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Abstract

Macrodiversity systems have many promising features that can improve system perform-
ance from a network perspective, such as improving the weak signals of users affected by
shadow fading, or users at the cell-edge. They also allow multiple users to share the same
resource in time and frequency, improving the overall user capacity.

Traditionally, evaluating the link quality of resource-sharing users requires instantaneous
channel state information (CSI). However, finding compatible users to share resource in
macrodiversity systems is a challenging task. For macrodiversity systems, instantaneous
CSI could be passed to the backhaul processing unit (BPU) through the network backhaul.
This creates a delay in the signal, and makes instantaneous CSI a less accurate reflection of
the channel environment at the time. Passing instantaneous CSI of all users also creates a
significant amount of network overheads, reducing the overall efficiency of the network.
Compared to MIMO systems with co-located antennas, macrodiversity systems cover a
larger geographical area and more users. For this reason, the number of user selection
combinations can become extremely large, making scheduling decisions in real time an
even more challenging task. These problems limit the realisation of the user capacity po-
tential of macrodiversity systems.

This thesis presents a low complexity method of resource allocation for up-link macro-
diversity systems. In particular, it uses long-term power to estimate the link quality of
resource-sharing users. Using long-term power bypasses the issue of channel estimation
error introduced by the network delay, and it also reduces the communication overhead
on the network backhaul. In this thesis, we use Symbol-Error Rate (SER) as the measure for
link quality. Using the method developed by Basnayaka [1], we are able to estimate SER
of resource-sharing users using long-term power. Using the SER estimation method, we
further proposed a user compatibility check (UCC), which evaluates the compatibility of
users sharing the same resource. Users are only considered compatible with each other if
all of them meet a pre-defined SER threshold.

We attempt to reduce the complexity of user selection by using heuristic solution-finding
methods. In our research, we found that greedy algorithms have the least complexity. We
propose four low-complexity user selection algorithms based on a greedy algorithm. These
algorithms are simulated under different environment parameters. We evaluate the system
performance in terms of utilisation and complexity. Utilisation refers to the percentage of
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allocated users compared to the theoretical user capacity. Complexity refers to the number
of SER calculations required to find a resource allocation solution. From the simulation
results, we observed that with the proposed user selection algorithms, we can achieve
moderately high utilisation with much lower complexity, compared to finding user selec-
tions via an exhaustive search method. Out of the proposed user selection algorithms, the
Priority Order with Sequential Removal (PO+SR) and the First-Fit (FF) algorithm have the
best overall performance, in terms of the trade-off between utilisation performance, and
complexity performance. The final choice of the algorithm will depend on the processing
power and the system performance requirement of the macrodiversity system.
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Chapter 1

Introduction

The ever-increasing demand for high-speed mobile broadband any time, anywhere, drives
the development of different channel access methods and network architectures so that
more user services and data throughput can be achieved within the same network and
bandwidth. The changing wireless channel condition due to multi-path, fading and in-
terference is a major challenge to maintaining the signal quality for mobile users. Some
channel effects can be addressed by advanced signal processing techniques such as equal-
isation, using multiple-input multiple-output (MIMO) communication, or different error
control coding (ECC) schemes. Another approach is by addressing the problem from the
network level [1, 2].

Macrodiversity is an emerging network technology that enables greater system perform-
ance. It is an extension of MIMO communication techniques in which base stations (BSs)
form the distributed nodes of a MIMO transmitter (or receiver). For the case of an up-link
system, signals received from the cooperative BSs are centrally processed by a backhaul
processing unit (BPU). Macrodiversity can achieve greater signal strength by combining
the received power of the distributed nodes, and can overcome the effects of large-scale
shadow fading by providing alternative signal paths between the user and the BSs. An-
other feature of macrodiversity is that it increases user capacity by allowing multiple users
sharing the same the channel resource. By exploiting the spatial separation between users
in the network, the system can allocate the same resource to different users simultaneously.
In general, macrodiversity improves signal quality at the cell edge, as well as the user ca-
pacity of the system [3], [4]. In the literature, there are similar ideas such as network MIMO,
Coordinated Multi-point (CoMP), or massive MIMO [5, 6, 7].

The wireless channel can be divided into multiple orthogonal time-frequency resource
blocks. The process of allocating resources to users is known as resource allocation. For
resource allocation that involves multiple users sharing the same resource, such as in multi-
user MIMO (MU-MIMO) systems, it is referred to as multi-user resource allocation [8, 9], or
joint resource allocation [10]. Multi-user resource allocation consists of two parts: User se-
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2 Introduction

lection, which chooses candidate users for resource-sharing; and a user compatibility check
(UCC), which evaluates the compatibility between the resource-sharing users. These tasks
are executed by a scheduler inside the BPU. For every time slot, it produces a resource
schedule, which contains information about resource allocation to users. Figure 1.1 shows
an example of an up-link macrodiversity system. Signals received by the BSs are jointly
processed at the BPU, and resource allocation decisions are made by the scheduler inside
the BPU, before passing them back to the BSs.

  Channel 
Information

Resource
Schedule

BPU

Scheduler

Figure 1.1: Resource allocation in a macrodiversity system.

Selecting appropriate users for resource-sharing is a combinatorial problem that already
exists in MU-MIMO systems in traditional single-cell networks [11]. The complexity of
the combinations depends on the number of users, antennas, and available RBs in the sys-
tem. Finding the optimal user selection for multi-user resource allocation is a challenging
task which requires evaluating the user compatibility of many different combinations. The
problem often becomes too difficult to solve for large systems [12]. Computation time also
adds a delay in the decision making, resulting in the resource schedule lagging behind
the prevailing channel conditions. Heuristic solutions to the user selection problem have
been studied in the past for MU-MIMO systems with co-located antennas [13, 8, 14, 15, 16].
However, often they are based on an assumption of there being zero network delay, and
on the availability of complete and accurate information on the instantaneous channel state
information (CSI), which is often not applicable in real communication systems.

The compatibility between resource-sharing users is often evaluated by system perform-
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ance metrics, such as the sum capacity or outage error probability, which is calculated us-
ing the available instantaneous CSI at the time. Estimating instantaneous CSI is a process
that is prone to estimation error. In macrodiversity systems, the geographical separation
between BSs introduces latency in the system, which exacerbates channel estimation errors,
and degrades the effectiveness of the UCC [17]. The cooperative BSs encompass a larger
geographical area and more users, which up-scales the problem of user selection, and the
computational complexity of user selection limits the scalability of the system. Another
challenge with multi-user resource allocation in a macrodiversity system is the increased
overhead on the network backhaul. Performing instantaneous channel estimation for all
potential users in the network and passing this information to the BPU creates a lot of over-
head on the network backhaul, which reduces the efficiency of the network. Challenges in
user selection complexity, network delays, and overheads limit the performance benefits
of multi-user resource allocation in macrodiversity systems.

These unique problems in macrodiversity systems motivate studies into resource alloca-
tion methods with reduced complexity and resilience to channel estimation error. One
approach is to calculate user compatibility using long-term power. The benefit of the long-
term power approach is that it eliminates the dependency on making resource allocation
decision using instantaneous CSI, and consequently avoids delay-induced channel estima-
tion error. Long-term power of the channel resources are the same, for each communication
link there only needs one long-term power estimation. Therefore it also requires much less
overhead than the instantaneous CSI approach.

1.1 Research Contributions

In this thesis, we present a low-complexity method of resource allocation for up-link mac-
rodiversity systems using long-term power. The research contributions are:

• Development of user selection algorithms with reduced complexity.
In this research we proposed four different user selection algorithms with the goals
of maximising the system user capacity potential, and minimising the computational
complexity. Different user selection algorithms were investigated, ranging from the
most extensive search algorithm, where the compatibility of all user combinations are
checked and the best performing combination is used, to the most basic algorithm,
where the user combination is a simple grouping based on the priority order of the
users. We also tried assigning users and resources into smaller partitions to further
minimise complexity.

• Implementation of a user compatibility check (UCC) using long-term power.
The compatibility of resource-sharing users is evaluated based on the link quality
of each user. In this research we used the equations developed by Basnayaka [18],
and implemented a method of checking user compatibility by estimating the SER of
the resource-sharing users in a macrodiversity system using long-term power. UCC
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estimates the SER of all users sharing the same resource, and is considered “passed”
if the target user and all other users meet the SER threshold. When combined with the
user selection algorithms we consider here, this forms a complete method of resource
allocation for up-link macrodiversity systems.

• Evaluating system performance over different environmental parameters.
System performance is evaluated in terms of utilisation and complexity. Utilisation
refers to the percentage of users being allocated with a resource, relative to the system
user capacity. Allocation of resource depends on the user passing the UCC. Complex-
ity refers to the complexity of the user selection algorithms. It is generally evaluated
by the number of UCCs required to reach a resource allocation solution. For the sim-
ulations in this research, we measure complexity by the number of SER calculations
performed on individual users. Four different parameters relating to resource alloc-
ation in a macrodiversity system were investigated: system dimensions, user distri-
butions, propagation parameters, and different link quality requirements. These are
followed by an analysis of the observed effects.

In this research, we assume a small up-link macrodiversity system with a single antenna
on each BS and on each users, with no interference from outside the cooperative BS group.
The goal of this research is to obtain greater understanding of the user selection algorithms,
and the effectiveness of the overall resource allocation method in practical scenarios.

1.2 Thesis Outline

Chapter 2 provides a background study on the topic of resource allocation. It examines
the challenges with regards to resource-sharing in macrodiversity systems, and how this
problem manifests itself in the CoMP systems of LTE. Chapter 3 describes the simulation
model in which the performance of the resource allocation is evaluated. This includes net-
work layouts, user distributions, and a model for the wireless channel. It also explains how
utilisation and complexity in greater details. Chapter 4 describes the operation of the re-
source allocation methods. It explains the mechanism of the user selection algorithms, and
the calculation of the long-term SER. It also proposes two additional strategies that could
further reduce the complexity of user selection. Chapter 5 presents the simulation results
and the analyses, and Chapter 6 offers some concluding remarks about these findings.



