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Overcoming Large-Scale Fading in Cellular
Systems With Network Coordination

Dushyantha A. Basnayaka, Member, IEEE, and Harald Haas, Member, IEEE

Abstract—The cellular systems with network coordination are
known for increasing the cell edge user throughput by processing
signals captured by geographically distributed base stations coher-
ently. This concept is also known as macrodiversity or coordinated
multipoint (CoMP) in the literature. It is now well known that
large-scale fading has a significant influence on the link-level
performance of users in multiuser (MU) multicell systems. In
this paper, we investigate a channel distribution information
(CDI)-based MU multiple-input–multiple-output (MIMO) power
control problem in the uplink with joint processing to overcome
the large-scale fading in macrodiversity systems. There are many
power control algorithms for different variants of this problem,
but the CDI-based problem in MU scenario has not been well
addressed in the literature. Perhaps, the lack of understanding of
the performance of macrodiversity MU systems, in terms of CDI,
may have prohibited advanced power control solutions. Despite
such analytical difficulties, we propose a simple algorithm for this
uplink power control problem, and its accuracy is proved using
Monte Carlo simulation.

Index Terms—Power control, CoMP, uplink, network MIMO,
CDI, CSI, large scale fading, symbol error rates.

I. INTRODUCTION

N ETWORK coordination is a novel concept for ex-
ploiting the out-of-cell interference in dense small cell

deployments where performance is mainly governed by the
interference originating from nearby cells [1]–[3]. In cellular
systems with network coordination, geographically distributed
base stations (BSs) capture independently faded replicas of data
signals from users and process them coherently to suppress
interference, and this is often considered with multiple users
[4]. This concept has been a research topic for some time.
However, it is formally recognized after it is adopted as a
candidate technology for 3rd generation partnership project
(3GPP) long term evolution-advanced (LTE-A) standards re-
cently [5]. This technology is interesting not only because it
holds the potential for significant capacity gains, but also poses
some unprecedented theoretical challenges. Among many the-
oretical challenges, perhaps the most fundamental challenge is
understanding how performance varies with the macrodiversity
power profile. A good comparison between denser deployments
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and coordination is given in [6]. On the other hand, uplink
power control is also a well-established method to achieve
a predefined quality, minimize interference to other users in
the system and optimally utilize energy of the mobile termi-
nal in cellular systems [7]. The system controls the power
of its transmitters in such a way that interference caused to
neighboring cells is minimal while maintaining satisfactory
signal-to-interference-plus-noise (SINR) level at the desired
BS. Initially, power control is proposed to single-input single-
output (SISO) cellular systems [8], [9], but currently results are
available for multiple-input-multiple-output (MIMO) cellular
systems [10]. The network coordination in conjunction with
power control can increase the system throughput even further
while guaranteeing minimal energy consumption.

In coordinated multiuser (MU) multi-cell systems, the large
scale fading plays a critical role [11]. The links between users
and BSs have very different large-scale fading due to geo-
graphical separation of BSs. Therefore, it is more important to
manage large-scale fading in multi-cell systems than in single-
cell systems. In this work, we utilize a power control scheme
to overcome the large-scale fading effect. Hence, it is based
on channel distribution information (CDI). In other words the
transmitters only adapt to the slow fading. In this paper, CDI
is defined as the average link gains due to large-scale channel
impairments such as path loss and shadowing. In many existing
works on power control, single-cell systems and instantaneous
channel state information (CSI) are assumed. The CDI based
power control methods may be very useful in practice over
CSI based methods due to several reasons. In instantaneous
CSI scenarios, when CSI changes the power levels have to
be revised. In order to circumvent such computational burden
and to reduce the frequency of power updates, we can resort
to adjusting the transmit power based on CDI. This approach
will be more beneficial for macrodiversity systems especially
in high user mobility environments. The channel coefficients
change too quickly to be accurately measured and fed back to
the users in high mobility users. Therefore, instead of adjusting
the transmit power levels of users to erroneous and/or delayed
CSI, users can rely on relatively more accurate large-scale
fading coefficients. Furthermore, CDI based power control can
be used to overcome the so-called near-far-problem in cellular
wireless uplink [12, Section 15.5.3].

In this paper, we formulate a systematic solution to employ
power control for macrodiversity MU systems using CDI. In
particular, our system of interest is a multi-cell wireless uplink
system with distributed users in the coverage area communi-
cating with geographically distributed BSs in the same time
and frequency resource. We assume BSs are connected to a
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backhaul processing unit (BPU) for facilitating the joint
processing (JP). This setting effectively creates a virtual
MU-MIMO multiple access channel (MAC). Therefore, theo-
retically existing power control algorithms for single-cell MU
systems which adapt to the instantaneous CSI can be applied
to this problem. If we envision a power control mechanism
based on CDI, the fact that every link between users and BSs
experience very different large-scale fading should be carefully
handled. In addition, power control algorithms for uplink MU
coordinated multi-point (CoMP) systems must account the
fact that co-scheduled users are decoded using some form of
multiuser detection [13]. As a result the uplink power control
should be done cooperatively. However, the existing methods
do not seem to address this problem fully [14]–[16]. It is a
challenging question how to combine received signals from
multiple geographically distributed BSs to form the optimal
detection of transmitted signals from any user. In [11], authors
analytically show that the large scale fading has a complex
effect on the link-level performance of users in MU systems.
In [15], [17], a heuristic performance measure is proposed by
simply adding up received SINR at individual BSs and the
power allocation scheme is determined by optimizing this met-
ric (see eq. (18)). It appears that their performance measure is
chosen based on basic SINR concepts. Its underlying functional
links to average error probability, capacity are not clear. These
metrics are crude approximations and not rigorously derived
(see Section V-A). Therefore, it is difficult to guarantee that
macrodiversity systems will achieve intended performance if
power allocation schemes utilize those performance metrics
(see Fig. 6). A more complex and analytical analysis is provided
in [11], where several new systematic performance metrics are
proposed in terms of CDI. Due to these analytical developments
in the area of macrodiversity MU multi-cell systems with JP,
in this paper we propose a new uplink power control solution
systematically using CDI, where analytically proved advanced
performance metrics are employed.

The rest of the paper is laid out as follows. Section II
provides the motivation behind this work. Section III describes
the system model in detail. The main analysis is presented
in Section V. Sections VI and VII give numerical results and
important remarks on CDI based power control, respectively.
Finally, Section VIII summarizes the main results of the paper.

