptake of semantics in the Grid depends on existence of usable models and
frameworks in this area.

0. Future Directions

Our current S-OGSA architectural descriptions, including their static and
dynamic aspects, do not prescribe any semantic technology and content for
the realization of semantic entities and services in the Grid. We are aware
that the guidance of S-OGSA would increase if it is accompanied with
some generic content and experience reports (e.g. best practices) on particular
technology choices. Therefore, as part of our future work we will be providing:

Meta-models for knowledge and metadata.In order to facilitate interop-
erable use of the S-OGSA entities in a Grid environment we need to provide
minimal information on what they are. This will be done by modelling the
different types of realizations for Semantic Bindings (e.g., RDF, natural
language) and Knowledge Entities (e.g., ontologies, rule bases).

Profiles for S-OGSA. In this chapter we have demonstrated S-OGSA with a
scenario where Description Logic based knowledge and RDF based metadata
representations have been used to provide semantic capability descriptions for

schedulers and their discovery through use of a DL classifier. The choice of re-
alization technology for knowledge and metadata modelling depends on many
factors including the nature of the problem at hand, the characteristics of the
candidate semantic technologies and the availability and maturity of their as-
sociated tools/services. Returning to our example in this chapter, the use of an
open-world based DL classifier proved suitable for discovery of distributed re-
sources. This however should not imply that these particular technologies are
fit for the solution of other Grid problems (e.g. policy reconciliation, agree-
ment negotiation). In fact closer investigation of such problems [7]has shown
that semantic technologies other than DL and RDF could be ideal for tailoring
solutions to these problems. Based on this observation we would like to pro-
vide profiles for S-OGSA that demonstrate exploitation of different semantic
technologies for the solution of different Grid problems.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specification. Techni-
cal report, Global Grid Forum, July 2005. https://forge.gridforum.org/projects/graap-
wg/document/WS-AgreementSpecification/en/16.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editor§he Description Logic Handbook: Theory, Implementation, and
Applications Cambridge University Press, 2003.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard.
Web services architecture. Available at http://www.w3.org/TR/ws-arch/, 2004.

[4] D. Brickley and R. V. Guha. Rdf vocabulary description language 1.0: Rdf schema.
Available at: http://www.w3.0rg/TR/rdf-schema/, 2004.

[5] O.Corcho, P. Alper, |. Kotsiopoulos, P. Missier, S. Bechhofer, D. Kuo, and C. Goble. An
overview of s-ogsa: a reference semantic grid architectigernal of Web Semantic4,
2006.

[6] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, J. Treadwell, and J. V. Reich. The open grid services
architecture, version 1.0. Technical report, Open Grid Services Architecture WG, Global
Grid Forum, 2005.

[7] R. Gavriloaie, W. Nejdl, D. Olmedilla, K.E. Seamons, and M. Winslett. No registration
needed: How to use declarative policies and negotiation to access sensitive resources on
the semantic web. Ihst European Semantic Web Symposium (ESWS208ges 342—
356. Springer-Verlag, 2004.

[8] C.A.Goble, D.D. Roure, N. R. Shadbolt, and A. A. Fernandie3he Grid 2: Blueprint
for a New Computing Infrastructure Second Editiohapter Enhancing Services and Ap-
plications with Knowledge and Semantics. Morgan Kaufmann, i. foster and c. kesselman,
edition, 2003.

[9] D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing seman-
tics to web services: The owl-s approach.Hnst International Workshop on Semantic

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

Web Services and Web Process Composition (SWSWPC, Z¥# Diego, California,
USA, 2004.

D. L. McGuinness and F. v. Harmelen. OWL Web Otology Language Overview, February
2004. W3C Recommendation.

P. Missier, P. Wieder, and W. Ziegler. Semantic support for Meta-Scheduling in Grids.
Submitted.

Online. VIOLA - Vertically Integrated Optical Testbed for Large Application in DFN,
2005. Project web site: http://www.viola-testbed.de/.

L. Pouchard, L. Cinquini, and G. Strand. The earth system grid discovery and seman-
tic web technologies. IWorkshop for Semantic Web Technologies for Searching and
Retrieving Scientific Data, at the 2nd International Semantic Web Confer2d0a.

D. Roman, U. Keller, H. Lausen, J. d. Bruijn, R. Lara, M. Stollberg, A.Polleres, C. Feier,
C. Bussler, and D. Fensel. Web service modelling ontoldgyrnal of Applied Ontology
1:77-106, 2006.

D. De Roure, Y. Gil, and J. A. Hendler. Guest editors’ introduction: E-sciehE&E
Intelligent Systemd.9:24-25, 2004.

D. C. Schmidt, M. Stal, H. R., and F. Buschmariattern-Oriented Software Architec-
ture: Patterns for Concurrent and Networked Objeatslume 2. John Wiley and Sons
Ltd, 1 edition, 2000.

J. Schopf. Ten Actions When Grid Scheduling — The User as a Grid Scheduler. In
J. Nabrzyski, J. Schopf, and J. Weglarz, edit@sd Resource Management — State of
the Art and Future Trendpages 15-23. Kluwer Academic Publishers, 2004.

N. Sharman, N. Alpdemir, J. Ferris, M. Greenwood, P. Li, and C. Wroe. The mygrid
information model. IMJK e-Science All Hands Meeting004.

J. Treadwell. Open grid services architecture glossary of terms. Technical re-
port, Open Grid Services Architecture WG, Global Grid Forum, 2005. Available at:
http://forge.gridforum.org/projects/ogsa-wg.

O. Waldrich, P. Wieder, and W. Ziegler. A meta-scheduling service for co-allocating
arbitrary types of resources. Rroc. of Sixth International Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM 2Q@%)05.