Chapter 2

Literature Review

2.1 Managing the Wireless Channel

The wireless channel has always been a scarce resource in wireless communication. In
the early days of wireless communication, when multiple users shared the same radio
resource, users used either a broadcast system with a simple listen-before-talking protocol,
or a control channel to establish a working channel with the recipient before talking (circa.
1950) [19, 20]. These approaches were simple, but not efficient, users often needed to “take-
turns” accessing the channel [19]. As a result, the number of users in the system was limited
to a small size.

As the wireless channel was becoming increasingly crowded, different channel access meth-
ods were developed to accommodate more users in the system. The access methods can
be channel-based or packet-based. Channel-based access methods allow multiple users to
co-exist with each other by exploiting the physical properties of the wireless channel such
as time, frequency, code, and space. This led to the development of respective multiple-
access technologies such as Time-Division Multiple Access (TDMA), Frequency-Division
Multiple Access (FDMA), Code-Division Multiple Access (CDMA), and Space-Division
Multiple Access (SDMA) [21, 22, 23]. This is common in systems where there are multiple
radio resources available, such as cellular networks. Packet-based access methods create
rules that minimise collision between transmitting packets, allowing systems to achieve
good channel efficiency. This is often seen in systems where multiple users need to share
the same radio resource in different time slots. Examples of packet-based access method
includes ALOHA, slotted-ALOHA, and Carrier-Sense Multiple Access (CSMA) systems
[24, 25, 26]. Applications of packet-based access methods can be found in ad hoc networks
and shared-media Ethernet.

In channel-based multiple access methods, the wireless channel is divided into independ-
ent resources. Users who access different resources can enjoy the communication channel
without interference. For centrally controlled networks such as cellular networks, chan-

5
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nel efficiency can be further improved by better resource allocation. Resource allocation
involves considerations in multiple dimensions. The frequency dimension represents the
spectrum resources available in the system, the space dimension represents spatial separa-
tion between the antennas of users and BSs, and the time dimension represents the queuing
order of users accessing the resource, if there are more users than the resources available.
Figure 2.1 shows a very simplistic relationship between frequency, space, and time of the
radio resource, and some strategies for optimising channel efficiency with active manage-
ment of resources.

  Channel
Resources

Space

Frequency

Time

   Resource Allocation Strategies

User Scheduling

Link Adaption

Interference Mitigation

Figure 2.1: Considerations for resource allocation and some common strategies.

Generally, a wider available bandwidth in a system indicates greater channel capacity. Of-
ten the availability of channel bandwidth is pre-determined by the government regulations
or the spectrum ownership. To increase data rate within the bandwidth, systems could
allocate more power to the channel, and use a higher order modulation scheme. These
techniques are known as link adaptation [27, 28, 29, 30]. Knopp [27] proposed allocating
more power to weaker user-channels to obtain consistent link quality for all users. Chung
[31] examined the effects of adaptive modulation schemes in improving channel efficiency
and showed that rate control is more efficient than changing the power level of the channel
[32].

Prioritising users for the available resources in a system is commonly known as user schedul-
ing. At any time instance, when the number of available resources is known, the scheduler
decides the set of users that should be served at the time. Hassel [33] provided a good over-
view of different user scheduling algorithms used in wireless networks. These methods are
mostly gradient-based algorithms where each user is assigned a utility function based on
network parameters such as delay and throughput, and scheduling decisions are made
based on the system objective. Common scheduling algorithms include Maximum Chan-
nel to Interference ratio (MCI) scheduling, Proportional Fair (PF) scheduling, and Earliest
Deadline First (EDF) scheduling [34, 35, 36, 37].

Managing radio resources to reduce interference between users is known as interference
mitigation. In cellular networks, interference occurs when users from nearby cells are ac-
cessing the same channel. This is known as inter-cell interference (ICI). Many studies have
been made on ICI mitigation. One way to reduce ICI is by careful frequency planning.
Frequency planning defines a pattern of how radio resources should be allocated between
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cells, and reuses the frequency spectrum where users are least likely to interfere with each
other, hence achieving better frequency reuse. Kwan [38] gave a good overview of different
methods of frequency reuse including Fractional Frequency Reuse (FFR), Soft Frequency
Reuse (SFR), and Adaptive Frequency Reuse (AFR), etc. Other methods of interference
mitigation that utilise the spatial aspects of radio propagation include relaying, sectoring,
and heterogeneous networks such as femto-cells. Sectoring achieves higher cell density
by using directional antennas that divide cells into smaller sectors. One practical benefit
of sectoring is that the antennas can be placed at the same location, which simplifies the
cell-site design because access to additional cell-sites is not always possible. Femto-cells
achieve a higher spectral efficiency by having smaller cell area, which increases the dens-
ity of frequency reuse. A more distributed network also means more consistent power
distribution over the deployed areas.

These strategies address different aspects of resource allocation. They are often implemen-
ted in conjunction with one another to achieve the optimal channel utilisation.

2.2 Multi-User Resource Allocation

In traditional cellular systems, there is only one antenna on each BS, and each radio re-
source can support only one user. For this type of system, optimisation of spectral ef-
ficiency is limited to prioritising user services according to the channel conditions, and
frequency planning to avoid interference from the neighbouring cells. The development
of MIMO communication allows the same resource to be shared by multiple users, this
is known as a MU-MIMO system (as oppose to single-user MIMO systems: SU-MIMO).
MU-MIMO can be regarded as a form of SDMA, where resource-sharing is achieved by
exploiting spatial diversity in the MIMO systems. When signals from different sources are
received by multiple antennas; although they interfere with each other, the spatial diversity
will often allow the signals to be separated, hence achieving a higher spectral efficiency
[11, 39].

Multi-user resource allocation involves selecting users for resource-sharing, and evaluat-
ing the compatibility between the selected users. The following describes some popular
strategies for user selection and compatibility evaluation. The symbols described in this
section applies only to this Chapter. The symbols used in the remaining of this thesis are
defined in Chapter 3.

2.2.1 User Selection

Selecting compatible users for resource-sharing is known as user selection, or user grouping.
Users who share the same resource is referred to as a user group. To check the compatibility
of the resource-sharing users, a UCC is used to evaluate the fitness of each user group in
relation to the system objective. The general goal of user selection is finding appropriate
user groups so the system throughput or the overall link quality is maximised. Finding
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the optimal user selection is a combinatorial problem in which a huge number of grouping
combinations exists even for a small number of users and resources. An exhaustive search
of all combinations is not practical, and it is often impossible to execute in real life [12]. The
following are some common user selection strategies that have been proposed in the past:

No Resource-Sharing:

In resource allocation with no resource-sharing, users who are allocated with a resource
have the exclusive right to access it. If users are ranked according to a system objective
and assigned with a priority order, then the resources are typically allocated to the first k
users on the priority order. Because all resources are independent, therefore the order of
the k selected users is not important. Hence, there is no need to search for different user
combinations, or check user compatibilities for this setup.

Figure 2.2 shows a resource allocation scenario where there is no resource-sharing. To sim-
plify the notation, in the figures, resources are referred to as RB (Resource Block), and users
are referred to as UE (user equipment). In this example, there are k available resources and
n users. Here, we refer to the first k users as primary users, all other users are referred to
as secondary users. The primary users have exclusive access to the resources, however, the
overall user capacity is low because each resource is only being used once.

1 3 k2RB

UE

1 k k+1 n

Figure 2.2: Resource allocation with no resource-sharing. The first k users are allocated
with a resource. The remaining users are unallocated.

Exhaustive Search (ES):

Figure 2.3 shows the same scenario with resource-sharing. Resource allocation is done in
such a way that the primary users are served first, before the secondary users are con-
sidered. Within the same resource, the link quality of an additional user is dependent on
the existing user who has been allocated the same resource. In this case, the order of the
selected users is important for all other users beyond the first row.

Here, we consider the exhaustive search (ES) algorithm, where all combinations of the
secondary users are considered. This combinatorial behaviour can be evaluated using per-
mutations, nPk, where n is the number of users, k is the number of resources available in
the system.
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Assuming fixed allocation for the primary users, the number of combinations, Ncomb, can
be described by

Ncomb =

R=min(bn/kc,r)∏
i=1

n−ikPk. (2.1)

Here, r is the total number of antennas of the BSs1, and R is the maximum number of users
sharing the same resource. If n < k×r, thenR = bn/kc; if n > k×r, thenR = r. Given that
the UCC is performed on each user group independently, the complexity of user selection
can be described by the number of UCCs, NUCC:

NUCC = kNcomb = k

R=min(bn/kc,r)∏
i=1

n−ikPk. (2.2)

For the special case where n is a multiple of R, (2.2) has a simplified expression:

NUCC = k
(n− k)!

(n− 2k)!

(n− 2k)!

(n− 3k)!
. . .

(n− (R− 1)k)!

(n−Rk)!
= k

(n− k)!

(n−Rk)!
. (2.3)

From (2.2) and (2.3), the complexity of the algorithm grows exponentially as the number of
users increases. This is similar to the well-known knapsack problem and it isNP-complete
[15]. It is computationally intensive for any practical system, and for this reason, people
have been searching for heuristic solutions to address the problem.

1 3 k2

1 3 k2

RB

UE

k+1 n

Figure 2.3: Resource allocation in a MU-MIMO system using ES method.

Greedy (GD):

One of the most common solutions is the use of greedy algorithms. Greedy algorithms
accept the first solution that passes UCC [13, 40, 15, 9, 16, 41]. Based on a greedy algorithm,
Shad [13] proposed two user selection methods for each additional user in the user group:
one chooses the first candidate user that meets the compatibility criteria (First Fit - FF);

1Since we assume each BS only has one antenna, r is also the number of BSs.
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the other one chooses the best performing candidate user (Best Fit - BF). These methods
are “greedy” in the sense that once a candidate user is selected, it is removed from the
user selection pool, hence removing the possibility of the selected users being in a different
group.

