
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

An Inter-Cloud Meta-Scheduling (ICMS)
Simulation Framework: Architecture and

Evaluation
Stelios Sotiriadis, Nik Bessis, Ashiq Anjum, Rajkumar Buyya

Abstract— Inter-cloud is an approach that facilitates scalable resource provisioning across multiple cloud infrastructures. In this
paper, we focus on the performance optimization of Infrastructure as a Service (IaaS) using the meta-scheduling paradigm to
achieve an improved job scheduling across multiple clouds. We propose a novel inter-cloud job scheduling framework and
implement policies to optimize performance of participating clouds. The framework, named as Inter-Cloud Meta-Scheduling
(ICMS), is based on a novel message exchange mechanism to allow optimization of job scheduling metrics. The resulting
system offers improved flexibility, robustness and decentralization. We implemented a toolkit named “Simulating the Inter-
Cloud” (SimIC) to perform the design and implementation of different inter-cloud entities and policies in the ICMS framework. An
experimental analysis is produced for job executions in inter-cloud and a performance is presented for a number of parameters
such as job execution, makespan, and turnaround times. The results highlight that the overall performance of individual clouds
for selected parameters and configuration is improved when these are brought together under the proposed ICMS framework.

Index Terms— Cloud Computing, Interoperable Clouds, Inter-Clouds, Meta-scheduling Systems

——————————  ——————————

1 INTRODUCTION

HE concept behind cloud computing is to provide an
on demand scalable and agile infrastructure. Its big-

gest advantage is the service elasticity that offers scaling
of the cloud resources based on user demand [7]. In this
work, we focus on inter-cloud that is an infrastructure
that exploits communication across multiple clouds to
support diverse and large number of user requests. Inter-
cloud aims to increase cloud service elasticity and scala-
bility while minimizing the operational costs. It allows
the formation of a collaborative partnership for service
exchange under a mutually agreed management while
ensuring a certain level of Quality of Service (QoS). In
particular, an inter-cloud facilitates communication by
acting as a gateway and broker between different cloud
providers. In this work we propose an inter-cloud
framework that optimises the performance of an infra-
structure that may comprise of multiple clouds.

In order to realize it, meta-scheduling may play an im-
portant role in the way resources are managed and re-
quests are processed [1]. Specifically, a meta-scheduler
could select available resources from multiple clouds tak-
ing into account appropriate Service Level Agreements
(SLAs), operating conditions (e.g. cost, availability) and
performance criteria [4]. This requires resources from

multiple clouds to be orchestrated in such a way that
tasks are efficiently executed. Our goal is to gain ad-
vantage of already developed solutions for large-scale
meta-scheduling approaches and implement an Inter-
Cloud Meta-Scheduling (ICMS) framework that can im-
prove performance metrics including task execution
times, latencies and makespan times by exploiting re-
sources from multiple clouds.

The work is motivated from the future of Internet
computing as described in [6]. Specifically, the authors
note that today there are different cloud providers that
address different needs and may offer different function-
ality, yet they share the same characteristics in terms of
how resources are being provisioned and consumed. The-
se clouds share similarities in structure and architecture.
Inter-cloud models should allow tasks to be exchanged in
order to achieve better QoS levels by exploiting the re-
sources from a number of cloud providers by employing
novel meta-scheduling approaches. In this work we ad-
dress the limitation in the current cloud implementations
that they do not offer support for task federation.

In contrast to other efforts, as described in [2] and [4],
we propose a more inclusive design that provides task
federation through a decentralized meta-scheduling solu-
tion. Each cloud infrastructure may have their own local
scheduler which may not have information about re-
sources in other clouds. This work extends the initial ef-
fort in [15] by presenting the complete architecture along
with new algorithms and the messaging model of ICMS.
Further, the experimental study demonstrates an extend-
ed use of performance metrics based on new algorithms
and use cases for evaluation purposes. Also, the new al-
gorithms and performance evaluation experiments have
been produced in the SimIC [16] that realizes inter-cloud

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 S.S. Author is with the Technical University of Crete (TUC), Chania, Crete,

Greece. E-mail: s.sotiriadis@intelligence.tuc.gr

 N.B. Author is with the University of Derby, Kedleston Road, Derby, DE22

1GB. E-mail: n.bessis@derby.ac.uk

 A.A. Author is with the University of Derby, Kedleston Road, Derby, DE22

1GB. E-mail: a.anjum@derby.ac.uk

 R. B Author is with the University of Melbourne, Australia. E-mail: rbuy-

ya@unimelb.edu.au

Manuscript received (27 1 2014).

T

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

algorithms along with the messaging model. Its architec-
ture is based on CloudSim [21] yet it implements and ex-
tends its features from the perspective of processing batch
jobs in meta-scheduling systems. Having said that, the
paper is organized as follows, section 2 presents a discus-
sion of related works. Section 3 details the proposed
ICMS framework and section 4 presents the SimIC simu-
lation toolkit and the experimental configuration. Section
5 details the performance results and evaluation. The
work concludes in section 6 with a summary and a dis-
cussion of the future directions.

2 RELATED WORKS

The inter-cloud has been characterized as a large-scale
resource management system comprising of multiple au-
tonomous clouds [5]. These independently managed
clouds may be homogenous or heterogeneous, yet in an
inter-cloud infrastructure they will need to function un-
der a single federated management entity. This section
focus on a literature review of the meta-scheduling ap-
proaches developed for large-scale systems that may ex-
hibit similar characteristics to inter-clouds. In detail, we
focus on the algorithms with regards to inter-clouds.

The work of [8] presents a decentralized dynamic algo-
rithm named Estimated Load Information Scheduling
Algorithm (ELISA). The algorithm estimates the queue
length of neighboring processors and then reschedules
the loads based on estimates. The method aims to in-
crease the possibilities to gain load balancing by estima-
tion based on updated information after large time inter-
vals. Yet, the method is not adaptable to inter-cloud as the
algorithm requires lengths of queues of neighboring
hosts; consequently it exposes internal information. In [9]
authors demonstrate a distributed computing scheduling
model. The key idea of the proposed meta-scheduler is to
redundantly distribute each service to multiple sites, in-
stead of sending the service to the most lightly loaded.
We envision that inter-clouds will mainly be used for
highly loaded scenarios; therefore this method will de-
crease the overall performance.

The work of [10] presents a model for connecting vari-
ous Condor work pools that yield to a self-organizing
flock of Condors. The model uses the Condor resource
manager to schedule services to idle resources. This
method, similar to [8], includes comparison of queues, so
makes local information to be exposed and it is consid-
ered not adoptable to inter-clouds. The authors conclude
that it performs better for lightly loaded sites and thus as
in [9] this will also decrease the overall performance. Au-
thors in [11] present a scheduling infrastructure called
OurGrid which is based on the Bag-Of-Tasks applica-
tions. OurGrid is a collection of peers constituting a
community. This is a decentralized solution based on site
reputation and debts. As debts grow services could be-
come less prioritized, thus could lead to starvation, which
in turn could affect inter-cloud performance. In [12] au-
thors discuss a market-based resource allocation system.
The scheduling mechanism in this system is based on
auctions. Specifically, each resource provider or owner
runs an auction for their resources. However, this does

not guarantee an optimized inter-cloud solution as re-
sources can be under-utilized due to meta-schedulers that
might bid always for a specific set of resources.

In [29], authors describe two scheduling algorithms,
namely Modified ELISA (MELISA) based on [8] and load
balancing on arrival. Both algorithms are based on the
distributed scheme of sender-initiated load balancing. To
improve MELISA performance, the authors conclude that
the load balancing on arrival method will balance the
high service arrival rates. However, this solution includes
exchanging of local queues as discussed in [8], thus it is
inefficient with regards to inter-clouds. The delegated
matchmaking (DMM) approach presented by [13] is a
novel delegated technique, which allows the interconnec-
tion of several grids without requiring the operation un-
der a central control point. Their simulation results show
that DMM can have significant performance and adminis-
trative advantages. However, this work raises heteroge-
neity issues in large-scale distributed settings.

In [17] authors present a model for an InterGrid system
that enables distributed resource provisioning from local
to global scale. In [18], authors evaluate the performance
analysis of the InterGrid architecture by using various
algorithms e.g. conservative backfilling. The results show
that the average response time has improved in the
aforementioned evaluated scheduling algorithms. Yet,
[19] suggest that the approach reflect an economical view
as business application is the primary goal. In [19], au-
thors present a decentralized model for addressing
scheduling issues in federated grids. This solution pro-
poses the utilization of GridWay, as a meta-scheduler to
each grid infrastructure. The authors assume a complete
setting in terms of meta-brokers knowledge for each oth-
er, thus makes it appropriate for small-scale settings and
not for large-scale inter-clouds.

