18 research outputs found

    Level Crossing Rate of Macrodiversity System in the Presence of Multipath Fading and Shadowing

    Get PDF
    Macrodiversity system including macrodiversity SC receiver and two microdiversity SC receivers is considered in this paper. Received signal experiences, simultaneously, both, long term fading and short term fading. Microdiversity SC receivers reduces Rayleigh fading effects on system performance and macrodiversity SC receiver mitigate Gamma shadowing effects on system performance. Closed form expressions for level crossing rate of microdiversity SC receivers output signals envelopes are calculated. This expression is used for evaluation of level crossing rate of macrodiversity SC receiver output signal envelope. Numerical expressions are illustrated to show the influence of Gamma shadowing severity on level crossing rate

    Performance Analysis of Dual-User Macrodiversity MIMO Systems with Linear Receivers in Flat Rayleigh Fading

    Full text link
    The performance of linear receivers in the presence of co-channel interference in Rayleigh channels is a fundamental problem in wireless communications. Performance evaluation for these systems is well-known for receive arrays where the antennas are close enough to experience equal average SNRs from a source. In contrast, almost no analytical results are available for macrodiversity systems where both the sources and receive antennas are widely separated. Here, receive antennas experience unequal average SNRs from a source and a single receive antenna receives a different average SNR from each source. Although this is an extremely difficult problem, progress is possible for the two-user scenario. In this paper, we derive closed form results for the probability density function (pdf) and cumulative distribution function (cdf) of the output signal to interference plus noise ratio (SINR) and signal to noise ratio (SNR) of minimum mean squared error (MMSE) and zero forcing (ZF) receivers in independent Rayleigh channels with arbitrary numbers of receive antennas. The results are verified by Monte Carlo simulations and high SNR approximations are also derived. The results enable further system analysis such as the evaluation of outage probability, bit error rate (BER) and capacity.Comment: 24 pages, 7 figures; IEEE Transaction of Wireless Communication 2012 Corrected typo

    The Effect of Macrodiversity on the Performance of Maximal Ratio Combining in Flat Rayleigh Fading

    Full text link
    The performance of maximal ratio combining (MRC) in Rayleigh channels with co-channel interference (CCI) is well-known for receive arrays which are co-located. Recent work in network MIMO, edge-excited cells and base station collaboration is increasing interest in macrodiversity systems. Hence, in this paper we consider the effect of macrodiversity on MRC performance in Rayleigh fading channels with CCI. We consider the uncoded symbol error rate (SER) as our performance measure of interest and investigate how different macrodiversity power profiles affect SER performance. This is the first analytical work in this area. We derive approximate and exact symbol error rate results for M-QAM/BPSK modulations and use the analysis to provide a simple power metric. Numerical results, verified by simulations, are used in conjunction with the analysis to gain insight into the effects of the link powers on performance.Comment: 10 pages, 5 figures; IEEE Transaction of Communication, 2012 Corrected typo

    Overcoming Large-Scale Fading in Cellular Systems With Network Coordination

    Get PDF

    Downlink beamforming under individual SINR and per antenna power constraints

    Get PDF
    In this paper we consider the problem of finding the optimum beamforming vectors for the downlink of a multiuser system, where there are individual signal to interference plus noise ratio (SINR) targets for each user. Majority of the previous work on this problem assumed a total power constraint on the base stations. However, since each transmit antenna is limited by the amount of power it can transmit due to the limited linear region of the power amplifliers, a more realistic constraint is to place a limit on the per antenna power. In a recent work, Yu and Lan proposed an iterative algorithm for computing the optimum beamforming vectors minimizing the power margin over all antennas under individual SINR and per antenna power constraints. However, from a system designer point of view, it may be more desirable to minimize the total transmit power rather than minimizing the power margin, especially when the system is not symmetric. Reformulating the transmitter optimization problem to minimize the total transmit power subject to individual SINR constraints on the users and per antenna power constraints on the base stations, the algorithm proposed by Yu and Lan is modified. Performance of the modified algorithm is compared with existing methods for various cellular array scenarios. ©2007 IEEE