Figure 2.4 shows an example of user selection by a greedy algorithm. The compatibility
of each additional user is tested in a sequential manner assuming fixed allocation for the
primary users. In each iterative search, one suitable candidate is added into the user group
(hence removed from the user selection pool). NUCC can be described by

NUCC =

min(n−1,rk)∑
i=k

(n− i). (2.4)

For the FF algorithm, this is the upper bound of the search complexity; for the BF algorithm,
this is the minimum search complexity.

If the channel condition is such that there is no compatible user for resource-sharing, then
NUCC can be described by

NUCC =
k∑
i=1

(n− k), (2.5)

where the algorithm terminates after the first round of search for resource-sharing users.

1 3 k2

1 3 k2

RB

UE

k+2 n

k+1

Figure 2.4: User selection by the greedy algorithm. Unallocated users are tested sequen-
tially according to the priority order. Each time a compatible user is identified,
it is added to the user group and removed from the user selection pool.

In [13], Shad also argued that by allocating the same resource to users with similar uplink
power levels, it is less likely that the stronger interferers will corrupt the weaker trans-
missions. Shad proposed sorting users in ascending power order before starting the user
allocation process.

Tree Structure (TS):
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Similar to the greedy algorithm, Fuchs [14] extended the idea to a tree-based structure
where users are merged or divided into groups, depending on whether the tree is con-
structed following a top-down or a bottom-up approach. Figure 2.5 is an excerpt from the
paper, showing the grouping process. Here, l, is the number of groups. For a bottom-up
structure, an additional user is merged into a group if the candidate user meets the com-
patibility criteria. Ideally, the number of groups should be less than or equal to the number
of resources. If the number of groups is greater than the number of resources, either the
users with higher priority order (priority-oriented), or groups with a higher number of
users (capacity-oriented) should be granted the resource. NUCC can be described by

NUCC =
l−k∑
i=1

l−iC2 =
l−k∑
i=1

(l − i)!
2(l − i− 2)!

. (2.6)

One benefit of this algorithm is that it retains memory from the last resource allocation.
Between different time instances, it only needs to make modifications to the existing sched-
ule to accommodate the change. The algorithm does not need to start from l = n or l = 1.
This is a useful feature in networks where past user behaviour has a high correlation with
the future user behaviour.

Figure 2.5: Tree-based user selection. (From [14].)

Genetic Algorithm (GA):

Wang [10] applied genetic algorithms to the user selection problem. In his method, a re-
source schedule is an individual in an evolutionary population. Each individual has a chro-
mosome that contains k gene vectors. In this case, k, is the number of resources. As shown
in Figure 2.6, each gene vector (row) contains a binary representation of the user selection
for one resource and the bit loading schemes for the users in the group.

Chromosomes are evaluated by a fitness function. In the case of Wang, he looked at the
transmission rate of users who vary their transmission rate according to the channel con-
dition. The two fittest individuals are selected as parents, who breed offspring by genetic
operators such as crossover and mutation. In each generation, the pair of parents breed Np

individuals to replace the old population. Over generations, the chromosomes eventually
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converge on the system objective. The complexity of user selection can be calculated as

NUCC = kNpNg. (2.7)

Np, is the population of individuals in the current generation, and, Ng, is the number of
generations. Both Np and Ng can be arbitrarily defined, where the larger the number, the
higher likelihood of convergence.

Figure 2.6: An example of a genetic crossover operation with 8 users, 4 resources, and a
frequency re-use factor of 3. (From [10].)

Convex Optimisation (CO):

In [42], Maciel formulated the user selection problem into a convex optimisation problem.
In this method, user selection is presented in the form of a binary selection vector. The goal
is to find a selection combination where the channel correlation between users is minimal.
By allowing values in the selection vector to be continuous, the task is turned into a convex
quadratic problem with linear constraints. The solution can be found without exhaustively
searching through all combinations, hence reducing the search complexity. Assuming the
worst case scenario where the CO algorithm goes through the combination iteratively, the
upper bound of NUCC can be described as

NUCC ≤
k∑
i=1

n−irCR =
k∑
i=1

(n− iR)!

R!(n− (i+ 1)R)!
, R = min(bn/kc , r). (2.8)

Here, R, has the same definition as in (2.1). In theory, convex optimisation provides a
means of finding the user selection without an exhaustive search, however, the complexity
involved in solving the convex optimisation problem means that the overall complexity of
the algorithm is still high. The trade-off between the user selection complexity and solving
the convex quadratic problem may not be beneficial for the overall efficiency.

Summary:
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Figure 2.7 compares the selection complexity of the algorithms over different numbers of
users. From the figure, we can see that the complexity of the ES algorithm becomes ex-
ponentially higher than all other algorithms as the number of users grows large. The GD
algorithms have the least complexity: In this figure, we assume that a suitable candidate
is added into the user groups in each round of search. FF has less complexity than BF, be-
cause it accepts the first candidate that meets the compatibility criteria. The TS algorithm
has slightly a higher complexity than the GD algorithms. Unlike the GD algorithms, where
each row has to be filled before moving onto the next row, the TS algorithm has no con-
straint on the group size, resulting in more possible grouping combinations. For GA, the
complexity depends on the number of individuals in the population (Np), and the number
of generations (Ng). These numbers are arbitrarily defined but they need to be of a sensible
size for the result to converge. As a result, GA has a higher complexity in systems with a
small number of users, but it is more efficient in systems with a larger number of users. For
the CO algorithm, we provide only an upper bound on the complexity. In this case, the CO
algorithm has a similar complexity to the GD algorithms. The complexity of CO surpasses
GD, TS and GA, when the number of users becomes large. In practice, the CO algorithm is
likely to be much less complex than the estimated upper bound.
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Figure 2.7: Complexity of user selection measured in NUCC. In this example, k = 5, and
r = dn/ke. For the TS algorithm l = n. For the GA algorithm, Np = 20, and
Ng = 50.

Table 2.1 shows an example of the maximumNUCC required for each class of user selection
algorithm. From Figure 2.7 and Table 2.1, the GD algorithm has the least user selection
complexity. The simplicity and low complexity characteristics make the GD algorithm an
attractive option for systems with a large number of users.
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Table 2.1: Estimated complexity for the user selection algorithms.

User Selection Number of UCCs

Exhaustive Search (ES) k
∏R
i=1

n−ikPk

Greedy (GD)
∑min(n−1,rk)

i=k n− i

Tree Structure (TS)
∑l−k

i=1
(l−i)!

2(l−i−2)!

Genetic Algorithm (GA) kNpNg

Convex Optimisation (CO)
∑k

i=1
(n−iR)!

R!(n−(i+1)R)!

2.2.2 Compatibility Evaluation

When there are multiple users in the user group, it is inevitable that some mutual interfer-
ence will occur, resulting in poorer link quality for all users in the group sharing the same
resource. It is possible to reduce the interference using MIMO detection techniques such
as zero-forcing (ZF), minimum mean-square-error (MMSE), or maximum likelihood (ML)
detection. UCC provide a means of evaluating the compatibility of the resource-sharing
users. In general, UCC evaluates the link quality of the users. The following are some
common approaches for evaluating link quality:

Sum Capacity:

Fundamentally, multi-user resource allocation is often about achieving higher user capa-
city or system throughput. Therefore, many resource allocation algorithms use sum capacity
(or sum rate) for evaluating user compatibility. For SU-MIMO systems, channel capacity
can be described by [39], where

C = max
Q:tr(Q)=P

log2 det(IK + HQH†). (2.9)

C is the channel capacity measured in bits per second. IK is an identity matrix with size
K × K, where K is the minimum number of antennas between the transmitter and the
receiver. H is the instantaneous channel matrix, H† is the conjugate transpose of H, and Q

is the covariance matrix of the transmitted symbols. For MU-MIMO channels, the channel
capacity of an individual user depends on the channel capacity of the other user. The sum
capacity is described by

C = max
Q1,...,Qn

log2 det(IM +
n∑
i=1

HiQiH
†
i ). (2.10)
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Here, C is the sum capacity of all users, n refers to the number of resource-sharing users
and i is the index of the individual user. M is the number of antennas of the individual
users. Examples of compatibility evaluation using sum capacity can be found in [40, 14, 42,
43, 10, 44].

Sum capacity gives an indication of the potential rates available on the user channels, but
this is only the sum rate of a particular user group, not the rate or the link quality of indi-
viduals in the group.

Quality of Service (QoS):

As an alternative approach, link quality may be defined such that a minimum Quality of
Service (QoS) for each user is guaranteed. QoS can be measured by the error probability of
the link. Ideally, QoS should reflect the block-error rate (BLER) of the user channel. How-
ever, BLER depends on many factors such as the ECC scheme and the Modulation Coding
Scheme (MCS), which may vary from user to user. Very often, bit-error rate (BER) or SER is
used for measuring QoS instead, and these values can be converted to BLER using stand-
ard lookup tables.

There is a technical problem in using long-term power to evaluate error rates. Since the
channel matrix in macrodiversity systems does not follow a Wishart form, it is difficult to
characterise the SNR/SINR distribution using long-term power. We can not derive error
rates without understanding of the characteristic function of SNR. Basnayaka [45] derived
a method of calculating the exact and approximate SER of users for macrodiversity systems
using long-term power. From Basnayaka’s work [18, 45], the exact SER in macrodiversity
system can be calculated in scenarios where there is only one user using the frequency
resource. However, the same argument can not be extended to multiple users sharing the
same resource. For the multi-user scenario, the characteristic function of SNR can be estim-
ated by the use of the Laplace approximation, and an estimated SER can be calculated if the
MCS is known. In Basnayaka’s paper, he used QPSK modulation schemes as an example.
These equations provide a simple, closed-form method for estimating the link-quality of
resource-sharing users in macrodiversity systems. Similar work appears in Zhang [46],
where the BER is part of the objective function for user compatibility.