In [20] is presented the problem of broker selection in
multiple grid scenarios by describing and evaluating sev-
eral scheduling techniques. In particular, system entities
such as meta-brokers are represented as gateways. Au-
thors claim that performance is not penalized significant-
ly; however resource information accuracy may be lost.
This work did not address these meta-scheduling features
in inter-clouds. The work of [23] introduces a decentral-
ized dynamic scheduling approach called community
aware scheduling algorithm (CASA). The CASA that
based on [28] contains a collection of sub-algorithms to
facilitate service scheduling across distributed nodes. The
message distribution is based on the probability to find a
resource, thus requires training of the system to define
probabilities. In this study, ICMS defines algorithms for
dynamic scheduling that goes beyond exchanging local
scheduling queues. Finally, in [3] authors present a scala-
ble cloud system modeled around the Amazon EC2 archi-
tecture, with a workload model that offers fluctuating
traffic characteristics. Table 1 shows a summary of large-
scale scheduling approaches by extending the work per-
formed in [22]. It should be mentioned that in [6] authors
present a detailed theoretical comparison among these
approaches.

SOTIRIADIS ET AL.: AN INTER-CLOUD META-SCHEDULING (ICMS) SIMULATION FRAMEWORK: ARCHITECTURE AND EVALUATION

 3

Table 1: Summary of large-scale scheduling approaches

Approach Advantages Disadvantages

Works of [8] and [29] demonstrate ELISA and
MELISA that calculate the neighboring nodes load
by considering job arrival rate and node loads. Jobs
are transferred based on the comparison of nodes
load and not queue length.

Distributed algorithm based on the
centre-initiated load balancing.
MELISA performs better in large
scale systems compared to
MELISA.

Adaptability for dynamics cannot be
guaranteed and privacy issues exposed due
to queues exchanging (comparison of nodes
load), and virtualization capabilities are not
included.

In [9], the scheduler redundantly distribute each job
to multiple sites, instead of sending the job to the
most lightly load though backfilling.

Increases the possibility of
effective backfilling and brings
better fairness.

Performs best for low loaded sites, lower
overall performance for large-scale systems
and no virtualization capability.

In [10], the approach connects various Condor
pools which yield to a self-organizing flock of
condors. It schedules jobs to idle resources by using
Condor resource manager and invokes flocking
mechanism only for busy machines.

It uses the Condor resource
manager for scheduling to idle
resources and flocks can reduce
the maximum job waiting time in
the queue.

Pools are characterized to suitable/not
suitable; as a result unfairness will lead to
starvation, also comparison of queue lengths
exposes privacy issues and virtualization is
not determined.

In [11], scheduling executed by site reputation and
resource availability, and brokers schedule jobs
through arrangements and priorities to peers where
each peer can maintain ranking of all known peers.

Total decentralized solution where
peers keep track of local balance
for each known peer based on past
interactions.

As debts grow, jobs become less prioritized,
thus solution could lead to starvation. Also
resources can be under-utilized due to meta-
schedulers bidding for specific resources.

In [13], the work temporarily binds local resources
to remote resources, when a user cannot be satisfied
at the local level, through delegated matchmaking
(DMM). Remote resources are added transparently.

Improved performance by
reducing administrative overhead,
also no local operation of central
control point.

Dynamics of the system are ignored as a
steady state is assumed during simulation.
Also, heterogeneity and virtualization issues
are not fully considered.

In [18], the target is InterGrid infrastructure where
authors interlink grid islands using peering
arrangements and gateways to allow a cross
collaboration among various grids.

It evaluates the performance of
four complex algorithms and
shows an improvement in average
response times.

The system dynamics may affect connections
of grid islands (e.g. failures could happen
during communication) and also brokers are
self-interested and not global.

In [19], a meta-scheduler called GridWay sits on top
of each grid infrastructure on the federated grid.
Four algorithms have been developed and can be
executed in the GridWay.

No requirements for information
of remotes nodes and it consider
past performance requirements to
forecasts new objectives.

Only adoptable for specific information
system as requires training mechanism for
forecasting performance, also overhead
during training may be increased.

In [20], a meta-broker selection process is shown for
multiple grid interoperating cases. The scheduling
policy consists of the bestBrokerRank policy.

Improves workloads and resource
utilization as well as load
balancing among different grids.

The method assumes complete and detailed
resource information sharing in a stable
infrastructure.

[23] shows a dynamic scheduling approach called
CASA which functions as a scheduling decision to
job schedule across decentralized distributed nodes.

Could lead to the same amount of
executed jobs in centralized as in
decentralized.

Job distribution is based on a probability to
find a resource, thus requires training of the
system to define probabilities.

An important characteristic of our approach is the

message exchanging feature that is considered as a key
requirement by most of the decentralized approaches, as
reported in [9], [10], [11], [12], and [19]. However, most of
these approaches do not detail the whole request-
response procedure. For example, [24] suggests that mes-
sages are exchanged among components in order to make
cooperative scheduling decisions. Since the rejected re-
sponses are returned an increased message overhead is
observed. Similarly, [19] suggests an algorithm that al-
lows rejected messages to return in the case a grid does
not have the required slots for allocation. Authors in [10]
suggest that a node that receives a message becomes
aware of available resources in the pool. This includes
messages that are exchanged in all the resources available
in the resource pool. In contrast, [11] considers a broad-
casting approach where a resource does not always re-
quire to reply back. However, majority of the current per-
formance optimization approaches overlook the benefits
that may derive from a more fine-grained message ex-
changing approach. A more detailed discussion of the
message exchanging mechanisms in distributed systems
is presented in [14].

3 THE INTER-CLOUD META-SCHEDULING (ICMS)
FRAMEWORK

The ICMS is the means to represent the inter-cloud
service distribution that allows the integration of modular
policies. The ICMS is organized in a layered structure as
detailed in Figure 1. The primary functionalities are di-
vided in three layers namely, the service submission, the
distributed resource and the local resource management
layers. In layer 1, a pre-defined topology includes users
that forward requests to layer 2. The latter includes a ran-
dom topology based on random interconnections of dis-
tributed meta-brokers (represented as nodes) to exchange
services. The service distribution is based on messages
that are exchanged among meta-brokers. The ICMS sup-
ports a dynamic workload management to allow deci-
sion-making for services distribution on the meta-
brokering level as detailed in [15]. As indicated earlier,
we focus on IaaS so each service encompasses a request
for a Virtual Machine (VM) with regards to the computa-
tional power and other related parameters (i.e. number of
CPUs, CPU cores, memory, storage, and bandwidth).
Each message includes a description of such information.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Figure 1: The three-layered structure of ICMS

Layer 3 contains a topology that involves the for-
mation of low-level infrastructure and its entities such as
local-brokers, data stores, hosts and VMs. It should be
mentioned that our assumption is that clouds follow a
standard setting (e.g. follow the open cloud computing
interfaces) that includes a local resource broker that con-
trols interactions with the datacenter hypervisor that in
turn sandboxes it to a VM. Policies for scheduling and
local resource management are implemented in the local
resource broker. As shown in figure 1, the layers include
the key elements of the service life cycle that are to plan,
deliver and operate.

Layer 1, the service submission management layer, is
responsible to create the service configuration by translat-
ing user requirements to system specification. The output
is in a form that is recognized by the inter-cloud entities.
Layer 2, the distributed resource management layer, col-
lects service submissions and descriptions, extracts in-
formation regarding performance criteria (e.g. service
size) and forwards it to the appropriate execution entity.
This entity could be either a local resource queue or a re-
mote meta-broker that further distributes the service to
interconnected brokers. Layer 3, the local resource man-
agement layer, offers the service execution environment.
Here, services are forwarded to the lowest level of the
infrastructure (local resource management system –
LRMS) and sandboxed in VMs. Prior to this, each service
is queued into the LRMS queue where a scheduling algo-
rithm allocates services to resources depending on the
configuration of the scheduler (e.g. first come first service,
shortest service first etc.). The whole ICMS is based on a
group of modular policies and each of which realizes the
layered structure and the dynamic requirements.

Figure 2: The ICMS modular structure

Figure 2 illustrates the configuration of the four mod-
ules of the ICMS conceptual architecture, namely Service
Request, Service Distribution, Service Availability and
Service Allocation. Firstly, the “Service Request” module

includes the user specification and the service formation
process. Each service request is recorded into a service
level agreement (SLA) representation. SLAs describe ser-
vice requirements e.g. service CPU etc. along with a user
policy for priorities or advance reservation mechanisms
for prioritized users. The “Service Distribution” module
conta ins the message distribution, the meta-brokering
and the SLA policy as in layer 2.

In addition, the module incorporates a mechanism for
interpreting and translating the content of the SLA. The
“Service Availability” module contains the SLA match-
making, dynamic workload and local resource policies as
in layer 3. This includes that each local-broker could de-
fine the internal resource usage (by evaluating current
executions) in order to decide whether this is capable to
execute the service locally. Finally, the “Service Alloca-
tion” module includes the hypervisor scheduler, the host
allocation and VM allocation policies as in layer 4. The
hypervisor is responsible for a) the sharing of host’s com-
putational power between the VMs (host scheduling), b)
the sharing of VM allocation of computational units (VM
allocation) and c) the management of the hypervisor that
queues the services in hosts.