    CHANNEL CAPACITY OF THE MACRO-DIVERSITY SC SYSTEM IN THE PRESENCE OF KAPPA-MU FADING AND CORRELATED SLOW GAMMA FADING

    Get PDF
    In this paper macrodiversity system consisting of two microdiversity SC (Selection Combiner) receivers and one macrodiversity SC receiver are analyzed. Independent κ-μ fading and correlated slow Gamma fading are present at the inputs to the microdiversity SC receivers. For this system model, analytical expression for the probability density of the signal at the output of the macrodiversity receiver SC, and the output capacity of the macrodiversity SC receiver are calculated. The obtained results are graphically presented to show the impact of Rician κ factor, the shading severity of the channel c, the number of clusters µ and correlation coefficient ρ on the probability density of the signal at the output of the macrodiversity system and channel capacity at the output of the macrodiversity system. Based on the obtained results it is possible to analyze the real behavior of the macrodiversity system in the presence of  κ-μ fading

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Performanse bežičnog telekomunikacionog sistema u prisustvu n-m fedinga

    Get PDF
    In this thesis characteristics of wireless communication system operating over η-μ fading channel are considered together with diversity reception techniques which reduce the influence of η-μ fading on the system’s outage probability, average bit error rate, channel capacity, level crossing rate and average fade duration. Performance improvement is very significant within radio systems operating into cell network configuration. Cell network configuration realization could be used for increasing capacity of wireless communication system. With the increase of number of cells, i.e. with reducing the surface area of each cell, channel capacity increases. With the increase of number of cells, co-channel interference level increase, which degrades system performance values. In this work the compromise between the system capacity and reception quality is inquired. By applying diversity reception techniques, system performance values, degraded by the influences of slow fading, multipath fading and co-channel interference, are improved, so it is possible to reduce the cell area and to increase system capacity. In the second part of Phd thesis, various distributions for modeling the envelope variations in fading channels have been presented, cases in which these models are used have been pointed out, and advantages and imperfections of corresponding models for corresponding propagation scenarios have been presented. In third chapter, statistical characteristics of the first order of η-μ random variable, α-η-μ random variable and squared η-μ random variable are considered. For each mentioned variables, expressions for probability density function, cumulative distributive function, characteristic function and moments have been derived. Also for each observed case sum of two random variables, product of two random variables, ratio of two random variables, maximal value of two random variables and minimum value of two random variables have been determined. Obtained results are used for determining performances of wirelles reception with applied diversity technique for mitigation fading influence on system performances. Based on obtained expressions, graphs are depicted for probability density functions and cumulative distribution functions for the various values of propagation environment parameters. Probability density function and cumulative distribution function values are also graphically presented for α-η-μ random variable in the function of α and μ parameter change. For the purpose of performance analysis in η-μ fading environment, in the fourth chapter have been considered transformations of three η-μ random variables. Based on presented transformations of η-μ random variables, transmission performances estimation has been conducted, for the η-μ fading channel. Estimation of signal performances for the cases when diversity techniques are applied are carried out based on standard signal performance measures, i.e. outage probability (OP), average bit error probability (ABER), for observed modulation format and channel capacity. Graphically are presented ABER values for various values of system parameters when transmission is carried out with different modulation formats. By comparing obtained values it can be seen received signal performance improvement for the cases when diversity techniques are apliied over the reception case when there is no diversity technique applied. In the fifth chapter statistical characteristics of the second order of η-μ radnom proccess, and random proccesses which represent various variations of η-μ radnom proccess, are considered. Brand new random proccesses, for describing fading in special channel conditions are fromed. For all this cases level crossing rates are determined. In the sixth chapter of this Phd thesis are considered wireless communication systems with reception with applied diversity techniques for mitigating the influence of η-μ fading on system performances. Space diveristy technique has been used. Useful signals are accepted at the antennas, envelopes of these signals are combined and decision is made based on the signal values at the combiner outputs. System performances are determined for the cases of SC and MRC combining. For bouth cases probability density function and cumulative distribution function of the signal at the combiners outouts are derived, as well as the average bit error rate for the various used modualtion formats and level crossing rate. Results for ABER for various modulation formats are graphically presented as well as the improvement of the outage probability at the reception obtained by applying SC with two reception branches. In this part it has also been considered the case when bouth desired and interferring signal are described with η-μ distribution, as well as the case when desired signal has been described with η-μ distribution while interference has been described with κ-μ distribution. In the seventh chapter macrodiversity sistem with SC reception and two MRC microdiversity combiners has been considered. At the inputs at the microdiversity combiners η-μ fading is present, while at the inputs as macrodiversity combiners slow Gamma fading is present. For this model of system it has been calculated probability density function, cumulative distribution function, characteristic function, moments, variance, outage probability and level crossing rate for the signal at the macrodiversity combiner output. Results obtained for level croosing rate at the macrodiversity combiner output are graphically presented