SINR:

In conventional cellular systems, the instantaneous signal-to-interference-and-noise ratio (SINR)
is often used as an indicator for link quality. This is because SINR can be easily derived
from the instantaneous CSI, and there is a high correlation between SINR, channel capacity,
error rates, and QoS.

In [13], Shad proposed that for a down-link MU-MIMO system, the average SINR after
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beam-forming, can be described by

γ =
E[|wTxd|2]
E[|wTxu|2]

. (2.11)

In (2.11), γ is the average SINR, w is the beam-forming weighting vector, xd is the desired
signal, and xu is the undesired signal, consisting of the noise and the interfering signals.
The author further proposed that a minimum SINR requirement be adopted as the com-
patibility criteria.

In MU-MIMO systems, the link quality of user channels does not follow a direct relation-
ship with SINR. For MU-MIMO systems, the SINR varies depending on the channel char-
acteristics of the resource-sharing users. This is therefore a less commonly used method
for compatibility evaluation.

Channel Correlation Matrix:

The less correlation between the user channels, the higher the likelihood of users being
compatible for resource-sharing. In [8], Spencer proposed a scaled Frobenius norm as
a measure of user compatibility. The metric estimates the total correlation between two
users’ channels, and produces a single constant, in which a set of user groups is selected
so the overall channel correlation is minimised. The limitation of this metric is that it can
only evaluate channel correlation between two users. Zhang [46] proposed a method that
groups the most correlated users together as a single group. Within the group, each user is
allocated an independent resource so users do not interfere with each other. Users in differ-
ent groups are allowed to share the same resource so that spectral efficiency can be utilised.
Tolli [40] proposed that for MU-MIMO systems with block diagonalisation pre-coding, the
maximum sum channel gain can be obtained by selecting the users with the highest eigen-
values. The eigenvalues correspond to the beam-forming vectors of the channel, which are
obtained by Single Value Decomposition (SVD) of the channel matrix. In this case, only the
channel energy is taken into account. In [15, 47], Maciel proposed a Spatial Compatibility
Check (SCC), that looks at the average correlations among all channels. This metric has a
weighting which favours groups with a larger number of users.

These methods are relatively simple to compute, however, they are loose indicators of the
link quality. If we can not ascertain an accurate link quality for the users, it is difficult to
estimate whether the performance trade-off is acceptable between user link quality and
higher user capacity. As a result, the system can not fully realise its capacity potential.

Summary:

The above metrics provide a means of evaluating link quality for the resource-sharing users
with varying degrees of accuracy and complexity. Most of the metrics use instantaneous
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CSI to generate the compatibility result. Instantaneous CSI is prone to channel estimation
errors, and the problem is exacerbated in macrodiversity systems, where there often is a
significant delay between the channel estimation and the actual data transmission. Estim-
ating instantaneous CSI for all users at all resources also creates a large amount of over-
head, reducing the overall efficiency of the wireless channel and the supporting backhaul.
For these reasons, it is worth exploring UCCs that do not use instantaneous CSI. In this
study, we focus on estimating SER using long-term power.

2.3 Resource Allocation in Macrodiversity Systems

MU-MIMO systems have two configurations: microdiversity or macrodiversity. Most cur-
rent MU-MIMO systems are “micro-diversity”, where separation of the antennas in the
antenna array is a few wavelengths apart, generally co-located at the same geographical
point [48]. “Macro-diversity” refers to the antennas in the antenna array being geograph-
ically separated with distances between BSs in the order of hundreds of metres or kilo-
metres [49, 50, 51, 52]. Macrodiversity systems treat BSs as distributed nodes of a MIMO
receiver and require simultaneous control of all the BSs within the network group. The
concept of macrodiversity has already been applied in existing technologies such as the
soft-handover in CDMA and Universal Mobile Telecommunications System (UMTS) net-
works [53, 54, 55, 56], and macro-diversity handover (MDHO) in WiMax [57, 58, 59]. Single
frequency networks (SFN), such as Digital Video Broadcasting-Terrestrial (DVB-T) and Di-
gital Audio Broadcasting (DAB) in broadcasting networks, are also a form of macrodi-
versity system [60]. The advantage of macrodiversity is that it can provide diversity gain
in areas where microdiversity could not, such as in areas experiencing large-scale shad-
owing effects, and at the cell edge [61]. This is attributed to the geographical separation
between antennas, where each antenna has different path loss and shadowing characterist-
ics. In general, macrodiversity improves signal performance at the cell edge and increases
user capacity within the cell group [3], [4]. Microdiversity and macrodiversity systems can
be implemented independently, or combined.

One of the challenges with macrodiversity systems is the inherent delay in the network.
This has a significant impact on resource allocation in macrodiversity systems. Most re-
source allocation algorithms rely on the availability of instantaneous CSI [13, 8, 14, 40].
However, passing instantaneous CSI over the network backhaul creates large network
overheads, and the inherent network delay also makes the received information unreli-
able as fast fading means that channel conditions can change in the order of microseconds
(µs) [62, 63]. Diehm [64] showed that the effectiveness of instantaneous CSI decreases sig-
nificantly if the delay is longer than 10ms, and up to 50% degradation in channel capacity
(bits per channel use) can be observed if the user is moving faster than 10km/h.

One way of avoiding the effect of network delay is by using long-term power for UCC. In
2007, Bandemer proposed a method of evaluating user compatibility for MU-MIMO sys-
tems using long-term power [43]. In his work, user compatibility is evaluated based on the
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channel capacity (ergodic sum capacity) of users in the system. Bandemer’s work is con-
fined to up-link MIMO systems with co-located antennas, where the received signal power
of the BS is constant for each user. In 2012, Basnayaka and Smith extended Bandemer’s
work into macrodiversity systems. Basnayaka presented a series of studies on evaluating
link qualities of resource-sharing users in up-link macrodiversity systems using long-term
power [18, 44, 65, 66, 1, 67, 45, 68]. The author developed closed-form equations for the
ergodic sum capacity [44], calculations of the exact symbol-error rate (SER) for single and
dual user macrodiversity scenarios [65, 66], and a calculation of the approximate SER for
general multi-user macrodiversity scenarios [1] for different receiver detection techniques
such as maximumal ratio (MRC) combining, Zero-Forcing (ZF), Minimum Mean Square
Error (MMSE) and maximum likelihood (ML) detection using an extended Laplace ap-
proximation. Basnayaka provided a comprehensive framework for evaluating link quality
based on long-term power in macrodiversity systems. This work is useful as part of the
UCC. However, reducing user selection complexity remains a challenging task. For prac-
tical implementation of multi-user resource allocation in macrodiversity systems, the user
selection complexity needs to be further reduced.

2.4 Application: LTE CoMP Systems

In LTE release 11 (LTE-advanced), a version of macrodiversity is supported, known as
Coordinated Multi-Point (CoMP) [3, 69]. In the 3GPP technical report, it is shown that
CoMP schemes can potentially improve cell edge performance by up to 40% (no resource-
sharing), without the need for a major infrastructure change.

CoMP in LTE uses Orthogonal Frequency Division Multiplexing (OFDM) in its radio ac-
cess. OFDM divides radio resources into time and frequency resource blocks (RBs) and
dynamically allocates RBs to UEs by the radio resource control (RRC) scheduler [70, 71].
Like other macrodiversity systems, CoMP also suffers from delays in the network, result-
ing in degradation of performance [72, 73]. Passing instantaneous CSI through the network
backhaul also creates significant strain on the network, limiting the potential of macrodi-
versity to provide system performance improvement. Currently there is no standardised
resource allocation method for CoMP in LTE. An investigation of resource allocation us-
ing long-term power could improve the performance of CoMP and potentially make the
system deployable on a larger scale than before.

2.5 Summary

This chapter described the role of resource allocation in improving the utilisation of wire-
less channels. It showed that in MIMO systems, the same frequency resource can be shared
by multiple users by exploiting spatial diversity in the system. A macrodiversity system
is a sub-class of MIMO systems where the antenna arrays are located at BSs that are geo-
graphically separated from each other. This presents a challenging problem as the delay
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inherent in the network makes instantaneous CSI ineffective, and system performance suf-
fers as a consequence. Basnayaka [18] proposed various metrics for user compatibility in
macrodiversity systems using long-term power, enabling the development of resource al-
location methods for macrodiversity systems that are resilient to network delay. Research
into this resource allocation method has applications to the CoMP system in the LTE stand-
ard, potentially increases cell-edge throughput, and can lead to a general improvement in
signal quality and user capacity.
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Chapter 3

System Model

To evaluate performance of multi-user resource allocation in macrodiversity systems, a
simple model is constructed to represent the real-life macrodiversity system, and resource
allocation is simulated under different system parameters. This chapter defines the net-
work laytouts of the macrodiversity system model, the user distributions, the wireless
channel model, and the method in which link quality and system performance are eval-
uated. For individual user channels, link quality is evaluated by the analytical SER, calcu-
lated using long-term power. Users are considered meeting the link quality requirement
if the SER passes the SER threshold, and resources are only allocated to the users if they
meet the link quality requirement. From the system perspective, we are interested in how
much the user capacity can be realised in macrodiversity systems with resource-sharing.
This is measured by the percentage of allocated users over the theoretical user capacity.
We are also interested in the complexity of the user selection algorithms. In the simulation,
complexity is defined as the number of analytical SER calculations required for the user
selection algorithm to find a resource schedule.

3.1 Network Layouts

In conventional cellular systems, users connect only to one cell at a time - often the BS with
the strongest received signal strength to each user. Such a configuration often means that
the users have poor link quality at the cell edge as neither cell experiences good received
signal strength. Macrodiversity systems overcome this problem as the users are supported
by multiple BSs simultaneously. Within the coverage area, the signal transmitted by a
user is received by every BS within the macrodiversity group, and the received signal is
combined to achieve greater overall signal strength. Another benefit of macrodiversity
is that it can also support multiple users simultaneously on the same frequency channel
because the signals can be separated out using detection techniques such as ZF or MMSE.