The communication between the ICMS modules is
achieved by utilizing a novel message exchanging proce-
dure that allows services to be exchanged as events that
are sent and received between meta-brokers by following
the Message Exchanging Optimization (MEO) model [14]
[26]. The assumption here is that we have a decentralized
topology of meta-brokers to allow event request-response
during regular time intervals. The following steps
demonstrate that process.

[1] The service distribution starts when a number of
services are submitted to a meta-broker. Each ser-
vice request contains a set of requirements such as
time intervals (e.g. waiting time, interval etc.) and
computational units (CPU, memory, bandwidth,
etc.). In addition, each service request includes pri-
orities and advance reservation features for allow-
ing specific services to be executed on specific
types of resources.

[2] Each service request is stored in a list. Each list row
has a message with key characteristics including
the deadline and the service length as the mean for
calculating resource availability on remote re-
sources. The service requests are dispatched dur-
ing regular intervals.

[3] The service requester defines the interval deadline,
which defines a delay limit and the size of the list.
For large lists the deadline could be higher as the
time needed to dispatch is higher. This also con-
siders the cost of communication among entities.
So a small deadline results in a small number of
submissions, while a large one could lead to heavy
submissions. The ICMS default interval is configu-
rable to meet the needs of an experiment. Further
details are provided in the experimental analysis
section where a detailed discussion of ICMS con-
figuration is shown.

Service

Request

Service

Availability

Service Distribution

Service Allocation

ICMS

User HD and

SW data

Meta-

broker

policy

Message

exchange

policy

SLA

Specification

User Policy

(Priority,

Advance

reservation)

Host

allocation

VM

allocation

Hyper-

visor

SLA match-

making

Dynamic

workload

Local

resource data

extraction

SLA

decryption

SOTIRIADIS ET AL.: AN INTER-CLOUD META-SCHEDULING (ICMS) SIMULATION FRAMEWORK: ARCHITECTURE AND EVALUATION

 5

Service Request
Service

Availability

Service

Distribution

Service

Allocation

Event

Formation

Event

Collection

Event

Ranking

Event

Redistribution

Event

Assignment

[4] The service requester collects addresses of inter-
connected nodes from an internal catalogue of re-
sources. These nodes are meta-brokers that are
used to receive the requests dispatched from the
service lists.

[5] The service requester sends a service request as a
message consisting of quality of service require-
ments (e.g. deadline, service length etc.). The mes-
sage includes the ranking criteria (e.g. turnaround,
energy consumption level); so all brokers will use
the same resource selection criteria. It should be
noted that identification tags define a message.
During communication, the tags are set to unique
values to characterize the group of messages.

[6] A broker collects a single service request and per-
forms an internal resource availability check ac-
cording to the ranking criterion. Then it generates
a priority of services which is stored in a tempo-
rary ranking list. If the list is empty, the broker
cannot execute the services and it will not respond
back. In any other case, the list with the ranked
services is forwarded back to service requester.

[7] Each service request is ranked based on a schedul-
ing function and a decision is taken accordingly.

[8] In case of service availability (each service of the
list can be executed locally) the broker generates a
list with services.

[9] In case of non-availability (e.g. broker cannot exe-
cute all or few of the services contained in the list)
a further service distribution request will be re-
performed using steps 1 to 6.

[10] In case of complete non-availability the broker will
cease communication and therefore, responses are
not sent back.

[11] A new list consisting of service requests which is
ranked in a descending order is created. This forms
the criteria for selecting services at the next re-
source management level. In the case that the bro-
ker acknowledges that the service request(s) will
be executed on a remote machine, the broker re-
directs messages to interconnected nodes. All mes-
sages are assigned with updated time deadlines.

[12] The ranked lists are collected from the service re-
quester that compares and decides whether a re-
mote resource will be selected for execution or not.

[13] The procedure ends and each service request is
sent to a local or remote resource.

This concludes the steps of communication, in the next
section we focus on the definition of the service submis-
sion and service execution features.
3.1 The definition of service submission in ICMS

Let assume that there are M meta-brokers that form a
decentralized inter-cloud where },...,,{ 21 nmmmM  . Each
meta-broker does not have a value but is associated with
the name of interacted cloud. For instance cloud 1 has a
meta-broker named as meta-broker1. The number n
equals the number of participating clouds in an inter-
cloud, thus each cloud has at least one meta-broker. Each
service request is defined as ji and is assigned to a meta-

broker mi and contains a number of physical characteris-
tics named as CPU cpui , memory memi , cores cori , stor-
age stori and bandwidth bwi . Each ji is a set of tuples
where each request encapsulates a ji=(cpui , cori , memi ,
stori , bwi). It should be mentioned that a service request
is an IaaS encapsulation and it is defined in a similar
manner to the Amazon EC2 service specification [25]. The
cpui and the cori define the clock rate as
ClockRatei = cpui *cori . It includes also the cycles per in-
structions for each service named as cpiji to calculate the
required execution time. This will help us to quantify the
service size in terms of traditional jobs length. Further to
this, the meta-broker defines a metric to characterize each
submission, e.g. the cycles per instruction (CPI) and the
execution time of the ji . The cpiji

is defined as

cpiji = cycles ji / instructions ji
[6]. The execution time exec ji is

calculated as exec ji = instructions ji *cpiji /ClockRateji *10
5. In

this paper, we also define the millions of instruction per
second (mips ji) to describe an additional service length
metric calculated as mips ji =ClockRateji / cpijiji *10

-6 . Both

cpiji
and mips ji define the service size with regards to the

specified user submission. Each meta-broker miis as-
signed with a latency latmi that defines the delay of the
broker to execute a service request including the time
needed for coordination and internal communication.

The total service execution time is the sum of the laten-

cies of the meta-broker mi to the execution time,

TotalJobExecTimeji = Latency ji +exec ji
. The latency of the mi

is
imii

ComLatencyLatencyLatency mm  . The
im

ComLatency
de-

fines the time needed to communicate with the local re-
source to extract addresses for further distribution. Each

meta-broker mi has a load of services and these are de-

scribed as the throughput, where
im

Troughpup is equal to

the count of mi in the inter-cloud.

The ICMS calculates the utilization of mi, e.g the usage

levels,)/(
ii jm TroughputTroughputnUtilizatio  . For example,

the utilization of the meta-broker mi is the division of the

throughput of the served jobs to the total throughput of
the jobs that could be served. Finally, the service perfor-
mance is described as the execution time of the VM that
sandboxes the service and is calculated as

Performanceji = PerformanceVMji =1/ exec ji
.

3.2 The algorithmic structure
Our approach includes request and response entities to

implement the whole set of service execution life cycle.
Figure 3 shows the relationships of the algorithms. It
should be mentioned that events are the steps that hap-
pen in the life of cloud service requests. The process starts
with the event formation and collection algorithms.

Figure 3: The sequence diagram of the algorithmic model

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Each event algorithm (along service configurations) is
then ranked and distributed in the inter-cloud. The event
assignment algorithm allocates the service computational
units. The structure and the relationship of the algorithms
follow the sequence below. Firstly, the event collection,
formation and sending procedure of the request entity
takes place. This is followed by the event gathering, iden-
tification of specification, ranking and response proce-
dure of a broker. Finally the event redistribution proce-
dure and the event collection, ranking and assignment
processes take place.
3.2.1 The event formation algorithm

The process starts with the event-formation algorithm.
The ICMS sets a time interval collectionint and a criterion
for the events to be ranked at a later stage. The assump-
tion is that the meta-brokers have the same uptime and
are interlinked in a decentralized topology. Users submit
service requests to one or many meta-brokers in an inter-
cloud. During a time interval

int for a submission
where

collectioninint 
the meta-broker collects all the

events including characteristics such as cpui ,memi , cori ,
stori , bwi , cpiji ,ClockRatei . For all jmi it creates a list Li
where each row contains the characteristics of the service
request. The algorithm then sets a tag value represented
as it and creates the message including the Li , ti
and a performance criterion. The default ICMS configura-
tion includes the total service execution time given

TotalJobExecTimeji = Latency ji +exec ji
, the turnaround time

TurnTimecloud = (instructions ji *cpiji /ClockRateji *10
5)+Comlatencymn

and
the makespan Makespanji = exec ji +Latencymn . The makespan
defines the time from start to finish, and the turnaround-
time is the total execution time of the schedule.