    A low complexity method of resource allocation in up-link macrodiversity systems using long-term power.

    Get PDF
    Macrodiversity system is a communication architecture where base stations (BS) act as distributed nodes of a multiple-input multiple-output (MIMO) antennas. It has many promising features that can improve system performance from a network perspective, such as improving the weak signals of users affected by shadow fading, or users at the cell-edge. They also allow multiple users to share the same resource in time and frequency, improving the overall user capacity. Traditionally, evaluating the link quality of resource-sharing users requires instantaneous channel state information (CSI). However, finding compatible users to share resource in macrodiversity systems is a challenging task. For macrodiversity systems, instantaneous CSI could be passed to the backhaul processing unit (BPU) through the network backhaul. This creates a delay in the signal, and makes instantaneous CSI a less accurate reflection of the channel environment at the time. Passing instantaneous CSI of all users also creates a significant amount of network overheads, reducing the overall efficiency of the network. Compared to MIMO systems with co-located antennas, macrodiversity systems cover a larger geographical area and more users. For this reason, the number of user selection combinations can become extremely large, making scheduling decisions in real time an even more challenging task. These problems limit the realisation of the user capacity potential of macrodiversity systems. This thesis presents a low complexity method of resource allocation for up-link macrodiversity systems. In particular, it uses long-term power to estimate the link quality of resource-sharing users. Using long-term power bypasses the issue of channel estimation error introduced by the network delay, and it also reduces the communication overhead on the network backhaul. In this thesis, we use Symbol-Error Rate (SER) as the measure for link quality. Using the method developed by Basnayaka [1], we are able to estimate SER of resource-sharing users using long-term power. Using the SER estimation method, we further proposed a user compatibility check (UCC), which evaluates the compatibility of users sharing the same resource. Users are only considered compatible with each other if all of them meet a pre-defined SER threshold. We attempt to reduce the complexity of user selection by using heuristic solution-finding methods. In our research, we found that greedy algorithms have the least complexity. We propose four low-complexity user selection algorithms based on a greedy algorithm. These algorithms are simulated under different environment parameters. We evaluate the system performance in terms of utilisation and complexity. Utilisation refers to the percentage of allocated users compared to the theoretical user capacity. Complexity refers to the number of SER calculations required to find a resource allocation solution. From the simulation results, we observed that with the proposed user selection algorithms, we can achieve moderately high utilisation with much lower complexity, compared to finding user selections via an exhaustive search method. Out of the proposed user selection algorithms, the Priority Order with Sequential Removal (PO+SR) and the First-Fit (FF) algorithm have the best overall performance, in terms of the trade-off between utilisation performance, and complexity performance. The final choice of the algorithm will depend on the processing power and the system performance requirement of the macrodiversity system
    corecore