Figure 3.1 illustrates the difference between a conventional cellular system and a macrodi-
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versity system. In the figure, cells are centre-excited with no sectoring involved. In mac-
rodiversity systems, the BSs are joined together and centrally controlled by the BPU. The
BPU combines the information received from the BSs in the group, and allocates resources
to users according to a resource allocation algorithm. As shown in the Appendix A1 of [3],
there are many different network layouts for macrodiversity systems. In this thesis, only
homogeneous networks are considered, and the total coverage area of the macrodiversity
system is the combined area of all cooperating BSs.

(a)

BPU

(b)

Figure 3.1: (a) A conventional cellular system: the cell shaded in gray operates independ-
ently of the surrounding cells. (b) A macrodiversity system: the group of 7 cells
co-operate via a BPU, covering the area of all 7 cells.
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There can be multiple cooperating BS groups within a macrodiversity system. We define
a set of cooperating BSs as a base station group (BSG) 1. With more BSs in a BSG, the
network can support more users in the system, but the user selection complexity can also
become very large. One way to break the problem down is to have multiple smaller BSGs.
Figure 3.2 shows a macrodiversity system with multiple BSGs. Each group has a BPU and
resource allocation decisions are made within the BSG.

BPU2

BPU3

BPU1

Figure 3.2: Macrodiversity with multiple BSGs.

As shown in Figure 3.3, when two BSGs are next to each other, a transmitting user can
potentially interfere with neighbouring BSGs, similar to inter-cell interference (ICI) in con-
ventional cellular systems. Mitigating Inter-Group Interference (IGI) is a complex field of
study on its own, so this is not in the scope of this research. The focus of this research is on
reducing user selection complexity of a single macrodiversity system.

Neighbouring 
Cell Macrodiversity 

Cell

IGI

A

B

Figure 3.3: IGI: User B is interfering with the neighbouring BSG.

1In LTE-Advanced, a group of cooperating cells is called a CoMP Cooperating Set [3]



24 System Model

3.2 User Distribution

There are two types of user distributions considered in the simulation: a random uniform
distribution and a random clustered distribution. A uniform distribution reflects a general
system scenario where users tend to be evenly spread, and a clustered distribution simu-
lates scenarios where there is a sudden increase of data demand in a focused spot such as
a disaster event.

Figure 3.4 shows examples of two user distributions with 3 BSs. Here, we define the radius
of the BSs as 1, which is the distance of the BSs away from the centre of the map. Figure 3.4a
shows a uniform user distribution: users are in the vicinity of the BSG, which is described
by a circle positioned at the centre of the BSG. In this case the radius of the circle is 1.5 times
the radius of the BSs. Figure 3.4b shows a clustered user distribution: in the simulation,
we describe the user cluster as a Gaussian distribution, and the centre of the cluster could
be at the centre of the BSG or at the cell-edge, depending on what distribution scenarios
we intend to create. In this case, the variance of the cluster is 0.375 of the radius of the
BSs. These two user distribution models are the primary scenarios we considered in our
simulations in Chapter 5. In the figures, we plot 500 users on the map to give readers
a stronger sense of user distribution; in the simulation in Chapter 5, we only consider a
small number of users, to keep the simulation manageable.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x coordinates

y 
co

or
di

na
te

s

BS1

BS2 BS3

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x coordinates

y 
co

or
di

na
te

s

BS1

BS2 BS3

(b)

Figure 3.4: (a) Uniform distribution: Centred at (x, y) = (0, 0), with radius = 1.5.
(b) Gaussian distribution: Centred at (x, y) = (0, 0), with variance σ2 = 0.375.
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3.3 Channel Model

As explained in Chapter 2, it is difficult to accurately estimate instantaneous CSI of all
users in macrodiversity systems simultaneously, because of delays and overheads in the
network. Therefore, in this research, we use long-term power for evaluating link-quality,
and only consider long-term channel effects such as path loss and shadowing in the chan-
nel model. To maintain generality of the analysis, the channel model is based on a generic
log-distance path loss model [23]. Application specific models such as Hata-Okumura or ITU
models [74, 75, 76] are omitted in this research. This section first describes the channel
model in a simple point-to-point link, then extends the model to the macrodiversity sys-
tem with multiple users and multiple BSs. In the model, we assume that each user and BS
has only one antenna.

3.3.1 Point-to-Point Links

Long-term channel effects include distance-based path loss and shadowing. Distance-
based path loss is the effect of signal attenuation due to the distance separation between the
transmit and the receive antennas. In free space, the signal attenuation can be described by
the free space path loss model, where signal strength is inversely proportional to the square
of distance [23]. In real life, radio propagation goes through obstructions such as buildings
and foliage, hence attenuation tends to be greater than the free space path loss. We de-
scribe the rate of attenuation by the path loss exponent, γ, which is the rate of path loss
over distance. In free space, γ = 2; in environments with obstructions, γ ranges between 3
and 6 [23].

Shadowing describes the effect of the average signal attenuation due to signal diffractions
and reflection from large obstacles. The effect of shadow fading is described by Ψ. It is a
random variable often modelled a log-normal distribution [23, 77].

For a simple system with only one transmit antenna and one receive antenna, the receive
power P is

P = P (d0)× d−γ ×Ψ. (3.1)

Here, d0 refers to a reference distance for which a reference measurement close to the trans-
mitter is made. P (d0) refers to the ensemble average of all possible received power meas-
ured at the reference distance d0. d is the distance between the transmit and the receive
antenna; it is a unit-less value where distance is a factor of the reference distance d0. For
the actual distance,

d = d× d0. (3.2)

Ψ is the shadowing fading factor,
Ψ = 10xσ/10, (3.3)

where xσ is a zero-mean Gaussian random variable with standard deviation, σSF .
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3.3.2 Macrodiversity Links

For macrodiversity systems, there are multiple users transmitting, and multiple BSs re-
ceiving, hence multiple channel paths exist. Assume element-wise multiplication and ex-
ponentiation, the channel model in (3.1) becomes

P = P (d0) ◦ d−γ ◦Ψ. (3.4)

◦ is Hadamard product representing element-wise multiplication. P, d, and Ψ areNBS×N
matrices. NBS is the number of receiving BS antennas and N is the number of users in the
system. The receive power matrix for the macrodiversity system is

P =


P1,1 P1,2 · · · P1,N

P2,1 P2,2 · · · P2,N

...
...

. . .
...

PNBS ,1 PNBS ,2 · · · PNBS ,N

 . (3.5)

Here, Pi,j is the received power of individual paths, where i is the index of the BSs, and j

is the index of the users. We also define spatial dimension of a channel matrix as the number
of independent paths a user is being supported by the BSG. In this research, the spatial
dimension is NBS.

3.3.3 Power Scaling

Section 3.3.1 and Section 3.3.2, describe the effect of path loss and shadowing on the chan-
nel model, however, we have to define the appropriate level for P (d0). Here, we simplify
(3.4) to

P = A× d−γ ×Ψ, (3.6)

and A is the power scaling factor which defines the relative transmit power of each user.

In the simulations, we expect all entries of the received power P to be such that:

Statistically, 95% of the users must have sufficient power to meet the target SER
threshold, when they are considered independently in a traditional cellular system.

In traditional cellular systems, 95% is the typical connectivity requirement for commercial
networks. By setting the power level so the connectivity requirement aligns with the tra-
ditional cellular systems, it allows us to compare results directly with the current system.
In our model, we define the link quality requirement for the user connection by the target
SER threshold.

We calculate A using the following steps:
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1. Simulate 10,000 users around the BSG. Users are in a uniform distribution as defined
in Figure 3.4a.

2. Find P using (3.6), assuming A = 1.

3. Each column represents the power received by all BSs from one user. For each
column, find the strongest power. The row index i of this power is the BS which the
user will be connecting to in traditional cellular systems (assume no interference).

4. Rank all users in terms of the power received by the connecting BS, from the lowest
to the highest.

5. From the ranking, find the power of the 500th user, P500th. Statistically, this is the 5%
user margin.

6. Find the minimum power requirement to achieve the SER threshold, Pth. Assuming
traditional cellular system, where users have only single connection to the nearest
BS.

7. Scale the power so the 500th user meets the minimum power requirement. Hence,
A = Pth /P500th.

Table 3.1 shows a summary of key channel parameters and their values in the simulation.
These are the baseline parameters used in the simulations, but different values are also
considered.

Table 3.1: Summary of key channel parameters.

System Parameters Symbol Value

Path Loss Exponent γ 3.5

Shadow Fading Factor Xσ 8 dB

Power Scaling Factor A 200 ∼ 300

3.4 Analytical SER Prediction

The calculation of the analytical SER is considered a way of predicting future link quality
when users are transmitting according to the resource schedule. As shown in Chapter 2, we
can calculate the exact SER using long-term power with a relatively simple expression if the
resource is allocated to a single user. If the resource is allocated to multiple users, only an
approximate SER can be found, and the calculation is more complex. In the proposed SER
calculation, user up-links can be classified into two types of scenarios: No resource-sharing,
which refers to the resource being allocated to only a single user; and with resource-sharing,
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which refers to the resource being allocated to multiple users. Although the focus of this
research is on systems with resource-sharing, there are times where none of the available
users are compatible. In this case, we still need a way to calculate SER. For this reason,
when predicting SERs of users, the scheduler applies different calculation methods de-
pending on the specific scenario. SER calculation for no resource-sharing scenarios allows
us to estimate SER of the user with high accuracy in a relatively low computation time.

3.4.1 No Resource-Sharing

For scenarios with no resource-sharing, the exact long-term SER can be expressed as an
integral of probability error functions in a quadratic form, which is reduced into a relatively
simple algebraic expression involving the long-term powers. Equation (3.7) shows the
algebraic expression of the exact SER for an arbitrary user, labelled user 1.