The algorithm opens the profile of the entity profi for

in profm  it sends a message to the dedicated address.
It sets an interval intdist that is the distribution interval
time. For a time itime where

distitime int compares the
tag ti for validation and collect responses by a classifica-
tion function. The latter is defined by the performance
criterion of the previous step. As soon as the classification
event concludes the algorithm updates the list Li and
sends back an msgmi only if 0isizeL . Algorithm 1
demonstrates the service formation algorithm. The opera-
tions are defined as follows: get for the collection proce-
dure of service data, set as the operation to set the re-
quired service specification, create for the operation to
create a list, open as the operation to open a profile, size
as the method to return the size value of the profile, send
as the method to send a message to an address defined as
ad, run as the method to run an algorithm, wait as the
method to wait for an interval to expire and update as the
method to update a list.
Algorithm 1: Event Formation

Require: res the requesting resource
 intervalcollection: the interval time to collect service

messages
 time: the current time instance
 i the service submitted by a source
 clocksi the service required clocks
 CPIi the service required CPI
 coresi the service required cores
 bwi the service required bandwidth

 hi the service required duration
 Li the list with the service specification

data
 tag the tag value of the message (e.g. q)
 msg the message contains the Li and the tag
 fi the profile of the entity i
 ad the address of a node included in the fi
 e the tag value for incoming messages
 intervaldistribu-

tion
the interval time to collect distribution
messages

 response the notification of the responder
 criterion the performance ranking criterion

defined by the entity i
Algo-
rithms:

Ranking algo-
rithm

the event ranking algorithm that ac-
cepts the criterion as an input value
for service classification

 Assignment
algorithm

the assignment algorithm that accepts
the Li as input value to determine the
next phase of resource allocation

1. set intervalcollection, criterion
2. while time < intervalcollection wait
3. for all i
4. get(clocksi, CPIi, coresi, bwi, hi)
5. set i[clocksi, CPIi, coresi, bwi, hi]
6. create(Li[i])
7. end for
8. set tag ← q
9. create(msg[Li,tag, criterion]
10. open(fi)
11. for all fi.size()
12. ad ← get(fi[k])
13. send(msg, ad)
14. end for
15. set intervaldistribution
16. if time < intervaldistribution and
17. if tag=e then
18. get(response)
19. run(Ranking algorithm(criterion))
20. update(Li[i])
21. end if22. for all Li.size()
22. run(Assignment algorithm(Li))
23. end for

3.2.2 The event collection algorithm

This algorithm configures an interval value for collect-
ing events from the source (e.g. users) and creates a list
using the incoming service request specification. Initially,
the algorithm sets a termination and redistribution flag (
ftrm, fred) to recognize whether this is the termination

point or the redistribution. For all
im

msg and it
identifiable, it decomposes the message msgmi and collects
the list Li by running the performance criterion classifica-
tion function that updates the list Li . If 0isizeL , then Li
compares the intervals of the service requester and re-
sponder meta-broker. If

reqres intint  then it sets the tag to
an indicator for returning messages (to perform valida-
tion).

The broker sends the event back to the service re-
quester by sending msgmi that includes the newly formed
Li . In the case of sizefi = 0 it sets the ftrm flag on, else it
sets it to fred flag off. Specifically, for the first case the
algorithm terminates the Li , while for the second case it
opens the local profile profiand runs the redistribution
algorithm in order to find a new resource for service exe-
cution. This allows a decentralized behaviour of the ICMS
as we assume that there are multiple levels of intercon-

SOTIRIADIS ET AL.: AN INTER-CLOUD META-SCHEDULING (ICMS) SIMULATION FRAMEWORK: ARCHITECTURE AND EVALUATION

 7

nected meta-brokers. In addition it characterizes the re-
sponder meta-broker either as a termination point or as
an intermediate node on communication. Algorithm 2
demonstrates the event collection procedure. The opera-
tions are defined as follows: “decompose” for amessage
decomposition operation, “get” for the collection proce-
dure of service data, “rank” for the ranking procedure,
“set” as the operation to set the required service specifica-
tion, “update” as the method to update a list, “size” as the
method to return the size value of the profile, “send” as
the method to send a message to address, “terminate” as
the method to terminate a message at the responder, “de-
stroy” as the method to delete a list namely as Li at the
responder, “open” as the method to open a profile, and
finally the “run” as the method to execute an algorithm or
an operation.
Algorithm 2: Event Collection

Require: i the requesting node
 i' the responding node
 msgi the incoming message from re-

quester i
 flag the flag variable
 trm the termination flag
 rds the redistribution flag
 q the tag indication for incoming

message from requester
 w the tag indication for incoming

message from redistributor
 intresponder the interval of the responder
 intrequester the interval of the requester
 e the tag indication for returning

messages
Algo-
rithms:

Ranking algo-
rithm

the ranking algorithm that accepts
the criterion as value

 Redistribution
algorithm

the redistribution algorithm

1. set flag←{trm, rds}
2. for all msgi and (tag=q or tag=w)
3. decompose (msgi)
4. get Li
5. run(Ranking_algorithm(criterion))
6. update(Li)
7. if Li.size>0 then
8. if intresponder <intrequester then

9. set tag ← e
10. ad ← i
11. send(msg, ad)
12. end if

13. else
14. if fi.size=0 then

15. flag=trm
16. else then
17. flag=rds
18. end if

19. case: flag = trm
20. terminate(msgi)
21. destroy(Li)
22. case: flag = rds
23. open(fi’)
24. for all fi.size()
25. run(Redistribution algorithm(fi’))
26. end for

27. end case
28. end if

29. end for

The event collection algorithm facilitates the assembly
procedure for incoming messages and the formation of
the ranked list. The algorithm identifies messages for ser-
vice delegation by identifying port tags (key: tag=q, for
incoming message for requester and tag=w, for incoming
message for further redistribution/decentralization).
3.2.3 The event ranking algorithm

The event ranking algorithm defines the criteria for
service classification in the request or response from a
meta-broker. To quantify such action we aim to minimize
a function that calculates a set of metrics (known as rank-
ings). In this paper, we define a number of parameters to
calculate rankings such as: execution times, total times as
well as energy consumption and service cost metrics as
detailed in algorithm 3. The operation includes the size
as the method to return the size value of the profile.

Algorithm 3: Event Ranking

Require: i the requesting or responding node
 Rank the output of the criterion
 instr the number of instructions
 cycles the number of service cycles
 h the uptime of the service in host
 dl the delay of the entity
 int the interval of an entity (e.g. inti is

the interval of requester)
 udl the decision making time (e.g. udly)
 watts the watts of the host entity
 consPerKW the consumption per kW rate of the

entity
 Coef the coefficient value of the entity
 Nomsg the total number of messages (e.g.

from entity i to y is Nomsgi:y)

1. if criterion ← ET (Execution Time)
2. Rank = instr*cycles
3. end if
4. if criterion ← TT (Total Time)
5. Rank = (instr*CPI*1/CPU)*1.cores*h
6. end if
7. if criterion ← LA (Latency)
8. Rank = dl+dli’
9. end if

10. if criterion ← DE (Degree)
11. Rank =   'ii dldl
12. end if

13. if criterion ← TuT (Turnaround Time)
14. Rank = ET +LA
15. end if

16. if criterion ← MS (Makespan)
17. Rank = ET + udli’
18. end if

19. if criterion ← CPE (Consumption per entity)
20. Rank = (watts*TT*10-3)*consPerKW*coef
21. end if

22. if criterion ← CPH (Consumption per host)
23. Rank = watts *h*10-3
24. end if
25. if criterion ← MeC (Message Cost)
26. Rank = (size(Li) + size(Li’))*(1/bw)
27. end if
28. if criterion ← DeC (Delay Cost)
29. Rank = (Nomsgi:i’ +((Nomsgi’:i)/ Nomsgi:i'))/inti
30. end if
31. if criterion ← PR (Probability Cost)
32. Rank = dlentity/intentity
33. end if

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

The degree criterion defines the degree of the decen-
tralized meta-broker topology as presented in [14], [26].
In addition, we have implemented the consumption per
entity cost for monitoring energy utilization (e.g. at data-
centre and host level). At last, we included the cost func-
tions for defining the message and delay cost.
3.2.4 The event redistribution algorithm

This algorithm describes the process of a meta-broker
mn to redistribute the event request to its interconnected
meta-brokers. The message redistribution algorithm im-
plements the event relocation procedure in the case of
further event dissemination. The procedure alters the tag
values of messages and forwards each one to a node be-
longing to a personalized profile list. For all incoming
msgi that have a flag fi and fi = fred it opens the profi
and collects the address of the linked meta-brokers. It sets
the tag it to an indicator q for outgoing messag-
es from redistribution. After for

im
j it creates a list Li

with each row containing the characteristics of the service
and creates the message msgi that includes Li , ti and the
performance criterion. The algorithm defines an interval

itime where
reditime int , so during that time it sends mes-

sages to other meta-brokers. Algorithm 4 demonstrates
the event redistribution algorithm.