II. MOTIVATION

In this paper we consider a CoMP system with multiple dis-
tributed users. However, in this section a motivational example
which presents the conceptual background behind the current
work is provided. We consider an isolated cell with a single
antenna BS in the center of the cell, and K single antenna users
in the cell coverage. The complex baseband channel model in
the uplink can be written as

rk = hkxk + nk, for k = 1, . . . ,K, (1)

where xk ∈ C is the transmitted signal and rk ∈ C is the re-
ceived signal by the user k. The nk ∈ C is the additive-white-
Gaussian-noise (AWGN) with variance σ2. We assume that
xk has a transmit power constraint, i.e., E{|xk|2} = dk and

in Rayleigh fading, hk ∼ CN (0, Pk), where hk is the channel
coefficient between user k and the BS antenna. Here E{.},
and CN (0, τ) denote the expectation operator and zero mean
complex normal distribution with variance τ respectively. The
Pk is referred as the average link power (or gain) due to both the
path loss and the shadowing. This represents a wireless system
with non-homogeneous users. It is further assumed that at any
time, the system chooses one out of K users for communication
so they do not interfere each other. In order to achieve uniform
level of performance for majority of users by overcoming
near-far problem, and to save power at the user terminal, it
is a well-known practice to use uplink power control. This
may be accomplished in two different ways. The first obvious
method is using instantaneous CSI for power control but if
system prefers reduced frequency of power control feedback
to users, BS can apply power control to overcome large-scale
fading, hence, Pk is assumed constant in the channel model.
Here, we further assume slow fading information is fed back
to the mobile users, so transit power levels can be revised
accordingly. In this case, the kth user may use the following
simple power control scheme

dk = min

(
Uk,

σ2T0

Pk

)
, (2)

where T0 is a fixed desired signal-to-noise-ratio (SNR) at the
BS before receive processing and Uk is a fixed transmit power
constraint for user k. Since, single antenna users communicate
with a single antenna BS with no interference, the link-level
performance of users depends on the average receive SNR
which is defined by dkPk/σ

2 for ∀ k. This should explain the
simple power control scheme in (2). The picture is not that clear
when there are multiple antennas at the BS and multiple users
use the same channel. It is not clear how to combine received
signals from multiple antennas to form an optimal performance
metric in terms of CDI for transmitted signals from any user.
The complexity grows further for systems where there are
multiple distributed BSs in MU scenario which is the case in
CoMP systems for LTE-A standards. In this paper however,
we solve this problem and provide a rich set of tools to devise
such power control schemes for many wireless communication
scenarios where network coordination will be used.

III. SYSTEM MODEL

We consider a macrodiversity MU-MIMO uplink communi-
cation system in Rayleigh fading with M BSs and N distributed
users. Each BS may have multiple antennas. Therefore, we
assume there are nR number of antennas in total at the receive
end. We further assume single antenna users. This specifica-
tions create a virtual MIMO link of nR ×N dimension. By
adopting the well-established complex baseband mathematical
model, the receive vector r is given by [4]

r =

N∑
k=1

√
dkhksk + n, (3)

=HD
1
2 s+ n, (4)

where CN×1 vector s = (s1, . . . , sN ) is the transmitted data
signal, CnR×N matrix, H = {h1,h2, . . . ,hN} is the channel
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matrix which captures the fading between users and the BS
antenna array, and n is the CnR×1 AWGN vector with in-
dependent entries with E{|ni|2} = σ2, for i = 1, 2, . . . , nR.
The CN×N diagonal matrix, D = diag(d1, d2, . . . , dN ) repre-
sents the power control matrix. It is convenient to define the
power loading vector, d as d = (d1, d2, . . . , dN ). Furthermore,
we assume that transmit data signals are normalized to give
E{|sk|2} = 1, for k=1, 2, . . . , N . The channel matrix H con-
tains independent elements, hik∼CN (0, Pik) which represents
the complex channel gain between user k and BS antenna i,
where E{|hik|2} = Pik > 0 ∀ i, k. We define the CnR×N

macrodiversity power profile matrix, P = {Pik}, which holds
the average link powers due to shadowing and path loss to
facilitate our subsequent mathematical manipulations. We let
Pik be given by

Pik = AΨik

(
r0
rik

)γ
, (5)

where rik is the distance between the kth mobile and the ith
BS antenna, r0 is a fixed reference distance, γ is the pathloss
coefficient, and Ψik is the log-normal shadowing with standard
deviation σSF between the kth mobile and the ith BS. The
constant A is a scaling parameter which guarantees that links
have acceptable SNR at a reference distance, r0. Note that the
pathloss and shadowing model in (5) can be used to model
many practical large scale fading scenarios and the values for
A, r0, and γ can be calculated numerically to approximate
empirical measurements [18].

In this MU multi-cell system, we assume that BPU knows
CDI: P perfectly. Since users are assumed to adapt their
transmit power levels to slow fading only, the BPU calculates
the transmit power levels based on P and feeds back resultant
dks to relevant mobile users, so transit power levels can be
revised accordingly. Note here that dks are functions of P
matrix only. Due to the shadowing effect, slow fading may still
change at a time horizon of seconds, which is larger than fast
fading but can still happen within the same cell coverage area.
The users transmit their data signals at revised power levels. In
this way, users can cooperatively overcome large-scale fading.
At the BPU, the received signal vector is linearly transformed
into an estimate upon which the system makes a hard decision
on the transmitted signal vector. In this work, we assume that
the BPU uses minimum-mean-squared-error (MMSE) receive
combining to suppress the multiple access interference [19].
The combiner output vector becomes

s̃ = WHr, (6)

where CnR×N matrix W is the weight matrix. The MMSE
receive beamforming matrix in JP MMSE is given by

W =
(
HHH + σ2InR

)−1
H. (7)

Thus, the combiner output SINR of the kth user is well-known
and is given by

Zk = hH
k R−1

k hk, ∀ k, (8)

where CnR×1 vector, hk is the kth column of H and Rk =∑N
u�=k huh

H
u + σ2I [20]. The statistical performance of Zk is

well-known for co-located antenna arrays at BS end but it is a
very difficult problem for distributed antennas case. However,
it has been shown that the probability density function (PDF)
of Zk can be approximated by a mixture of exponentials [11].
There are nR exponential terms in the approximation (see
Section VI of [11]). Many performance metrics can be derived
using these PDF results. For instance, the average symbol error
rate (SER) of user k can be given for many modulation schemes
([12, Table 6.1]) as

SERk = EH
{
aQ(
√

2gZk)
}
, (9)

where Q(x) = (1/
√
2π)
∫∞
x e−(t2/2)dt is the Gaussian

Q-function defined in [23], and a, and g are constants. The de-
sired result can be obtained by evaluating the expectation in (9)
using the PDF results in [11]. See more details in Section V-B.
Here the average SER is only averaged over the fast fading.
Hence, we may also called it local average SER henceforth.