SER =

NR∑
i=1

Pi,1
2

(NR−1) NR∏
i 6=j

2 (Pi,1 − Pj,1)−1
3

4
− 1√

2σ2

Pi,1
+ 1

(
1− 1

π
arctan

(√
2σ2

Pi,1
+ 1

)) ,

(3.7)
whereNR, is the number of receiving BSs. Pi,1, is the long-term power of each up-link from
the transmitting user to the ith receiving BS, and σ2 is the noise variance. In this research
we consider noise has a normal distribution, which σ2 is also the average noise power. A
detailed derivation of the equation can be found in Appendix A.1.

3.4.2 With Resource-Sharing

For scenarios with resource-sharing, there is no simple analytical solution for calculating
the exact SER. In [66, 67], the authors showed that the exact SER can be calculated if there
are two users in the group (N = 2). However, this does not extend to the general multi-
user case (N ≥ 2), and the exact SER expression for the dual-user case requires numerical
integration, which is not preferable in real-time, delay-sensitive operations. In [1], the
authors showed that an approximate SER is available for the general multi-user case. For
a macrodiversity system with M -PSK modulation and ZF detection, the approximate SER
of the target user is

SER = K̃0 Ĩ γ̄−Gd . (3.8)

Here, K̃0 is a constant depending only on the long-term powers, and it is given by

K̃0 '
Perm(Qn)

|Pn|Perm(Pn
−1Qn)

. (3.9)

Pn is the diagonal matrix of the power vector of the target user from the main power
matrix, P from (3.6). Qn is a matrix containing the column vectors of the other resource-
sharing users. Perm(.) is the permanent of a rectangular matrix as defined in [78].
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For example, consider a macrodiversity system where

P =


P1,1 P1,2 · · · P1,N

P2,1 P2,2 · · · P2,N

...
...

. . .
...

PNR,1 PNR,2 · · · PNR,N

 . (3.10)

Consider a user group where users 1, 3, and 5 share the same resource, and user 1 is the
target user of this calculation.

Pn = P1 = diag(P(:, 1)) =


P1,1

P2,1

. . .

PNR,1

 , (3.11)

and

Qn = Q1 =


P1,3 P1,5

P2,3 P2,5

...
...

PNR,3 PNR,5

 . (3.12)

The remaining part of (3.8) is given by

Ĩ =
1

π sin
(
π
M

)2Gd
∫ (M−1) π

M

0
sin(θ)2Gd dθ,

γ̄ =
1

σ2
,

Gd = NR −N + 1.

(3.13)

A closed-form expression for Ĩ is available, using Equation (2.513.1) in [79].

Ĩ =
1

π sin
(
π
M

)2Gd
(

1

22Gd

(
2Gd
Gd

)
θ +

(−1)Gd

22Gd−1

Gd−1∑
k=0

(−1)k
(

2Gd
k

)
sin ((2Gd − 2k)θ)

2Gd − 2k

)
, (3.14)

where θ = (M − 1) πM . M us the moment of the MCS.

The calculation of the approximate SER involves the computation of the two permanents in
(3.9). Computing the permanent is a #P-complete problem [80], which means that the com-
putational complexity of calculating the approximate SER can be very high if the number
of users and BSs in the BSG is large. The fastest known exact algorithm for computing the
permanent is the Ryser Formula [81]. Using the Ryser Formula, the permanent of a matrix
with dimension n × n can be computed with O(n22n) arithmetic operations. Hence, com-
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puting SER for resource-sharing users can be a complex process if the number of cooper-
ative BSs is large. Therefore, in this research, we are mostly interested in macrodiversity
systems with a small number of cooperative BSs. This is realistic for many systems, but
for distributed massive MIMO systems in the future, it may become too complex. In these
cases, further work will be required. Note that although the permanent is computationally
intensive for large systems, it is trivial for small systems with 2 to 5 BSs.

3.4.3 Accuracy of the SER Prediction

To evaluate the accuracy of the analytical SER predictions, we compare the SER results of
both using the analytical methods and the Monte Carlo method. In this investigation, a
power matrix, P, is created according to Section 3.3; however, instead of using the power
scaling method in Section 3.3.3, the channel power is then scaled to 1, where

NR∑
i=1

Pi,j = 1. (3.15)

By scaling the combined power of all users to unity, we can control the ratio between signal
and noise, and observe how SER changes in relation to noise power. Here we define the
SNR as γ̄ in (3.13); it is a function of the average noise power, σ2.

Figure 3.5 shows the results between the analytical calculations and the Monte Carlo simu-
lations. In Figure 3.5a, a macrodiversity system with 3 cooperative BSs (NBS = 3) is serving
3 randomly located users in the vicinity (N = 3). The SER of each user is calculated by both
the exact calculation (no resource-sharing) and the approximate calculation (with resource-
sharing). In the Monte Carlo simulation, SER is obtained by repetitively sending symbols
through independently generated transmission channels 106 times, and checking the prob-
ability of error occurrence. From Figure 3.5a, we can see a close resemblance between the
exact SER and the simulated results.

Figure 3.5b shows the results of a macrodiversity system where N = 4, NR = 6. The results
are obtained from [1], where in the legend, “Simulation” refers to the SER result obtained
by using the Monte Carlo method, and “High SNR approx.” refers to the SER result ob-
tained by using the approximation method. From the figure, the approximate SER deviates
from the simulated result in low SNR condition. In low SNR condition, the approximate
SER is worse than the simulated SER. This indicates that the actual SER is likely to be lower
than the predicted SER, which is preferable when making resource allocation decisions.
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Figure 3.5: Comparison between analytical SER results and Monte Carlo simulations, in
a macrodiversity system assuming QPSK modulation and ZF detection. The
SNR, γ̄ is in dB. (a) No Resource-Sharing: each user is assigned with an inde-
pendent resource. (b) With Resource-Sharing: all three users share the same
resource.
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Figure 3.6 shows the process flowchart for calculating the long-term SER. The resource
sharing decision is made based on the SER prediction result. The scheduler allows resource-
sharing if all users in the user group pass the SER threshold.

Figure 3.6: SER calculation flowchart.
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3.5 Performance Evaluation

As explained in Chapter 2, we can increase the user capacity of a single BSG by the number
of co-operating BSs NBS if we allow resource-sharing between users. However, this does
not translate to the actual increase in user services unless we can identify compatible users
in an effective manner. This problem of user selection is a part of the resource allocation
problem. In this thesis, we have developed multiple user selection algorithms, and we
want to evaluate the effectiveness of the algorithms by how much can they utilise the in-
creased user capacity with resource-sharing, and at what cost in terms of complexity of the
algorithm.

We measure the effectiveness of the capacity utilisation by utilisation, which is defined as

The percentage of users being allocated with a resource, over the system user capacity.

Mathematically, this can be described as

Utilisation =
Nalloc

Nmax
(%). (3.16)

Here, Nalloc is the number of the allocated users. Allocated users refer to the users that has
been allocated with resources. Nmax is the system user capacity, which theoretically, is the
maximum number of users that could be allocated with a resource at the same time. With
resource-sharing, Nmax is

Nmax = NBS ×NRB, (3.17)

where NBS is the number of BSs, and NRB is the number of resources in the system.

We consider the number of users in the system as N . In real systems, we have no control
over N . A system is considered lightly-loaded if N is much less than Nmax. A system is
considered heavily-loaded if N is close or equal to Nmax. A system is considered over-loaded
if N is greater than Nmax. To keep the argument simple, we consider only cases where
N ≤ Nmax; for over-loaded scenarios, where N is greater than Nmax, we assume that the
scheduler disregards the extra users.

From a users perspective, the user is more interested in the probability of being granted
with a resource when a request for service is sent. For this reason, we define allocation rate
is defined as

The percentage of users being allocated with a resource, over the number of users in the
system.

Mathematically, this can be described as

Allocation Rate =
Nalloc

N
(%). (3.18)
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In general, we expect the allocation rate close to 100% in a lightly loaded system, and less
than 100% in a heavily loaded system. This is because in a lightly loaded system, users
can be separated into small user groups. In a smaller user group, the number of users is
less than the spatial dimension of the channel matrix, and hence it is easier for the receiver
to separate out the signals. When a system is heavily loaded, i.e. number of users near
the maximum capacity, it is more difficult to separate the users into different user groups.
Because with the number of users close to the spatial dimension of the channel matrix, it is
more difficult for the receiver to separate out the signals.

Theoretically, if the user selection algorithm is able to identify user groups such that all
users are allocated with a resource, then utilisation is maximised for the N number of
users in the system. Thus, we define maximum utilisation (max. utilisation) as

The percentage of users being allocated with a resource, over the system user capacity.
If the allocation rate is 100%.

Mathematically, this can be described as

Maximum Utilisation =
N

Nmax
(%). (3.19)

Figure 3.7 below shows a difference between macrodiversity systems with resource-sharing
and without resource-sharing. With resource-sharing, the maximum number of user alloc-
ation becomes a fluid concept, which depends on the availability of compatible users for
resource-sharing.

Number of users, N

User Capacity, Nmax

Allocated Users, Nalloc

Theoretical maximum
Allocated Users

No Resource-Sharing With Resource-Sharing

Figure 3.7: A comparison of user capacity for macrodiversity systems with resource-
sharing and without resource-sharing.

The full complexity of a resource allocation method includes both the complexity of the
UCC and the complexity of the user selection algorithm. In Chapter 2, we have shown
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that we can reduce the network overhead of resource allocation by using long-term power.
In Section 3.4, we have also shown that we can estimate SER by using analytical calcula-
tion, which is effective for the purpose of evaluating link quality. Under this premise, we
established that the analytical SER is an efficient way of measuring user compatibility, in
terms of low network overhead, and low complexity compared to simulating SER using
the Monte Carlo method. We define UCC such that all resource-sharing users must meet
the SER threshold. Because the SER calculation is the basis of UCC, and it is used in all the
user selection algorithms, for the simulation we define complexity as

The number of SER calculations (NSER) required for the user selection algorithm to
find a solution.