Algorithm 4: Event Redistribution

Require: msg the requesting message
 i the requesting or responding node
 msgi the incoming message from requester i
 Li the list with the service specification data
 fi’ the profile of the entity
 flag the flag variable
 rds the redistribution flag
 p the tag indication for outcoming message

from redistributor
 int the interval of the requester
 t the time instance

1. for all msg where flag=rds
2. open(fi’)
3. get(ad)
4. set tag ← p
5. while Rank← o then
6. create(Li’[ji])
7. end while

8. create(msg[Li’,tag, criterion]
9. while t<inti then
10. send(msg,ad)
11. end while
12. end for

A key aspect is that the algorithm operates under the
initial deadline value in order to be terminated in cases of
interval violations. The algorithm allows messages to be
forwarded only if there is no availability in the local re-
source pool. In this case, messages are reformed and
transferred to remote entities for requesting resource
availability according to specific criterion.
3.2.5 The event assignment algorithm

The event assignment algorithm determines the next
phase of the resource allocation. Here the events have
been concluded and the service request is sandboxed in a
VM. Algorithm 5 implements the allocation of services in
entities (thus to their local hosts’ scheduler). The algo-
rithm collects the execution results after the completion of
a service request. In particular for all service requests

ij

allocates each of which to the LRMS. The operations in-
clude: set the tag to allocate the service to resource and
the send (LRMS) to send procedure of service data into
LRMS.

Algorithm 5: Service Assignment

Require: i the requesting or responding node
 j the service
 jset the set of services in not i
 a the value to define assignment
 res the performance results of the service as-

signment

1. for all j  jset
2. set tag ← a
3. allocate (j,ad)
4. send(LRMS)
5. end for

The procedure first collects the user service request
from the SLA and selects the VM allocation policy accord-
ing to the LRMS specification. The default queues imple-
mented in ICMS are the First Come First Served (FCFS),
Shortest Service Frist (SJF), Earliest Deadline First (EDF)
and Priority Scheduling (PS). For all services

LRMSi queuej  the hypervisor policy controls the current
workload wi and calculates the total delay that includes
the turnaround time and the hypervisor processing time

TotalDelay =TurnTime+hypervisorDelay. Each service ji is
queued into queueLRMS by adding a keyi, jias a pair. For an
interval int i or for a specific queue length

LRMSsizeQueue where  , it schedules the service
requests and allocates host computational units based on
a host allocation policy. Finally, it updates the current
workload wi . This concludes the ICMS description.

4 SIMULATING THE INTER-CLOUD (SIMIC) TOOLKIT

This section illustrates the description of SimIC v2.0
(Simulating the Inter-Cloud version 2) that is a novel
simulator used to implement the inter-cloud functionali-
ty. SimIC is a discrete event simulation toolkit based on
the process oriented simulation package of SimJava [16].
SimIC is used to simulate an inter-cloud facility where
multiple clouds collaborate for service request distribu-
tion in a simulation setup. The package encompasses the
ICMS algorithms including users, meta-brokers, local-
brokers, datacenters, hosts, hypervisors and virtual ma-
chines (VMs). In SimIC, the message initialization begins
at time instance 1, and then a message is created at state 1.
After this, state 2 collects the message (get from out port
State 1) and sends the message to in port State 3. During
this time, the instance passes from time 2 to 3 and finally
to time instance 4. Finally, the message is terminated (or
initialized) from another state in order to continue the
information exchanging. A more detailed discussion of
the tool is presented in [16] that illustrate the layered
structure of the tool and internal processes.
4.1 The SimIC technical features

The SimIC has been developed using the Java™ 2 Plat-
form (JDK 1.6). It is based on the process event simula-
tion API of the SimJava version 2 [6]. Its high level struc-
ture is based on the entities of CloudSim [21]. We have
extended these in order to implement meta-scheduling
capabilities and batch job simulation.

SOTIRIADIS ET AL.: AN INTER-CLOUD META-SCHEDULING (ICMS) SIMULATION FRAMEWORK: ARCHITECTURE AND EVALUATION

 9

4.2 The SimIC layered Architecture
The entities and their functionality are organized in a

three-layer structure. This includes the entity layer, the
queuing, behaviour and tagging layer, and the perfor-
mance and tracing layer. Specifically, Layer 1 includes the
entities representing the objects of the system. In a SimJa-
va simulation, each feature is represented by a sim_entity
class that encapsulates the core functionality. Each SimIC
class defines the actual behaviour (layer 2) of entities that
are the ICMS resources. The core classes are User, Meta-
broker, Local-broker, Datacenter, Hypervisor, Hosts, VMs
and Bucket. The initialization process begins when a user
starts communication with the meta-broker through a
user interface. Like a meta-scheduling system. The latter
acts on behalf of the user and forwards the request to low
level resources (either local or remote sites). This proce-
dure is executed by a local-broker.

Layer 2 represents the core features of SimIC including
the utilization of ports, functionalities and constraints that
demonstrate the actual behaviour of the system entities.
Each class contains at least one port for input or output
messages to other linked entities. In addition, it incorpo-
rates mechanisms for collecting messages, taking deci-
sions (based on policies) and forwarding to an entity for
request delegation and execution. Each entity is defined
by constraints to govern its actions. The actual communi-
cation is based on the tags that are assigned to messages
during exchange. These tags are the means of identifying
the origin of a message and the operations expected from
a responder. Additionally, queuing refers to the orches-
tration of events (that are service messages) according to
different LRMS (FCFS, SJF, PS).

Layer 3 relates to the performance monitoring and
tracing operations of the system entities. The performance
measures include execution time of the VM, turnaround
time of service, makespan of the service, throughput of
services in an entity, host utilization levels, VM utilization
levels, service latencies and VM uptime times. Most of
these metrics could be utilized by different entities in or-
der to measure the performance of SimIC at different in-
stances, for example throughput of a datacentre or latency
at a hypervisor.
4.3 The SimIC entities

SimIC automates service request distribution among
decentralized meta-brokers. Meta-brokers are placed on
top of each cloud in order to communicate with other
brokers to produce a distributed and interoperable cloud
infrastructure (similar to grid computing). In SimIC each
request is treated as unique. For example, a user requests
for a VM, suppose with 0.25 of 1 host performance and
executes a set of programs with 100*106 instructions, and
CPI (cycles per instructions) of 3 (300 cycles /100 instruc-
tions) in a machine with clock rate of 1000 MHz (0.25 of
4000MHz of Host with single core). The performance in-
dicators of the VM are calculated as follows. The execu-
tion time is given by

corescpuCPInInstructioExecTimeVM /1/1  . Thus, the
result is calculated as follows:

msnsExecTimeVM 3.010311000/1310100 56  .

The performance of the VM is calculated at 3.33 based on
PerformanceVM =1/ExecTimeVM = 3.33 . Next, we present a
description of the SimIC entities that implement ICMS
functionality.

The UserCharacteristics class instantiates the service in-
formation for each of the users by incorporating hard-
ware and software requirements that has been previously
defined in two different files. Each service ji is assigned
to a meta-broker mi . It contains a number of physical
characteristics named as CPU cpui , memory memi , cores
cori , storage storiand bandwidth bwi . The ServiceCharac-
teristics class calculates an initial performance request
based on the performance estimation that is calculated by
the number of MIPS as given by the formula

610/ CPIClockRate . The OutputUserRequirements class gen-
erates a dynamic user profile that includes a variety of
hardware, software (heterogeneous requirements) and
initial performance request measurements.

The User class is responsible in forwarding requests (
namely as jmi)to resources, wherein each request is
scheduled after a specific processing delay to a dedicated
meta-broker. The Meta-broker class implements the in-
teroperability functionality of SimIC (},...,,{ 21 nmmmM ).
Specifically, each meta-broker is interconnected with one
or more meta-brokers depending on a simulation experi-
ment. The Bucket class represents the terminal entity that
collects the unexecuted services and keeps logs related to
services. These could be either re-directed to an inter-
cloud after a regular interval or terminated if there is an
SLA mismatching. Termination and re-distribution flags (
ftrm, fred) are used to decide whether this is the termina-

tion or the re-distribution point.
The local-broker (that is the internal cloud broker) class

defines an SLA matchmaking process for deciding
whether the specification of user requirements could be
addressed by a local resource. The datacentre’s current
performance is dynamically calculated for measuring the
available computational power. This is realized by a mes-
saging policy, as for all

im
msg and the it is identifiable,

the algorithm decomposes the message msgmi and collects
the list Liby running the performance criterion classifica-
tion function that updates the list Li . This includes the
validation process of tag ti . The OpenHost class imports
each host characteristic from a file by allowing SimIC to
access host hardware characteristics while OpenHostsList
opens a list from a file that contains the individual hosts
dedicated to a specific cloud.

The Datacenter class accepts events for VMs deploy-
ment in the cloud that are determined by a hypervisor.
This class implements functionality for calculating costs
and energy consumption. It passes all events to a local
policy enforcement engine. The Hyper class represents a
hypervisor and is responsible for collecting requests for
VMs from the datacenter class by accessing the host and
VM allocation policies. This class queues each service ji
into a queueLRMS by adding a keyi, ji as a tuple. The Hyper-
Call class generates an internal thread to release the ser-
vices that have been scheduled in the queue according to
the LRMS algorithm (int iand LRMSsizeQueue).