IV. PRELIMINARIES

This work, and several previous work have shown that there
is a strong functional link between matrix permanents and the
link level performance of macrodiversity MU-MIMO systems
[11], [21]. Therefore, a brief description on matrix permanents
is provided as follows. A formal definition for the matrix
permanent is found in [22]. Let B = (bik) be an m× n matrix
with m ≥ n. The permanent of B, written Perm(B) (also
perm(B) when m = n), is defined by

Perm(B) =
∑
σ

b1,σ1
b2,σ2

. . . bn,σn
, (10)

where the summation extends over all one-to-one functions
from {1, . . . , n} to {1, . . . ,m}. The sequence (b1,σ1

b2,σ2
. . .

bn,σN
) is called a diagonal of B, and the product b1,σ1

b2,σ2

. . . bn,σN
is a diagonal product of B. Thus the permanent of B

is the sum of all diagonal products of order n of B. For instance,
let B be

B =

⎛
⎝ a

b
c

⎞
⎠ . (11)

The permanent of matrix B, becomes,

Perm(B) = a+ b+ c, (12)

and if B be

B =

⎛
⎝ a b

c d
e f

⎞
⎠ , (13)

the Perm(B) becomes,

Perm(B) = ad+ af + cb+ cf + ed+ eb. (14)

Unlike determinant, matrix permanent is defined for both rect-
angular and square matrices. Furthermore, the summation for
the matrix permanent of a real m× n (m > n) rectangular
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matrix with no duplicate columns and rows has m!/(m− n)!
terms, hence, (m!/(m− n)!)(n− 1) multiplications and
(m!/(m− n)!)− 1 summations.

V. UPLINK POWER CONTROL

In this section we briefly review the existing power control
methodologies for macrodiversity MIMO systems and present
the main algorithm of this paper in detail. There are two main
uplink power control approaches for cellular systems. The first
is maximizing an objective function for a given maximum
or average transmit power limit. The most common objective
function is the sum capacity or weighted sum capacity [24].
The next is minimizing the transmit power while guaranteeing
certain quality of service (QoS) thresholds. The SINR is used
in many cases as the QoS function [9].

A. Review of Existing Performance Metrics

In contrast to the single cell systems, devising an appropriate
performance measure in terms of CDI is a very difficult prob-
lem for macrodiversity MU-MIMO systems. We consider the
channel equation in (3), and the received signal by the ith BS
antenna is given by

ri =

N∑
k=1

√
dkhiksk + ni, for ∀ i. (15)

The goal here is devising an appropriate performance measure
for the user k in terms of CDI. It is clear from (7) that all ris
are combined in a complex manner. In [15], authors assume
the sum local average received power from user k at all BS
antennas ignoring interference power is an appropriate measure
for the performance of user k. It suggests the following SNR
metric for user k:

SNRk =
dk
σ2

(
nR∑
i=1

Pik

)
∀ k. (16)

It is clear that the performance metric in (16) is based on rather
instinctive assumption. Furthermore, in [15], authors suggest
a power control method to overcome the large scale fading as
follows.

dk =
σ2T0∑nR

i=1 Pik
, ∀ k, (17)

where T0 in macrodiversity case, is the average target received
power by all BSs before receive combining. The design goal
here is to make the post combining performance comparable
by making sure the average received power before receive
combining is the same. However, in [11] it has been shown that
such behavior can not be guaranteed (see Section II). In another
contribution, the following SINR metric is considered [17]:

SINRk =

nR∑
i=1

dkPik∑N
u�=k duPiu + σ2

, ∀ k. (18)

Clearly the metric in (18) takes a major step forward by
including the average interference power into the performance

metric. However, it also seems here that the average signal-to-
interference-plus-noise ratio of user k at each receive antenna:

SINRi
k =

dkPik∑N
u�=k duPiu + σ2

, ∀i, k, (19)

is simply summed up to obtain the final SINR metric. There
are a few more contributions where similar metrics are used for
managing interference through power control [25], [26]. The
performance metrics which we discuss here are sensible choices
but appear insufficient to capture the performance accurately
(see Fig. 6). Therefore, we need a good compromise which has
both accuracy and tractability. A more complex and analytical
analysis for the performance of MU multi-cell MIMO systems
is provided in [11] where a strong functional link between
the link-level performance and the large-scale fading is uncov-
ered. Moving away from traditional metrics which are broadly
based on basic SINR concepts, in this paper, we employ latest
developments in the field for devising a novel power control
algorithm.

B. Proposed Algorithm

Our algorithm targets at minimizing transmit power while
guaranteeing certain QoS thresholds for each user in the macro-
diversity MU-MIMO system. The QoS metric is chosen to be
the uncoded average SER.1 The local average SER of the kth
user for M -PSK and M -QAM type modulation schemes can be
evaluated as

SERk = a

T∫
0

Q(
√

2gz)fZk
(z)dz, (20)

where g is a function of the modulation order, M and T = π/2.
From [11], the PDF of Zk is approximately given by

fZk
(z) ≈ Δk(Q̄k, γ̄)

|P k|dLk

nR∑
�=1

η�e
−ω�z, ∀ k, (21)

where Δk(Q̄k, γ̄), η� and ω� are functions of large scale fading
and given in Section VII-D. Employing (21) in (20), we obtain
an approximation for the average error rate of user k:

SERk ≈ aΘk

nR∑
�=1

1

ωk�

(
1−
√

2g

2g + ωk�

)
∀ k, (22)

where Θk = Δk(Q̄k, γ̄)|P k|−1d−L
k . We next formulate the op-

timization problem which forms the heart of this contribution.
The optimum power loading vectord∗=(d∗1, . . . d

∗
N ) is given by

d∗ = argmin f(d), (23a)
SERk|γ̄=SNR0

≤ ᾱk, ∀ k, (23b)
dk > 0 ∀ k., (23c)

f(d) =

N∑
k=1

dk. (23d)

1The average bit error rate (BER) is a more fundamental performance
measure than the average SER. It can also be expressed in Gaussian Q-function
form for many modulation schemes. Therefore, the development here can be
readily used with BER metrics.
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In order to tackle this complex optimization problem, we con-
sider a high SNR approximation for average SER originally
reported in [11] for macrodiversity MU-MIMO systems. From
Appendix A, the asymptotic SER for the kth user is given by