Both utilisation and complexity depend on the power profile of users in the system, and
it varies according to the user distribution and the channel fading effects. To obtain stat-
istically meaningful performance results, we create multiple samples with users located in
different places according to the distribution model, and generate the channel power ac-
cording to the user distribution. The utilisation and the complexity are the averaged results
of different samples.

The specific steps of performance evaluation are:

1. Identify the system parameters: the network layout, propagation parameters, NBS,
NRB, and N.

2. Generate randomly distributed users around the BSG, according to the user distribu-
tion model.

3. Based on the user location and the propagation parameters, generate the power mat-
rix of the system.

4. Allocate resource to users according to the user selection algorithm.

5. Record the utilisation and complexity results of this particular sample scenario.

6. Repeat the process 100 times, and find the mean utilisation and the mean complexity
results.

3.6 Summary

The system model developed in this chapter provides a platform which allows us to demon-
strate the argument and gain insights on how to realise the user capacity potential with
minimum complexity. In this chapter, we have defined the network layout, the user distri-
bution, and the channel model of a macrodiversity system. We have also decided on using
long-term SER to predict the link quality of users with dedicated resource and shared re-
source, and shown that although the analytical SER prediction is not accurate in low SNR
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conditions, it is consistently lower than the results from the Monte Carlo method. This sug-
gests that the analytical SER prediction is a conservative link quality indicator. The actual
long-term SER is always going to be better than the estimated result. Under this premise,
we argued that the analytical SER is a sufficient measure of the link quality, and proposed
that the performance of user selection in multi-user resource allocation can be evaluated
by the percentage of users meeting the target SER threshold, based on the analytical SER
prediction.

Another benefit of the analytical SER prediction is that it is much quicker to calculate than
the Monte Carlo method. In our simulation, the system performance is a statistical aver-
age of multiple randomly generated samples. Calculating the SER using the Monte Carlo
method is a computation-intensive task. It is even more challenging, as performance eval-
uation requires calculating SER of all users in all sample scenarios. For example, to observe
SER with accuracy down to SER = 10−6, we need to simulate the transmission for signific-
antly more than 106 times. If we extend this to 100 different sample scenarios, each scenario
has 10 users, we would need to simulate the users transmissions for at least 109 times. For
the same situation, using the analytical method, we only need to calculate SER 103 times.
Thus, the analytical SER calculation enables us to evaluate the system performance in a
much shorter time-frame.

Overall, this chapter outlines the platform for evaluating resource allocation performance
in macrodiversity systems.



Chapter 4

Resource Allocation Algorithms

A good resource allocation scheme should maximise the utilisation of a macrodiversity
system. In systems with resource-sharing, resource allocation consists of two functional
parts: user selection, and compatibility evaluation of the resource-sharing users (i.e. UCC).
A good scheduler not only consistently makes good resource allocation decisions, it also
does this quickly so that the schedule remains relevant to the transmission environment
at the time. In Chapter 2, we investigated the state of the art of the scheduler in terms of
the user selection and the compatibility evaluation methods for macrodiversity systems.
In this research, we focus on making resource allocation decisions using long-term power.
This chapter shows our own implementation of user selection algorithms and UCC. It ex-
plains the design principle behind the algorithms, and the mechanism of their operations.

4.1 User Selection

In resource allocation schemes with no resource-sharing, resources are generally allocated
to the highest priority users. User priority can be defined by many different criteria: it can
be by the nature of the content (e.g. voice v.s. data), by the queuing order (e.g. first-in-
first-served), by the link quality (e.g. SNR) of the users, or by the identity or type of users
(e.g. public safety v.s. general users). The study of how to prioritise users for the limited
resources is commonly known as user scheduling, and it has been covered in Chapter 2.
In resource allocation schemes with resource-sharing, user capacity increases because the
same resource can be allocated to multiple users. In this mode, the scheduler has an addi-
tional objective: to maximise the number of resource-sharing users in the system. For the
user selection algorithms, the goal is finding compatible users for resource-sharing in an
effective and low complexity manner. To simplify the argument, in this research we have
made the following assumptions:

• User numbering is the user priority order.
We consider resource allocation and user scheduling as two separate topics. Because

37



38 Resource Allocation Algorithms

our focus is on the capacity utilisation of radio resources with resource-sharing, we
assume the user priority is defined elsewhere (e.g. a higher layer loop), and provided
to the scheduler as an input. There in the simulation, we assume that the numbering
of the users is the priority order of the users. User priority is in descending order: for
example, user 1 has the highest priority, user 2 has the second-highest priority, and
so on.

• All primary users should be served.
Resource-sharing should improve the overall utilisation of the system user capacity
without jeopardizing the primary user services. As defined in Chapter 2, the primary
users are the higher priority users. Therefore, all the algorithms discussed in this
chapter ensure that the primary users are first served with the available resources.
This condition also reduces the number of user combinations in user selection. En-
suring the primary user service is especially important in public safety networks for
example. This way we can ensure the priority users have guaranteed services1.

• All users in the user group should meet the link quality requirement.
If the allocated user does not meet the link quality requirement, it may as well be
considered as an invalid link. Allocating a resource to users who do not meet the
link quality requirement is a waste of resource. The same resource could be alloc-
ated to other users who meet the requirement, or if the resource is shared by fewer
users, they could enjoy a better overall link quality. For this reason, in the resource
allocation algorithm, only users who meet the link quality requirement are allocated
a resource. In this research, we estimate link quality by the predicted SER as defined
in Chapter 3.

In Chapter 2, we showed that the greedy algorithm has the least user selection complexity
- hence, we developed our own user selection algorithms based on a modified greedy al-
gorithm. In this chapter, we propose four different heuristic user selection algorithms and
the exhaustive search (ES) algorithm. This chapter explains the operation of each user se-
lection algorithm, as well as the formation of user groups, and the mechanism of rejecting
bad allocations. A macrodiversity system with 3 BSs, 15 users, and 5 resources is used as an
example for explaining the algorithms. When describing figures and equations, users are
referred to as UEs (user equipment), and resources are referred to as RBs (resource blocks),
to keep the notation simple and less cluttered.

4.1.1 Priority Order (PO)

This is the most basic algorithm proposed in the study. It groups users based on their
numbering. The steps of the algorithm can be explained as follows:

Selection Steps:

1In this thesis, we scale the power level so that 95% of users meet the SER threshold as if in the single-cell
system. With macrodiversity, we should expect the SER to be even lower.
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1. Allocate available resources to all the primary users, i.e. the first NRB users with the
highest priority (Figure 4.1).

1 3 4 52

1 3 4 52

RB

UE

Figure 4.1: Allocate resources to all the primary users. The primary users are framed inside
a rounded box to distinguish the difference between the primary users and the
secondary users. In this example, the primary users are user 1 to user 5.

2. Fill up the remaining slots with secondary users according to the priority order.

In Figure 4.2, there are 3 BSs, so the maximum number of users which a resource can
be shared to is 3. As shown in the figure, RB1 is allocated to UE1, UE6, and UE11,
RB2 is allocated to UE2, UE7, and UE12, and so on. We call the group that shares RB1
user group 1, the group that shares RB2 user group 2, and so on.

1 3 4 52

1 3 4 52

RB

UE

6 8 9 107

11 13 14 1512

Figure 4.2: Fill up the remaining slots with secondary users. In this example, the secondary
users are user 6 to user 15.

3. Check the predicted SER of all users in the system.

4. For each user group:

• If all users meet the SER threshold, do nothing.

• If the primary user fails to meet the SER threshold, remove all secondary users
who share the same resource.

• If secondary users fail the to meet the SER threshold, remove the failed user(s)
from the resource schedule.

Figure 4.3 shows an example of user removal in this algorithm. In this example, all
users in user group 1 meet the SER threshold, and no users are removed from the
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resource schedule. In user groups 2 and 3, because the primary users fail to meet
the SER threshold, all secondary users in the respective user groups are removed. In
user groups 4 and 5, only the secondary users that fail to meet the SER threshold are
removed.

1 3 4 52

1 3 4 52

RB

UE

6 8 9 107

11 13 14 1512

(a)

1 3 4 52

1 3 4 52

RB

UE

6 9

11

15

(b)

Figure 4.3: (a) Resource schedule indicating some users fail to meet the SER threshold.
(b) Resource schedule after selective removal of users.

Here, the SER of all users needs only be checked once, making the complexity of the al-
gorithm very low. However, due to the aggressive user removal strategy, we also expect
the utilisation of this algorithm to be low, especially when the same resource is shared by
many users. Figure 4.4 shows the flowchart of the PO algorithm:
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Figure 4.4: Flow-chart for the PO algorithm.

4.1.2 Priority Order + Sequential Removal (PO+SR)

This algorithm is essentially the same as the PO algorithm, except that after the pre-allocation,
it removes the users one by one. Each time it removes one user, it checks the SER of the
remaining users in the user group. If all remaining users meet the SER threshold, it stops
removing users from the group.

Selection Steps:

1. Allocate the available resources to all the primary users.

2. Fill up the remaining slots with secondary users according to the priority order.

3. Calculate the predicted SER of all users in the system.

4. For each user group:
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• If all users meet the SER threshold, do nothing.

• If the primary user fails to meet the SER threshold, remove the secondary user
with the lowest priority. Calculate SER of the user group again.

• If only secondary users fail the to meet the SER threshold, remove the failed user
with the lowest priority. Calculate SER of the user group again.

5. Repeat Step 4 until all users pass the SER threshold.

Figure 4.5 shows the flowchart of the PO+SR algorithm:

Figure 4.5: Flow-chart for the PO+SR algorithm.
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4.1.3 First-Fit (FF)

This algorithm utilises user capacity by sequentially adding secondary users into each user
group. Each time an additional user is added to the group, the scheduler checks the SER of
all users in the group. The compatibility requirement is that all users in the user group must
meet the SER threshold. The first additional user that meets the compatibility requirement
is kept for the resource schedule.