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

The HostCharacteristics class imports each specific host
computational capacity as defined in a file. The Hosts
class represents a static computing machine. The class
gets an event from Hyper for requesting an instance of
the host characteristics. Eventually, this adds an addition-
al delay to the hypervisor decision making process when
allocating a VM. This is the latency of the host for starting
the service execution. The VM class sandboxes the user
profile. A more detailed discussion of the SimIC imple-
mentation is presented in [16].

To calculate the total communication delay of messag-
es we split the latencies incurred at different stages of a
service request execution life cycle in an inter-cloud.
Thus, let’s assume that a number of entities E with

E ={e1,e2,...,en}are linked as a directed graph to form a

topology in an inter-cloud. For each communication a

message msgi is sent containing the service requirements

jiand a tag itag . The assumption is that a trail is

generated from one entity to another in such a way that

the weight of the trail we1 :wen is calculated as the latency

of the message msgi to reach entity en . The cumulative

latency of the user to VM communication is calculated as

follows: 



Embr

imrb

i

brometaLatency)kerdeg(,

 
 i

i

Edc

idc coefdcdcLatency
i

i
))deg()deg(

2

1
(

 thus,

Latencyuser-vm = Latencymbi +Latencydci +Latencyhyperi

So, for each message msgi that is sent from entity e1 to

en , the messaging factor (MF) defines a metric for the cost

of message distribution. In a bi-directional graph for-

mation this is calculated as the division of the sum of the

messages received by the sum of the messaged sent as







00

/
j

i

j

j msgmsgMF where },...,,{ n21 msgmsgmsgmsgi 

, },...,,{ 21 jj msgmsgmsgmsg  and 0iL . Here  repre-

sents the maximum number of requested messages and 

is the maximum number of received messages. To con-

clude, this section presented SimIC, a toolkit that allows

system architects to configure a variety of inter-clouds in

terms of entities and policies. The toolkit contains a num-

ber of scheduling algorithms and features for achieving

configurable service execution.

Figure 4: Description diagram of the SimIC entities Performance

evaluation

Figure 4 demonstrates the various actors and the inter-
actions among the SimIC entities. A more detailed discus-

sion and explanations of the various entities along with
their relationships are presented in [16]. Next section
demonstrates an experimental analysis and evaluation of
the ICMS.

5 PERFORMANCE EVALUATION

The experimental setup implements the messaging ap-
proach of [14] and involves the comparison of two ap-
proaches, namely a centralized inter-cloud (IC) and the
decentralized ICMS model of inter-cloud being followed
in this paper. In centralized approach the assumption is
that there is a bi-directional communication among all
nodes in a cloud. In this approach, we first focus on
demonstrating that there is no experimental bias. We
achieve this by running a number of tests, which show
that a centralized IC does not affect cloud performance.
Then we configure an ICMS based IC for service execu-
tions which is similar to the centralized setup. Finally, we
show performance analysis of ICMS considering service
request arrivals and load distributions in both static and
dynamic modes. Our experimental results show that
ICMS with dynamic workload management outperforms
static mode when all resources are available. Our simula-
tions implement the next experimental setting where 5
users submit requests in cycles, as it is shown in table 2.
The hosts specification includes a total of 166 cores per
cloud with an average of 103 MHz CPU, 10 GB RAM, 104
GB storage and 10 mbps bandwidth per host.

Table 2: The SimIC configuration

Username StS MaL OlS NiS NiB

Memory 4000 6000 2000 2000 8000

CPU-cores 4 4 2 2 4

CPU-speed 4000 4000 2000 2000 10000

Storage-HD 10000 10000 10000 10000 10000

BW 10000 10000 5000 10000 10000

Instructions 10*108 12*108 15*108 16*108 16*108

CPI 1 4 3 3 3

5.1 Cloud vs. inter-cloud settings
The first experiment aims to demonstrate that IC does

not affect performance of a cloud, thus we compare with
a similar hardware setup. We show that IC performs bet-
ter than or equal to non-IC setting where both cases have
exactly the same computational capacity. This means that
a cloud that is non-IC based has exactly the same capacity
(CPU, memory, storage and bandwidth) as with an IC
based cloud that is made from two clouds, cloud 1 and
cloud 2. The experimental analysis involves constant
submissions of intervals of 2ms. Cloud 1 includes 5 users
that submit 10 to 50 service requests. Each time a request
arrives in the hypervisor, a new VM is generated accord-
ing to the available resources.

 In both cases (cloud and IC) the utilization model of
[5] is applied. This involves that resources will be allocat-
ed if they are available until the utilization reaches its
peak (100%). IC distributes the jobs based on the MEO
and centralized distribution approaches as discussed in
[14]. In both cases (cloud and IC) all services are executed
in local clouds, as there is no option for further service
distribution. As the number of service requests increases,
the IC will increase the makespan value due to the latency

User

Data

User

Service

Data

Meta-

Brokera

Local-

Brokera

Meta-

Brokerb

Datacentera VMs

Hosts

Clouda

SOTIRIADIS ET AL.: AN INTER-CLOUD META-SCHEDULING (ICMS) SIMULATION FRAMEWORK: ARCHITECTURE AND EVALUATION

 11

(set to 2ms) that is caused by the message exchanges. In
particular, the study sets this value to a low number
(2ms) as the assumption is that cloud 1 divided over two.

Figure 5: Makespan for 10 to 50 services (non-IC vs. IC)

Figure 5 shows the makespan values for 10 to 50 ser-
vice requests per user to each cloud. Both trend lines
show similar variations, which means that non-IC and IC
follow similar makespan trends. Figure 6 shows the exe-
cution times (10 to 50 services) for both IC and non-IC
cases.

Figure 6: Execution times for 10 to 50 services (non-IC vs. IC)

The average execution time for a single service request
in the non-IC case is 5.79ms while for IC case is 5.38ms.
This shows that IC achieves better execution time due to
the better allocation of the resources. The improvement of
IC is calculated at 7% (percentage of the division of the
difference of higher to lower value, to the higher value).

Figure 7: Average execution time and average utilization for 10 to 50

services (non-IC vs. IC)

Figure 7 shows the average execution time and average
utilization rates for both cases. It indicates that the aver-
age utilization of the IC case is 37.2% and the non-IC case
is 35.4%. The average execution time shows decreasing
value for the IC case. To conclude, IC increases utilization
levels because it executes more service requests by de-
creasing the IC average execution times. The values are
calculated based on the formulas of section 3.1 and is re-
lated to the throughput value of services. In detail, the
values are relatively low due to the low number of service
requests with respect to the cloud resources.

5.2 The inter-cloud vs. ICMS setting (1 service
request submission per cloud)

We present two cases for 1 and 50 user submissions
per cloud and we monitor the performance in both cases.
The experiment demonstrates that ICMS performs better
than or equal to the IC setting (with augmented datacen-
ter view) with both having the same host configuration (5
clouds). This increase in performance is due to the service
distribution and meta-scheduling approach being fol-
lowed in the ICMS framework. In IC each meta-broker
has a complete knowledge of the actual cloud infrastruc-
ture (e.g. datacenter characteristics, Hosts, VMs) as it
communicates with other cloud brokers for information
exchange. In contrast, the ICMS approach has a partial
knowledge of the infrastructure and follows the decen-
tralized message distribution as it is discussed in [14].
This offers a higher level of abstraction for the entire
cloud because a set of users are only mapped to a restrict-
ed set of meta-brokers at a time.
5.2.1 The inter-cloud vs. ICMS setting for 1 service

submission per cloud
The experiment includes an IC of 5 clouds that have

the same host specification with the ICMS and the topol-
ogy is considered as decentralized. Specifically we first
assume that each cloud meta-broker can access the next in
the list. For example, meta-broker 1 sends a service re-
quest to meta-broker 2, then meta-broker 2 to meta-broker
3, etc. For each service request that is submitted, if cannot
be executed in the local cloud, it is always forwarded to
remote cloud(s). The availability is set so that each service
can be executed in the next cloud (e.g. service 1 to cloud 2,
service 2 to cloud 3 etc.). In the centralized case (IC) the
assumption is that all clouds can access all other clouds
directly. Figure 8 shows the makespan times for 1 service
submission per user with 1ms interval.

Figure 8: Makespan times for 1 service per user (IC vs. ICMS)

It is apparent that the values are decreasing for the
case of ICMS. The average value is calculated to 519ms,
while the IC is measured to 534ms; that shows an im-
provement of 15ms in the average values. The improve-
ment factor for this case is calculated to be 3%. Similarly
to makespan values, the turnaround times for 1 service
submission for both cases are as follows. The average
value for ICMS is 524ms and for IC it is 539ms. On this
basis, the centralized case increases the turnaround times
mainly because of transferring services among datacen-
ters. An improvement of 5% in turnaround times is ob-
served in cloud 5 where the same submission requires
521ms in ICMS and 548.4ms in IC. Figure 9 shows the
performance comparison of both cases in terms of re-
sponse ratios. Specifically, the response ratio is calculated

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

as the difference of the highest value of the metric from
the lowest value of the same metric divided with the
highest value e.g. %100/)( xyx when x and y repre-
sent vmuserlatency  .