SER∞
k � Ik(P ,D)Perm(Qk)

|P k|dLk
γ̄−L, ∀ k, (24)

where the integral Ik(P ,D) is given by

Ik(P ,D) =
a

π

T∫
0

(∏N
u�=k

du

dk

)
sin2nR θ∑N−1

i=0 ζignR−i sin2i θ
dθ, (25)

and γ̄ = 1/σ2. It may be useful to point out here that the inte-
gral Ik(P ,D) that appears in (25) depends on D only through
ratios du/dk for ∀u �= k. The integral in (25) can be solved
in closed form but, in this work we are rather interested in its
current form as it appears in (25). Even though the expression in
(70) appears complicated, the final solution after simplifications
is appealing as shown in (26), shown at the bottom of the page,
for the first user for N = 3 where R1 = P−1

1 Q1, and R11 and
R12 are the first and second column of R1.

Using the high SNR affine approximation, we recast our
original optimization problem equivalently by

d∗ = argmin f(d), (27a)

SER∞
k |γ̄=SNR ≤αk, ∀k, (27b)

dk > 0 ∀ k., (27c)

f(d) =

N∑
k=1

dk. (27d)

Here we transform the original SER constraints to an equivalent
high SNR SER constraints as explained in Section VII-D. The
optimization problem in (27) can be solved using a simple
algorithm. The algorithm runs through a series of iterations
until power loading vector converges to a steady state. Let’s
define the power loading vector in the lth iteration as dl =
(dl,1, . . . dl,N ). We start with an initial power loading vector, d0

in such a way that it has all equal elements (i.e., d0,1 = . . . =
d0,N ). The kth user’s power level in the (l + 1)th iteration is
functionally related to the power level of all users in the system
in the lth iteration (i.e., dl) and is given by

dl+1,k =

(
Ik(P ,D)lPerm(Qk)SNR−L

|P k|αk

) 1
L

, ∀ k, (28)

where

Ik(P ,D)l = Ik(P ,D)|D=diag(dl1,...,dl,N ) . (29)

Fig. 1. A network MIMO system with four BSs forming a large macrocell.

In Section VII-A we will show that, the power loading vector
obtained here is in fact the optimal solution which minimize the
objective function while satisfying the SER constraints.

VI. NUMERICAL RESULTS AND DISCUSSION

As numerical results, we confirm the accuracy of the power
control algorithm by using a base line edge-excited network
MIMO setting in Fig. 1 [11]. For each uniform random location
of the users in the circular coverage area, log-normal shadow
fading and path loss effects are considered where σSF = 8 dB
(standard deviation of shadow fading) and the path loss expo-
nent is 3.5. The BSs are located on the edge of the coverage
area with 90◦ angular separation. There is a 35 m user exclusion
zone around BSs. Since, cell coordination has a profound effect
on cell-edge users, we only consider user drops inside the
circular shaded region of 500 m radius which represents the cell
edge of all BSs. This setting allows us to generate a wide range
of P matrices2 with entries which mimic those encountered in
systems experiencing slow fading. Then, the channel matrix, H
is simulated as

H =
(
P ◦ 1

2

)
◦U , (30)

where P ◦(1/2) is the element-wise square root of P , the
operator, ◦, represents Hadamard multiplication and the ele-
ments, U ik, of U satisfy U ik ∼ CN (0, 1) ∀ i, k. The matrix
U represents the Rayleigh distributed fast fading effect while
P captures the large-scale fading effect. The fast fading, U is
assumed to be changing every channel use while P remains
constant for several channel use. Therefore, those power control
methods adapt to CSI (i.e., H), have to be updated every
channel use while power control methods adapt to CDI needed
to be updated only when P changes.

2It may be useful to note here that, we employ Pik = 99.54− 35 log10 d+
Ψik [dB] which is the decibel version of (5) for generating macrodiversity
power profiles.

SER∞
1 � a

π

T∫
0

γ̄−Ld2d3Perm(Q1) sin
2nR θ

|P 1|dnR
1

(
gnR +

(
d2

d1
Perm(R11) +

d3

d1
Perm(R12)

)
gnR−1 sin2 θ +

(
d2d3

d2
1

)
Perm(R1)gnR−2 sin4 θ

)dθ (26)
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Fig. 2. Average SER vs γ̄ for all three users with MMSE receive combining
and QPSK constellation with equal transmit power levels. All power levels are
set to 0 dB.

The Fig. 2 shows the uncoded average SER of all three
users with MMSE receive combining and QPSK constellation
for a typical macrodiversity power profile. The high SNR ap-
proximations in (24) are also shown for comparison and equal
power transmission3 is considered (i.e., d1 = d2 = d3 = 1).
According to Fig. 2, it is clear that three users exhibit SER
performance differences in terms of array gain. We assume
there is a design goal such that at SNR = 25 dB, we have to
make sure that all users have SER of 10−4. In order to achieve
this goal we apply the algorithm in (28) with initial power
loading vector, d0 = (1/3, 1/3, 1/3). After about 7 iterations,
we arrive at a steady state power loading vector and is given by

d7 = (0.6118, 0.9929, 1.9808). (31)

We conclude that d7 is indeed the optimal power vector, d∗

for this particular P , SNR and SER thresholds. In order to
understand this result, lets consider the macrodiversity power
profile matrix, P used in this simulation:

P =

⎛
⎜⎝

0.5886 0.2326 0.2028
0.4443 0.0734 0.1854
0.7819 0.3135 0.1294
0.2349 0.7672 0.1107

⎞
⎟⎠ . (32)

This P corresponds to a macrodiversity system with nR = 4
distributed BS antennas and N = 3 distributed users. The sum
receive (RX) power (i.e.,

∑
i Pik for ∀ k) of all three users are

given in Table I. If we compare the transmit power differences
of user 1 and 3, it is not surprising that user 3 needs to transmit
at higher power to achieve the same SER target while user 1
needs much less than that due to its favorable large scale fading
gains which is noticeable in the sum RX power in Table I. Even
though such comparisons are possible with primitive metrics
like sum RX power, we need results presented in Section V-B
to make concrete conclusions.

3Unless otherwise stated, all power values are given in linear scale.

TABLE I
SUMMARY OF RESULTS FOR S1

Fig. 3. Average SER vs γ̄ for all three users with MMSE receive combining
and QPSK constellation after applying power control algorithm.

Fig. 4. Sum transmit power variation against the number of iterations in
scenario 1 for specifications in Table I.

Fig. 3 shows the SER curves after applying the optimum
power loading vectors. It is clearly visible that the SER per-
formance is very much comparable and error rates of 10−4 at
SNR = 25 dB are clearly achieved. The slight difference in the
SER performance is due to the approximation in (64).

Next, we consider the rate of convergence of the main
algorithm. In Fig. 4, the sum transmit power distribution against
the number of iterations is shown. It can be seen that there is
an oscillation until l = 6 but the magnitude of the oscillation
appears to be decaying very rapidly allowing the power vector
to be stable at the 7th iteration. Therefore, it is clear that
the rate of convergence is quite reasonable for many practical
applications.
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Fig. 5. Average SER vs γ̄ for all three users with MMSE receive combining
and QPSK constellation after applying revised transmit power levels to satisfy
unequal SER targets.

Next we consider an extended version of the simulation
scenario so far where we set unequal error rate targets for each
user in the system. This is a practical problem due to the fact
that voice and data users may have different QoS constraints,
but may well be scheduled in the same transmission interval.
Therefore, we set SER∞

1 = 10−4 and SER∞
2 = SER∞

3 = 10−3

at γ̄ = 25 dB. The results are shown in Fig. 5 and performance
exhibits an acceptable match with specifications.

We next simulate large number of large-scale fading profiles
(thus, H) and study several important metrics. We observe that
our algorithm converges in all realizations of macrodiversity
power profiles. It is calculated that the average number of
iterations for convergence is about 6 for average SER of 10−4

at 25 dB. It is further observed that the more square the system
(i.e., nR ≈ N ) the higher the average number of iterations, and
the average number of iterations drops rapidly for rectangle
systems (i.e., nR > N ), which is the case in many modern
MU-MIMO systems. For instance, when each BS has two co-
located antennas which gives nR = 8 and N = 3 the algorithm
converges within about three iterations. Furthermore, zero-
forcing (ZF) based direct method expends about 10% more
total transmit power than MMSE based method. It may be
worthwhile to note here that ZF based method has an additional
drawback due to its relatively weaker SER approximation so
that it may not follow actual SER as accurate as MMSE based
method.

In Fig. 6, the accuracy of the proposed SER based method is
compared with existing SINR based methods. We assume the
same cellular setting as shown in the Fig. 1 with dual antenna
BSs. Therefore, it gives nR = 8. We further assume there are
N = 3 co-scheduled users in the coverage area. Our experi-
ment runs as follows. We simulate a large number of 8 × 3
macrodiversity power profiles. For each P matrix, we calculate
the optimal transmit power levels for all users to achieve a
SER target of 10−2 at γ̄ = 5 dB with QPSK modulation.
Then we obtain the SERs of all users at γ̄ = 5 dB with the
same P matrix and its corresponding power loading vector

Fig. 6. Comparison of the average SER performance of the proposed algo-
rithm against exiting SNR and SINR based algorithms.

using Monte Carlo simulation. We define the vector, SERs =
(SERs1,SERs2,SERs3). Similarly, SNR and SINR metrics are
computed for all three users using (16) and (18). Then we
translate these SNR and SINR metrics into an error probabil-
ity value using the following SER result for QPSK modula-
tions [12]:

SER(x) = 1−
(
1−Q(

√
x)
)2

, (33)

where x is the SNR or SINR as defined in (16) and (18). From
(33), we calculate corresponding SER values for SNR metrics,
denoted SERa = (SERa1,SERa2,SERa3) and for SINR met-
rics, denoted SERb = (SERb1,SERb2,SERb3). The subscripts
a and b are used to distinguish the variable and have no further
significance on the result of the paper. Then we compute the
ratio between the lowest and the highest error rates in all
three methods. Let the ratio obtained from simulation is de-
noted by, rs:

rs =
max(SERs)

min(SERs)
. (34)

Similarly, we define ra and rb to denote the ratios obtained
from SNR and SINR based methods respectively. If the pro-
posed method is accurate, the rs should be equal to unity.
Furthermore, if SNR and SINR based methods capture the
performance of users accurately, ra and rb also should be equal
to rs. The cumulative distribution function of the average SER
ratio is given in Fig. 6 for all three methods. We observe that
the proposed method is extremely accurate than conventional
methods. Its CDF is almost a straight line with a subtle shift.
This small shift is due to the original approximation used for
SERs in (22). The considerable gap between the CDF curves of
rb and rs clearly proves that SINR based method is extremely
poor at capturing the performance of users. It is worse in ra
case. The SER ratio, rb is greater than 3 dB in 80% of the
time. It is clear from rs curve that all users have approximately
comparable error performance. However, from the CDF curve
for rb, the SINR based metric can misinterpret it as a SER
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performance gap of 5 dB or more between the best and the
worst user in 60% of the time. It can be higher than 10 dB in
25% of the time. Therefore, those power controlling methods
which adjust the SINR metric to be equal end up altering al-
ready comparable SER performance considerably. In addition,
power control algorithms based on these SNR/SINR metrics
can be energy inefficient as a result of their lower sensitivity
to performance of users. This result however, does not surprise
us owing to the fact that proposed power control solution is
based on a metric which has a direct functional link to error
performance of users while other methods broadly rely on
ad-hoc metrics of which the relationship to error performance
is not clear.

VII. FURTHER REMARKS

A. Optimality of the Main Algorithm

From an optimization-theoretic point of view, the optimiza-
tion problem in (23) poses some theoretical challenges on
which we devote this section. Assume the candidate optimal
solution is d∗. Let’s define the Lagrange function as

L(d) = −f(d) +

N∑
k=1

λk (αk − SER∞
k (d)) , (35)

where λk are Lagrange multipliers. Karush-Kuhn-Tucker
(KKT) conditions at the optimal point can be derived as [27]

−∇f(d∗)−
N∑

k=1

λk∇SER∞
k (d∗) = 0, (36)

αk − SER∞
k (d∗) ≥ 0, ∀ k, (37)

λk ≥ 0, ∀ k, (38)