Figure 9: Comparison of performance (response ratios) of ICMS-IC

The figure shows that the performance increases for
ICMS as more users submit requests in a linear manner.
Yet as requests are transferred to remote clouds (e.g.
cloud 2, cloud 3 etc.) the ICMS performance decreases
with regards to the performance as in the original ICMS
setup.
5.2.2 The inter-cloud vs. ICMS setting for 50

service submissions per cloud
This experiment demonstrates the simulation results

for high workload submissions (50) per user. As more
services are exchanged resource availability becomes
more limited and allocation management becomes more
complex. In order for the results to be comparable the
study takes into account clouds with exactly the same
utilization levels (e.g. for this experiment clouds 3 and 4
offer the same utilization of 20% and clouds 2 and 5 with
utilization of 6%). Services that cannot be executed due to
non-resource availability or SLA mismatching are
dropped, as the dynamic workload is inactive. This
means that we do not re-schedule jobs to resources.

Figure 10: Makespan times for 50 services per user for clouds with

same utilization (clouds 3, 4)

Figure 10 shows that the makespan times for 50 ser-
vices per user have slightly improved results for ICMS
and clouds 3 and 4 (same utilization levels). The average
makespan time for IC (clouds 3 and 4) is 639706ms while
the same metric value for ICMS (clouds 3 and 4) is
638806ms (900ms difference). Figure 11 shows the
makespan for clouds with low utilization of 6% (clouds 2,
5). Again, ICMS algorithms offer lower makespan times
when compared to IC. To conclude, both cases (1 and 50
users) show that the ICMS achieves better makespan and
turnaround times. This will affect the resource utilization
and resource usage as the total scheduling and execution
time of services is reduced.

Figure 11: Makespan times for 50 services per user for clouds with

same utilization of 6% (clouds 2, 5)

5.3 The ICMS setting: low and high delays and 40%
to 100% resource availability

This experiment demonstrates the dynamic workload
management for an ICMS case. The decentralized ICMS
sends service requests to different clouds by incorporat-
ing dynamic distribution. This experiment executes re-
quests having a combination of 1ms to 4ms delay and
40% to 100% resource availability. The percentage is re-
lated to the ability of a cloud to execute the specific ser-
vice task; e.g. the 40% availability is selected as it demon-
strates a cloud with low resource availability. The next list
is a mixture of different combinations in the experiment.

(i) 1-40%: delay 1ms, availability 40%
(ii) *4-40%: delay 4ms, availability 40% (where * indi-

cates that delay is 4 times higher than case i)
(iii) 1-100%: delay 1ms, availability 100%
(iv) *4-100%: delay 4ms, availability 100% (where * in-

dicates that delay is 4 times higher than case iii)
Figure 12 shows the makespan times of ICMS for each

of the four cases. It is shown that when the availability is
40% ICMS distributes service requests to all clouds; how-
ever in the case of 100% availability, cloud 4 executes
most of the service requests. This is because of the high
number of hosts that are available in cloud 4, which in-
crease the available computational power.

Figure 12: Makespan times for ICMS cases

Figure 13 shows the overall resource utilization levels
of clouds 1 to 5 for all four cases. Specifically the highest
utilization is found in case 3 that details execution of all
the services with high resource availability. It is also
demonstrated that case 2 that involves experimentation
with high delays it decreases the utilization levels. This is
because of the increasing delay when continuous submis-
sions occur.

SOTIRIADIS ET AL.: AN INTER-CLOUD META-SCHEDULING (ICMS) SIMULATION FRAMEWORK: ARCHITECTURE AND EVALUATION

 13

Figure 13: Overall utilization levels for ICMS cases

5.4 The ICMS setting: A mixing of user
submissions and 100% resource availability

This experiment demonstrates the ICMS performance for
a combination of user submissions. In the first case, 50
service requests are submitted to cloud 1, while in the
second case 10 service requests are submitted to each
cloud by a user (total of 50 service requests). Figure 14
shows the percentage of successful executions when
comparing 1 user per cloud and all users in cloud 1. It is
shown that the user requests distribution in different
clouds offers better percentages of successful service re-
quests execution. Thus, this shows that in an IC, the
spreading of users in different clouds could assist in
achieving higher percentages of successful executions.

Figure 14: Successful execution percentages for cases 5a and 5b

Figure 15 shows the makespan and turnaround times
for services served by 5 clouds (1 to 5). It is shown that for
high number of service request submissions, ICMS makes
a better distribution by allocating resources more effi-
ciently (based on the lower makespan times). In addition,
turnaround times for higher workloads have been suffi-
ciently decreased. For example, makespan times for cloud
2 shows an improvement rate of 4.9%.

Figure 15: Makespan and turnaround times for both cases

6 CONCLUDING REMARKS AND FUTURE WORK

This work presents the ICMS, a framework that allows
inter-cloud (IC) service distribution. We have developed
this framework to address the issue of large scale service
request distributions in IC that cannot be achieved from

current approaches. Our experimental results support the
following conclusions: (a) ICMS has an improved
makespan time and reduced turnaround time, (b) ICMS
outperforms standard IC in terms of remote cloud invoca-
tions and (c) ICMS improves performance each time a
new service request is submitted to IC. Future directions
involve the extension of SimIC in terms of VM migration
policies. Further experiments with more clouds would
have given a better reflection of the performance im-
provements. In addition, we aim to work on a message
passing interface system for queuing host processors for
information processing during interactions.

We aim to explore the security issues during commu-
nication between IC in order to enhance the effectiveness
of our ICMS framework. Also, a future research direction
will be to test the system in terms of high variability in
inter-intervals and service times in order evaluate proba-
bility based distribution of services in inter-cloud. Finally,
we aim to extend ICMS to support real cloud platforms.
In particular in [27] we developed a platform service to
retrieve data from clouds e.g. instances, images and re-
sources in OpenStack systems and we implement an in-
ter-cloud meta-broker that acts as mediation service. In
particular, the platform service does not target to change
internal cloud system processes but to utilize available
interfaces by enabling remote management of inter-cloud
services in a unified manner. A future direction is to in-
clude the whole algorithmic model included in ICMS in
within the platform service and to explore experimenta-
tion results for heterogeneous platforms.

REFERENCES

[1] N. Bessis, S. Sotiriadis, F. Xhafa, F. Pop and V. Cristea, “Meta-scheduling Issues

in Interoperable HPCs, Grids and Clouds”, International Journal of Web and
Grid Services, Volume 8, Issue 2, Inderscience, ISSN: 1741-1106, pp. 153-172,
2012

[2] Global Inter-Cloud Technology Forum, “Use Cases and Functional Require-
ments for Inter-Cloud Computing”, GICTF White Paper, August 9, 2010, Availa-
ble at: http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf, Accessed

December 15 2014
[3] I. Moschakis and H.D. Karatza, “Parallel Job Scheduling on a Dynamic Cloud

Model  with Variable Workload and Active Balancing”, 16th Panhellenic Con-

ference  on Informatics (PCI 2012), Piraeus, Greece, 5 - 7 October 2012, pp. 93-
98, 2012

[4] A. Folling, C. Grimme, J. Lepping and A. Papaspyrou, “Decentralized grid sched-

uling with evolutionary fuzzy systems”. In Job Scheduling Strategies for Parallel
Processing, pp. 16-36, 2009

[5] R. Buyya, R., Ranjan, and R. N., Calheiros, “InterCloud: Utility-Oriented Federa-

tion of Cloud Computing Environments for Scaling of Application Services”, Al-
gorithms and Architectures for Parallel Processing (2010), Volume: 6081/2010,
Issue: LNCS 6081, Publisher: Springer, pp. 13-31, 2010

[6] S. Sotiriadis, “The Inter-Cloud Meta-Scheduling framework”, PhD thesis, 2013,
Available at http://derby.openrepository.com/derby/handle/10545/299501

[7] S. Sotiriadis, N. Bessis and N. Antonopoulos, ‘Towards inter-Cloud Schedulers:

A Survey of meta-Scheduling Approaches”, 6th IEEE International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2011), Barcelo-
na, Spain, ISBN: 978-0-7695-4531-8, pp. 59-66, October 26-30, 2011

[8] L. Anand, D Ghose and V. Mani, “ELISA: an estimated load information schedul-
ing algorithm for distributed computing systems”, Computers & Mathematics
with Applications, 37(8), pp. 57-85, 1999

[9] V. Subramani, R. Kettimuthu, S. Srinivasan and P. Sadayappan, “Distributed job
scheduling on computational grids using multiple simultaneous requests”, Pro-
ceedings of 11th IEEE International Symposium on High Performance Distrib-

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

uted Computing (HPDC-11), 23-26 July. IEEE Computer Society, Los Alamitos,
CA, USA, 2002

[10] A. R. Butt, R. Zhang and Y.C. Hu, “A Self-Organizing Flock of Condors”, Super-
computing, 2003 ACM/IEEE Conference, pp. 15-21, Nov. 2003

[11] N. Andrade, W. Cirne, F. Brasileiro and P. Roisenberg, “OurGrid: An approach

to easily assemble grids with equitable resource sharing”, In JSSPP’03: Proceed-
ings of the 9th Workshop on Job Scheduling Strategies for Parallel Processing.
LNCS, Springer, Berlin/Heidelberg, Germany. pp. 1-20, 2003

[12] K. Lai, B.A. Huberman and L. Fine, ‘Tycoon: an Implementation of a Distributed
market-based resource allocation system”, Technical Report, HP Labs, 2004

[13] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema and M. Livny, “Inter-

operating grids through delegated matchmaking”, Scientific Programming
16(2), pp. 233–253, 2008

[14] N. Bessis, S. Sotiriadis, F. Pop , V Cristea, “Using a novel message-exchanging

optimization (MEO) model to reduce energy consumption in distributed sys-
tems”, Simulation Modelling Practice and Theory, Volume 39, December 2013,
pp. 104-120.