λk (αk − SER∞
k (d∗)) = 0, ∀ k, (39)

where ∇L(d∗) is the derivative of L(d) with respect to d eval-
uated at d = d∗. The condition in (36) is due to the positivity
constraint of d. Furthermore, due to the fact that f(d) has no
critical points, the optimal point should lie on the boundary
of the feasible set. It implies that, αk − SER∞

k (d∗) = 0 and
λk > 0. Since, all ∇SER∞

k (d∗) are linearly independent, we
further claim that all λk should be strictly positive at the optimal
point simultaneously.4 This confirms that, from (39) all original
inequality constraints should be simultaneously satisfied with
equality constraints at the optimal d∗. Therefore, ultimately
the optimization problem boils down to solving non-linear
simultaneous equations due to the fact that there are as many
constraints as unknowns. The algorithm in (28) effectively does
that by making sure that iterative process will converge to
a fix power loading vector. We avoid negative power levels
by neglecting the negative roots in (28). However, it is not
sufficient to warrant that it is the optimal solution due to the
uncertainty of the convexity of the feasible set. Since, it is the
only vector with all positive power levels which satisfy the KKT

4In contrast to SINR based power control problems, proving linear indepen-
dence analytically for general user case, appears complicated. However, authors
proved it analytically for nR = N = 2 system where SER∞ are reduced to
simpler expressions (see Appendix B).

Fig. 7. Feasible set and optimal point for the macrodiversity power profile
in (40).

conditions, we can assure that it is indeed the optimal solution.
In order to check our assertions, we perform a simulation study
with an arbitrary macrodiversity power profile given by

P =

(
0.6160 0.3517
0.4733 0.8308

)
. (40)

We use N = 2 scenario here because it allows us to present
results graphically. The algorithm gives d∗ = (3.8102, 3.5981)
as the optimal solution to satisfy SER targets of 10−3 at SNR =
25 dB. In Fig. 7, we show the feasible set for the power profile
in (40) and specifications considered in this section. Apparently,
the feasible set is not convex. Among infinite number of candi-
date optimal vectors on the boundary of red region, the solution
given by the algorithm in (28) is shown in black spot at the
bottom of the feasible region. Therefore, it clearly, minimizes
the sum transmit power.

B. Feasibility of SER Constraints

Since, there are no upper and lower limits except strict
positivity for the transmit powers, dk for ∀ k, theoretically any
SER target can be achieved. However, many practical scenarios,
there are upper limits for transmit powers as given by

0 < dk ≤ Uk, ∀ k. (41a)

Note that in many scenarios it is reasonable to assume U1 =
U2 = · · · = UN = U . We assume that a scheduling decision
has been made to serve all N users in the system. This implies
that dk �= 0. Alternatively, there may be fixed lower limits for
transmit power such as Lk ≤ dk for ∀ k. Therefore, there exists
a reasonable question that how we can set feasible SER targets
in compliance with transmit power limits. With the presence of
such lower and upper limits, we need to analyze the feasibility
of SER targets before applying the algorithm. In order to
achieve this target, we use the following pragmatic approach.

1) First we find the kth user’s SER dynamic range. This
can be accomplished by setting desired user’s power level
to its maximum and minimum and rest of the users’
(interfering users’) power levels to their minimums and
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maximums for finding the lowest and highest SER for
user k using the equation in (22). This is repeated for
all N users. Theoretically, any SER constraint set within
these limits is feasible.

2) Next, according to the error rate requirements for the
system, we set SER targets within above limits.

3) Finally, we can apply the main algorithm for finding the
set of power levels which guarantee these performance
limits with minimal sum transmit power.

C. Simplified Power Control Solution

The power control solution presented in (28) is algorithmic
and therefore, there may be interest for a simple one-off method
where a reasonable solution could be found. There exists such
a solution at the expense of accuracy. In [11], authors derives
a high SNR approximation for the average SER with ZF re-
ceivers. It has been shown in [11] that the error performance of
the kth user after ZF combining is

SER∞
k =

a

π

T∫
0

K̃0

(
σ2 sin2 θ

g

)L
dθ, (42)

where

K̃0 = E

⎧⎨
⎩

∣∣∣H̃H

k H̃k

∣∣∣
|P̃ k|
∣∣∣H̃H

k P̃
−1

k H̃k

∣∣∣
⎫⎬
⎭ . (43)

After making the substitution in (63), we arrive at

SER∞
k � Perm(Qk)Ĩ

|P k|Perm
(
P−1

k Qk

)
dLk

γ̄−L, ∀ k, (44)

where

Ĩ =
a

π

T∫
0

(
sin2 θ

g

)L
dθ. (45)

From equation (44), it is clear that the SER of user k depends
on D through its own transmit power, dk. Therefore, the
transmit power of all users can be adjusted according to their
SER targets, αk independently. This avoids the algorithm in
Section V-B.

The SER approximation in (44) and the main MMSE based
approximation are tight when nR � N . This constraint can
easily be satisfied when coordinated BSs have multiple co-
located antennas. In such scenarios, both approximations tend
to be extremely tight. Furthermore, in Section VII-E, it has been
shown that computational complexity, especially for permanent
calculations (see Section IV) does not grow with the number of
co-located antennas at each BS.

D. Higher SER Targets at Low SNR

There may be some interests in having higher SER targets at
low SNR. The proposed power control algorithm is based on a
high SNR approximation in (24). It may not follow the average

Fig. 8. Illustration of change of SER constraints of a typical user.

SER curves at higher error rates especially when nR > N case
(see Fig. 2). This can be circumvented by using a method called
‘change of constraints’ as depicted in Fig. 8. Since SER is a
continuous function of SNR, every low SNR SER target has
a high SNR counterpart. Assume we have an original SER
constraint at (SERk, γ̄) = (ᾱk,SNR0) as shown from the point
A in the Fig. 8. Clearly, SER∞

k does not capture the error
performance. If an SER constraint at high SNR could be found
in such a way that, one achieves the target SER at low SNR
automatically if the high SNR target SER is achieved, the main
algorithm can be used with the new high SNR constraint. The
high SNR region in the sense that SERk in (22) is equal to
the SER∞

k in (24). One such point is shown by the point B
in the same illustration. Therefore, if SER constraint can be
represented by an equivalent SER∞ constraint, the main al-
gorithm in (28) can be applied readily. In cases where it is
not possible to translate the low SNR target to a high SNR
counterpart, we have to solve the original optimization problem
in (23) should be solved. The average SERk in (22) can also be
given alternatively by

SERk ≈ Jk(P̄ , γ̄)Δk(Q̄k, γ̄)

|P k|dLk
, (46)

where

Jk(P̄ , γ̄) =
a

π

nR∑
i=1

T∫
0

ηi sin
2 θ

g + ωi sin
2 θ

dθ. (47)

The coefficients ωis in the denominator of (47) are given by the
roots of the following polynomial:

nR∑
i=1

ϕix
i = 0, (48)

where, ϕi is given by [11, eq. 60],

ϕi =

N−1∑
k=1

ϕ̂ikγ̄
i−k−N+1 (49)
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and, ϕ̂ik in (49) is given by

ϕ̂ik = dik
∑
σ

Tri

(
(P k)σ̄nR−k,nR

)
Perm
(
(Q̄k)

{N−1}
σk,nR

)
.

(50)

The σk,nR
is an ordered subset of {nR} = {1, . . . , nR} of

length k and the summation is over all such subsets. The
σ̄nR−k,nR

is a length nR − k subset of {1, . . . , nR} which does
not belong to σk,nR

. Furthermore, ηi in (47) is given by

ηi =
1∏nR

� �=i(ω� − ωi)
. (51)

The Δk(Q̄k, γ̄) in (46) is given by

Δk(Q̄k, γ̄) = d−N+1
k

N−1∑
k=0

∑
σ

Perm
(
(Q̄k)

σk,N−1
)
γ̄−N+k+1.

(52)

Note that the matrices P̄ = PD and Q̄k = QkDk. The SERk

approximation in (46) is in fact the parent approximation for
SER from which SER∞

k is derived by discarding the lower order
negative powers of γ̄. The added complexity of SERk is clearly
understandable because, the lower order negative powers of
γ̄ can not be neglected if the approximation needs to follow
the actual average SER at low SNR. Similar to the original
algorithm, the power level of the kth user in the (l + 1)th
iteration is functionally related to the power level of all users
in the system in the lth iteration (i.e., dl) and is given by

dl+1,k =

(
Jk(P̄ , γ̄)lΔk(Q̄k, γ̄)

|P k|ᾱk

) 1
L

, ∀ k, (53)

where

Jk(P̄ , γ̄)l = Jk(P̄ , γ̄)
∣∣
D=diag(dl1,...,dl,N )

. (54)

This algorithm is used extensively in generating Fig. 6 where
a system is optimized to achieve a higher SER targets at very
low SNR.

E. Computational Complexity of the Main Algorithm

In this section, we present a complexity analysis for the main
algorithm in (28) is presented. For that, we consider square
systems (i.e., nR = N ) with varying dimensions, N = 2, 3,
4, 5. This is corresponding to N number of single receive
antenna distributed BSs and single antenna users. Therefore, it
creates a macrodiversity power profile matrix with no duplicate
columns and rows. The evaluation of the integration in (25)
is computationally demanding. We may use two methods to
evaluate it. In the first method, the denominator is assumed as
a polynomial of sin2 θ thus, can be expressed as a product of
N − 1 terms. Using the partial fraction expansion method, the
integration can be expressed as shown in (47) where individual
integrations can be solved in closed form. The roots of the
polynomial can be found by evaluating the eigenvalues of
the corresponding R(N−1)×(N−1) companion matrix [28]. We
assume here that the calculation of coefficients, ζis and roots
of the denominator polynomial are computationally significant.

TABLE II
COMPUTATIONAL COMPLEXITY OF THE MAIN ALGORITHM IN (28)

Furthermore, the average number of iteration is taken to be
6. The results are shown in Table II. In the second method,
it is assumed that the integration is evaluated directly using
Trapezoidal rule with n = 24 subintervals for the integration
over [0, T ] [29]. The integrand in (25) should be evaluated
n− 1 times to calculate the integration over the desired region.
It therefore, may be computationally inefficient in comparison
with the first method, and results are omitted.

With the advent of massive MIMO concepts, there may be
practical interests of BSs with large number of co-located re-
ceive antennas [30]. In that cases, macrodiversity power profile
matrix has duplicate entries which can be exploited for simpli-
fying permanent calculations as follows. Consider a scenario
where a BS has co-located W receive antennas. We explain this
with a simple example, but extensions are straightforward. Let
the 3 × 3 matrix P be,

P |W=1 =

⎛
⎝ a b c

d e f
g h i

⎞
⎠ . (55)

This corresponds to a system with three users and 3 BS with
a single antenna each, i.e., W = 1. If each BS has μ receive
antennas, the 3μ× 3 matrix P becomes

P |W=μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c
· · · · · · · · ·
a b c
d e f
· · · · · · · · ·
d e f
g h i
· · · · · · · · ·
g h i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (56)

Assume μ ≥ 3. The perm(PW=μ) is given in (57), shown at
the bottom of the next page. The expression in (57) is obtained
by applying the following permanent identity, and with some
simplifications. Let A be an arbitrary m× n matrix and assume
m ≥ n, then

Perm(A) =
∑
σ

perm
(
(A)σn,m

)
(58)

where σn,m is an ordered subset of {m} = {1, . . . ,m} of
length n and the summation is over all such subsets. Aσn,m

denotes the submatrix of A formed by taking only rows indexed
by σn,m and all columns. Note that the constituent permanents
with duplicate rows in (57) have further simplifications. Apart
from the apparent fact that the computational complexity of
(57) is much lower than direct calculation of perm(P |W=μ)
using (58), it is also clear that the computational complexity
does not grow with μ. Therefore, the practical implications of
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this example to our system is that the computational cost grows
with the number of users and BSs, but not with the co-located
antennas at each BS.

F. Convergence of the Main Algorithm

It is shown in Section VII-A that the main optimization
problem reduces to a system of N non-linear equations. One
common method of solving such a system is to use Newton-
Raphson method where a Jacobian matrix has to be evaluated
in every iteration [31]. In such cases, the convergence is always
not guaranteed and depends on several factors specially the
initial estimate. Due to the unique structure of Ik(P ,D), we
avoid the initial value problem where algorithm itself positions
on the right path after the first iteration. It is because Ik(P ,D)
depends on d not through their absolute values but ratios.
Therefore, if initial estimates of all transmit powers are set
to the same level, we may avoid oscillating the algorithm.
However, it is not sufficient to warrant the convergence of the
algorithm. A rigorous proof is left to a future work. Further-
more, our simulation study shows that convergence is always
attainable in the typical cellular model considered in the paper.