[15] S. Sotiriadis, N., Bessis, P., Kuonen and A. Antonopoulos, "The Inter-cloud
Meta-scheduling (ICMS) Framework", 27th IEEE International Conference on
Advanced Information Networking and Applications (AINA-2013), March 25-

28, Barcelona, IEEE Computer Society, Washington, DC, USA, pp. 64-73S.
[16] S. Sotiriadis, N. Bessis and A. Antonopoulous, “SimIC: Designing a new Inter-

Cloud Simulation Platform for Integrating Large-scale Resource Management”,

27th IEEE International Conference on Advanced Information Networking and
Applications (AINA-2013), March 25-28, Barcelona, pp. 90-97, 2013

[17] C. Ernemann, V. Hamscher, A. Streit and R. Yahyapour, “Enhanced Algorithms

for Multi-site Scheduling”, Proceedings of the Third International Workshop on
Grid Computing (GRID '02), Manish Parashar (Ed.). Springer-Verlag, London,
UK, pp. 219-231, 2002

[18] M.D. De Assuncao and R. Buyya, “Performance analysis of allocation policies
for interGrid resource provisioning”, Information and Software Technology,
51(1), pp. 42-55, 2009

[19] K. Leal, E. Huedo and I.M. Llorente, “A decentralized model for scheduling
independent tasks in federated grids”, Future Generation Computer Systems,
25(8), pp. 840-852, 2009

[20] I. Rodero, F. Guim, J. Corbalan, L. Fong and S.M. Sadjadi, “Grid broker selection
strategies using aggregated resource information”. Future Generation Com-
puter Systems, 26(1), pp. 72-86, 2010

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, A. F. C. De Rose, and R. Buyya,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Envi-
ronments and Evaluation of Resource Provisioning Algorithms” Software: Prac-

tice and Experience (SPE), 41(1), ISSN: 0038-0644, Wiley Press, New York, USA,
January, 2011, pp. 23-50

[22] S. Sotiriadis, Bessis, N. Xhafa, F. and Antonopoulos, N. (2012) "From Meta-

computing to Interoperable Infrastructures: A Review of Meta-schedulers for
HPC, Grid and Cloud", 26th IEEE International Conference on Advanced Infor-
mation Networking and Applications” (AINA-2012), Fukuoka, Japan, March 26

– 29 2012, ISBN 978-1-7695-4651-3, pp. 874-883
[23] Y. Huang, N. Bessis, P. Norrington, P. Kuonen and B. Hirsbrunner, “Exploring

decentralized dynamic scheduling for grids and clouds using the community-

aware scheduling algorithm”, Future Generation Computer Systems. Elsevier,
2011, pp. 402-415, 2013

[24] H. H. Mohamed and D.H.J. Epema, “Experiences with the Koala co-allocating

scheduler in multiclusters”. Proceedings of the Fifth IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid'05). pp. 784–791, 2005

[25] Amazon Elastic Compute Cloud (Amazon EC2) (2013), Accessed December 15

2013, http://aws.amazon.com/ec2/
[26] N. Bessis, S. Sotiriadis, F. Pop, and V. Cristea, “Optimizing the Energy Efficiency

of Message Exchanging for Service Distribution in Interoperable Infrastruc-

tures”, 4th IEEE International Conference on Intelligent Networking and Col-
laborative Systems (INCoS-2012), September 19-21 2012, Bucharest, Romania,
ISBN: 978-0-7695-4808-1, pp. 105-112, 2012

[27] S. Sotiriadis, N. Bessis, and E. Petrakis, “An inter-cloud architecture for future
internet infrastructures”. In Pop, F. and Potop-Butucaru, M., editors, Adaptive
Resource Management and Scheduling for Cloud Computing, Lecture Notes in

Computer Science, Springer International Publishing, pp. 206-216, 2014
[28] Y. Huang, N. Bessis, A. Brocco, S. Sotiriadis, M. Courant, P. Kuonen, and B.

Hisbrunner. “Towards an Integrated Vision across Inter-cooperative Grid Virtu-

al Organizations”. In Proceedings of the 1st International Conference on Future

Generation Information Technology (FGIT '09), Young-Hoon Lee, Tai-Hoon Kim,
Wai-Chi Fang, and Dominik Slezak (Eds.). Springer-Verlag, Berlin, Heidelberg,

pp. 120-128, 2009
[29] R. Shah, B. Veeravalli and M. Misra, “On the design of adaptive and decentral-

ized load balancing algorithms with load estimation for computational grid en-

vironments”, IEEE Transactions on parallel and distributed systems, 18(12), pp.
1675-1686, Dec 2007

S.Sotiriadis is a research collaborator at the

Technical University of Crete (TUC) and a

member of the Intelligent Systems Laboratory

of the School of Electronic and Computer Engi-

neering, Technical University of Crete, Chania,

Crete, Greece. He works for the Future Internet

Social Technological Alignment Research (FI-

STAR FP7), which is an FI-PPP programme.

His research interests are related to Cloud

Computing, Inter-cloud, Future Internet (FI)

applications, Meta-Scheduling systems, Inter-

net of Things (IoT) and OpenStack systems. He

has published over 50 papers and won 2 best paper awards. His

personal profile is online on www.sotiriadis.gr.

N. Bessis is a Professor of Computer Science

and the Director of Distributed and Intelligent

Systems (DISYS) research centre at the Uni-

versity of Derby, UK. His research interest is

related to social graphs and dynamic resource

provisioning in distributed environments such

as grids, clouds, inter-clouds, and Internet of

Things. He is involved in and led a number of

funded research and commercial projects in

these areas. Prof. Bessis has published over

225 papers, won 4 best paper awards and is

the editor of several books and the Editor-in-

Chief of the International Journal of Distributed Systems and Tech-

nologies (IJDST). He served as an expert evaluator for the Hellenic

QAA and, as an assessor for more than 10 Professorships confer-

ment worldwide.

A. Anjum is a Reader in Distributed Computing

in the School of Computing and Mathematics at

the University of Derby. His areas of research

include Distributed and Parallel Systems, Cloud

Computing and scalable methods to mine large

and complex datasets. He has worked on vari-

ous research projects, funded by European,

American and Asian funding agencies. Dr

Anjum has been part of the EC funded projects

in Grid and distributed systems, machine learn-

ing and data mining such as Health-e-Child (IP,

FP6), neuGrid (STREP, FP7) and TRANS-

FORM (IP, FP7), where he has been dealing with resource man-

agement of large scale systems, performance monitoring and opti-

mization, data mining and service orchestration.

R. Buyya is a Professor of Computer Science

and Software Engineering; Future Fellow of the

Australian Research Council; and Director of

the Cloud Computing and Distributed Systems

(CLOUDS) Laboratory at the University of Mel-

bourne, Australia. He is also serving as the

founding CEO of Manjrasoft Pty Ltd., a spin-off

company of the University, commercialising its

innovations in Grid and Cloud Computing. He

received B.E and M.E in Computer Science and

Engineering from Mysore and Bangalore Uni-

versities in 1992 and 1995 respectively; and a

Doctor of Philosophy (PhD) in Computer Science and Software En-

gineering from Monash University, Melbourne, Australia in 2002. He

is recently appointed as the foundation Editor-in-Chief (EiC) of IEEE

Transactions on Cloud Computing (TCC).

http://www.gridbus.org/
http://www.unimelb.edu.au/
http://www.unimelb.edu.au/
http://www.computer.org/portal/web/pressroom/Rajkumar-Buyya-Named-Editor-in-Chief-of-New-IEEE-Computer-Society-Cloud-Computing-Journal
http://www.computer.org/portal/web/tcc