VIII. CONCLUSION

In this paper we considered a power control problem for
MU CoMP systems with JP. Primarily, it targets at overcoming
large-scale fading, and hence based on CDI. In contrast to
the existing power control methods which are based on crude
performance metrics, we present a systematic power control
algorithm in order to minimize the transmit power while achiev-
ing certain QoS constraints by exploiting recently published
analytical performance results for average error rates. Our QoS
metric was the average SER after MMSE receive combining
rather than conventional SNR/SINR based metrics before any
receive processing. Despite the analytical complexity of this
particular problem, we are able to come to a tractable conclu-
sion proposing an optimal power control algorithm which min-
imizes the sum transmit power while guaranteeing given SER
targets at a given SNR. Simulation results show that SER curves

follow the predicted performance accurately proving the accu-
racy of the power control method. Furthermore, we proved the
optimality of the proposed power control algorithm even though
the feasible set is not convex. Before concluding our paper, we
further commented on finding feasible SER constraints along
with a simplified power control method based on ZF receive
combining for applications where accuracy could be traded
off for simplicity. Even though the proposed power control
solution is slightly more complex than existing solutions, our
results show that it is well worth adopting to modern multi-cell
communication systems as far as its superior performance and
accuracy are considered. We hope these tools will help system
engineers to design wireless systems with network coordination
with a much greater grip and minimal power consumption.

APPENDIX A
DERIVATION OF ASYMPTOTIC SER

The local average SER of the kth user for M -PSK and
M -QAM type modulation schemes can also be evaluated as [12]

SERk =
a

π

T∫
0

MZk

(
− g

sin2 θ

)
dθ, ∀ k, (59)

where MZk
(.) is the moment generating function of the kth

user’s SINR after receive combining. From [11], the SER when
σ2 → 0 becomes

SER∞
k =

a

π

T∫
0

(
σ2 sin2 θ

g

)L
K0

( g

sin2 θ

)
dθ (60)

where L = nR −N + 1 and

K0(s) = E

⎧⎨
⎩

∣∣∣H̃H

k H̃k

∣∣∣
|P̃ k|
∣∣∣H̃H

k P̃
−1

k H̃k + sI
∣∣∣
⎫⎬
⎭ . (61)

The matrices appearing in (61) are defined as follows.

H̃k =HkDk, (62)

P̃ k = dkP k, (63)

Perm(P |W=μ) =

(
μ
1

)(
μ
1

)(
μ
1

)
perm

⎛
⎝ a b c

d e f
g h i

⎞
⎠+

(
μ
2

)(
μ
1

)

×

⎛
⎝perm

⎛
⎝ a b c

a b c
d e f

⎞
⎠+ perm

⎛
⎝ a b c

a b c
g h i

⎞
⎠+ perm

⎛
⎝ d e f

d e f
g h i

⎞
⎠

+ perm

⎛
⎝ d e f

d e f
a b c

⎞
⎠+ perm

⎛
⎝ a b c

g h i
g h i

⎞
⎠+ perm

⎛
⎝ d e f

g h i
g h i

⎞
⎠
⎞
⎠

+

(
μ
3

)⎛⎝perm

⎛
⎝ a b c

a b c
a b c

⎞
⎠+ perm

⎛
⎝ d e f

d e f
d e f

⎞
⎠+ perm

⎛
⎝ g h i

g h i
g h i

⎞
⎠
⎞
⎠ (57)
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where Hk is H with column k removed, Dk is D with kth ele-
ment removed, and the diagonal matrix P k = diag(P1,k, P2,k,
. . . , PnRk). K0 can be approximated by

K0(s) �
E
{∣∣∣H̃H

k H̃k

∣∣∣}
E
{
|P̃ k|
∣∣∣H̃H

k P̃
−1

k H̃k + sI
∣∣∣} . (64)

The approximation has been shown to be tight for macrodiversity
power profile P in cellular wireless systems [11, Section VII].
The expectations in both numerator and denominator of (64)
can be evaluated in closed form, and are given by

E
{∣∣∣H̃H

k H̃k

∣∣∣} = Perm(QkDk), (65)

=

⎛
⎝ N∏

u�=k

du

⎞
⎠Perm(Qk), (66)

where Qk is P with column k removed and

E
{
|P̃ k|
∣∣∣H̃H

k P̃
−1

k H̃k + sI
∣∣∣} = dnR

k |P k|
(

N−1∑
i=0

ζis
N−i−1

)
,

(67)
where

ζi =
∑
σ

Perm
((

P̃
−1

k QkDk

)σi,N−1
)
, (68)

=
∑
σ

∣∣∣(Dk)σi,N−1

∣∣∣
dik

Perm
((
P−1

k Qk

)σi,N−1
)
, (69)

where σi,N−1 is an ordered subset of {N − 1} = {1, . . . , N −
1} of length i and the summation is over all such subsets. Note
that ζ0 = 1 and

ζN−1 =

(∏N
u�=k du

dN−1
k

)
Perm
((
P−1

k Qk

))
. (70)

The average asymptotic SER in (60) can then be calculated as

SER∞
k � Ik(P ,D)Perm(Qk)

|P k|dLk
γ̄−L, ∀ k, (71)

where the integral Ik(P ,D) is given in (25) and γ̄ = 1/σ2.

Ik(P ,D) =
a

π

T∫
0

(∏N
u�=k

du

dk

)
sin2nR θ∑N−1

i=0 ζignR−i sin2i θ
dθ. (72)

APPENDIX B
PROOF OF LINEAR INDEPENDANCY OF SER∞

k (d∗)

The average asymptotic SERs for nR = N = 2 are given

SER∞
1 (d) � κ1

π

T∫
0

d2 sin
4 θ

dnR
1 g + dnR−1

1 d2τ1 sin
2 θ

dθ, (73)

SER∞
2 (d) � κ2

π

T∫
0

d1 sin
4 θ

dnR
2 g + dnR−1

2 d1τ2 sin
2 θ

dθ, (74)

where κ1 = Perm(P 2)γ̄
−L/|P 1|gnR−1, κ2 = Perm(P 1)γ̄

−L/
|P 2|gnR−1, τ1 = Perm(P−1

1 P 2), and τ2 = Perm(P−1
2 P 1).

From SER∞
1 (d) and SER∞

2 (d), it is straightforward to cal-
culate partial derivatives, ∂SER∞

1 (d)/∂d1, ∂SER∞
1 (d)/∂d2,

∂SER∞
2 (d)/∂d1, and ∂SER∞

2 (d)/∂d2. Furthermore, it is easy
to prove that

∂SER∞
1 (d)

∂d1

∂SER∞
2 (d)

∂d2
− ∂SER∞

1 (d)

∂d2

∂SER∞
2 (d)

∂d1
> 0, (75)

for all d. It implies that ∇SER∞
1 (d∗), and ∇SER∞

2 (d∗) are
linearly independent.
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