Selection Steps:

1. Allocate available resources to all the primary users.

2. Check if there is any available free resource slots (each row must be filled first before
progressing onto the next row).

3. If there is an available free slot, try adding one user to the next available free slot in
the user group.

4. An UCC is performed on the user group every time a new user is added.

5. Accept the first combination where all users meet the SER threshold .

6. Repeat Step 2 through Step 5 until no more users can be added to the resource slots
(or no more suitable slots available).

1 3 4 52

1 3 4 52
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6 15

(a)

1 3 4 52

1 3 4 52
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UE

7 15

6

(b)

Figure 4.6: (a) Adding users to the resource group.
(b) Check user compatibility and accept the first user that passes the UCC.

As an example, suppose we are to find the first compatible user to share the resource with
UE1 in the user group 1. We pair UE1 with all the remaining users from UE6 to UE15,
and check the user compatibility of the pairs one by one: UE1-UE6, UE1-UE7..., and so on.
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We accept the first user combination that passes the UCC, and we do not further check the
compatibility of the remaining users. If the first compatible pair is UE1-UE7, we do not
check UE8 to UE15.

This algorithm makes sure that the new user does not jeopardise the link quality of the
allocated users. However, this is not optimal as it accepts only the first combination that
passes the compatibility requirement, which may reduce the possibility of a better user
combination that is behind the queue. Figure 4.7 shows the flowchart of the algorithm:

Figure 4.7: Flow-chart for the FF algorithm.
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4.1.4 Best-Fit (BF)

The Best-Fit (BF) algorithm is virtually the same as the FF algorithm, except that it checks
through all the user selection combinations within each user group and choose the com-
bination where the users in the user group has the best overall performance. In terms of
the complexity, for BF, it is a fixed number, whereas for FF it is a soft bound. Thus most of
the time, BF has a higher complexity than FF. In scenarios where no compatible user can
be found, FF would have the same complexity as BF.

Selection Steps:

1. Allocate available resources to all the primary users.

2. Check if there is any available free resource slots (each row must be filled first before
progressing onto the next row).

3. If there is an available free slot, try adding one user to the next available free slot in
the user group.

4. An UCC is performed on the user group every time a new user is added.

5. Accept the best user combination is such that the worst performing user in the user
group has lowest SER, compared to other user combinations.

6. Repeat Step 2 through Step 5 until no more users can be added to the resource slots
(or no more suitable slots available).

As an example, suppose we are to find the most compatible user to share the resource with
UE1 in user group 1. We group UE1 with all the remaining users from UE6 to UE15: UE1-
UE6, UE1-UE7..., and so on; we then check the user compatibility of all combinations by
checking the SER of all users in the user group. Table 4.1 shows the predicted SER results
of the user pairs. Consider an SER threshold of 0.01, only user pairs with UE6, UE7, UE8,
UE9, UE11, and UE12 meet the SER threshold. The worst performing UE of these pairs
are UE1: 0.01 (UE1-UE6); UE7: 0.009 (UE1-UE7); UE1: 0.006 (UE1-UE8); UE1: 0.0008 (UE1-
UE9); UE11: 0.006 (UE1-UE11); and UE1: 0.007 (UE1-UE12). We see that UE1-UE9 has
the lowest SER out of these choices, so in this algorithm we consider UE1-UE9 the best-fit
solution.

Table 4.1: SERs of users pairing with UE1 - an example.

SER UE6 UE7 UE8 UE9 UE10 UE11 UE12 UE13 UE14 UE15

UE1 0.01 0.005 0.006 0.0008 0.05 0.0002 0.007 0.0001 0.008 0.0009

Additional UE 0.003 0.009 0.001 0.0005 0.1 0.006 0.004 0.03 0.6 1
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This algorithms tries to select user that will produce the best overall link quality for the
user group. The “best-fit” here refers to the overall link quality. It does not mean the best
utilisation. Utilisation is not optimal as once the “best-user” is removed from the pool
of unallocated users, we cannot consider the combinations where with the users that has
already been selected. Figure 4.8 shows the flowchart of the BF algorithm:

Figure 4.8: Flow-chart for the BF algorithm.
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4.1.5 Exhaustive Search (ES)

This algorithm finds out all possible combinations for the resource schedule under the
given assumptions listed at the beginning of this section. It checks the SER of all users
across all combinations, and keeps the one that has the best utilisation result.

Selection Steps:

1. Allocate available resources to all the primary users.

2. Find out all possible user combinations for the resource schedule.

3. For each combination, An UCC is performed on all user groups in the combination.
The combination is rejected if any user fails to meet the UCC.

4. If the combination passes the UCC, then the it is recorded as a candidate resource
schedule, and the scheduler moves on to the next combination (Figure 4.9).

5. Repeat Step 3 and Step 4 until all combinations have been tried. During the repetition
phase, if utilisation of the new combination is better the previous combination, then
the new combination replaces the old one for the candidate resource schedule.

6. Use the resource schedule that has the highest utilisation result.

1 3 4 52

1 3 4 52
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Figure 4.9: For 3 BSs and 5 RBs, there are 10 available resource slots, and the resources
need to be shared with the primary users, so the order of filling these slots
is important. The ES algorithm tries all combinations of user selections and
choose the one that gives the best utilisation result.

With ES, it finds the resource schedule that has the maximum maximum utilisation. How-
ever, it can become very time consuming for large system dimensions. As shown in Fig-
ure 2.7, in a small system with 3 BSs, 5 RBs, and 15 UEs, the complexity of user selection
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is in the order of 1010 combinations. The algorithm is not suitable for practical implement-
ations, but is useful for benchmarking other heuristic solutions. Figure 4.10 shows the
flowchart of the ES algorithm:

Figure 4.10: Flow-chart for the ES algorithm.
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4.2 User Partitions

One premise in user selection is that the more users and resources are available in the
selection pool, the higher the likelihood will be of finding compatible users for resource-
sharing. However, with a larger system dimension, this also means the complexity of user
selection is higher. The improvement in utilisation may not justify the complexity involved
in finding the solution. This leads to the question of how many users and resources we
really need, in order to achieve good utilisation.

One approach to further reduce computational complexity is to limit the size of the user
selection pool through assigning users and resources into smaller partitions and execut-
ing user selection algorithms within individual partitions. Figure 4.11 shows how user
partitions could be applied in user selection. The example in the figure has 25 resources2.
Consider there are 3 BSs, with resource-sharing, the user capacity of the system is 75. Con-
sider a case with 75 users in the system, the primary users are still being served first before
adding the secondary users. With user partitions, we can consider them as 5 independent
partitions, each one has 5 resources and 15 users. The number of combinations is smaller
in smaller systems; it is also possible to process the partitions in parallel, further reducing
the processing time.
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Figure 4.11: An example of user partitions. NBS = 3 and NRB = 25.

4.2.1 Power Ranking:

In Figure 4.11, users are partitioned according to their numbers. In this work, we assume
the power profiles of users in each partition are independent. We may be able to further
improve the success rate of user selection in each partition if we can apply some intelli-
gence in the way users are assigned into different partitions. The method of intelligent
user partitioning should be very simple, otherwise it defies the purpose of complexity re-
duction. One way is by looking at the power profile between users. Figure 4.12 shows

225 is a common value for the number of available resources in a typical LTE system.
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three common scenarios for user power profile, and how the power profile may affect the
link quality of other resource-sharing users.

(a)

(b)

(c)

Figure 4.12: Distance-based link power of two users at different locations in reference to
two BSs (a) Users close to one local BS but far away from each other, with
similar total link power. (b) Users between two BSs, with similar total link
power. (c) Users between two BSs, with different total link power.
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A macrodiversity system is more likely to separate out signals from different users if they
have orthogonal or semi-orthogonal channel characteristics. In Figure 4.12, scenario (a)
has the highest likelihood of successful resource-sharing. Scenario (b) may or may not
be suitable for resource-sharing depending on the degree of correlation between the user
channels. In scenario (c), users have similar power profile but one has a much stronger
overall power than the other. In this case, the user with stronger overall power tends
to dominate the communication channel, resulting in poor link quality for the user with
weaker overall power.

In this work, we proposed that by ranking users according to their combined channel
power and assigning users with similar power rankings into the same partition, we could
minimise the possibility of poor link performance due to one user dominating the other
user channel(s). The steps for power ranking are the following:

1. Rank primary users in terms of the total channel power received by the BSs. Group
them in respective partitions according to their power, and allocate one resource to
each primary user.

2. Rank secondary users in the same manner. Divide the total number of secondary
users with the total number of partitions, so each partition has similar share of sec-
ondary users. Assign them into respective partitions according to their powers.

3. Find compatible resource groups in each partition as per user selection process.

Figure 4.13 shows how a user partitioning system with power ranking is different from
user partitioning with no power ranking. In the figure, users with stronger combined
power are in the darker shades of red. Users with similar power levels are grouped into
the same partition. Note that each partition needs at least 2 resources to provide user
selection.
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Figure 4.13: An example of user partition with power ranking.

4.3 User Compatibility Check (UCC)

A UCC is a crucial part of resource allocation. Every time there is a change in the resource
schedule, the modified user group need to be checked by the UCC: The goal of UCC is
ensuring the link quality of all resource-sharing users meets the link quality requirement.
In Chapter 2, we have explained the function of the UCC, and in this research we decided
to measure the link quality by the SER of resource-sharing users, uses long-term power,
and we define the compatibility criteria such that all resource-sharing users must pass a
pre-defined SER threshold. The specific steps of the UCC are defined as the following:

1. Identify the target user of interest, and the corresponding user group.

2. Identify other users in the group, sharing the same resource.

3. Calculate the SERs of all users in the user group.

4. If the SER of all users meets the SER threshold, the user group passes the UCC; If one
or more users fail to meet the SER threshold, then the user group does not pass the
UCC.

Figure 4.14 shows the flowchart of the UCC:
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Figure 4.14: Flow-chart for the UCC.

4.3.1 Alternative Metrics for UCC

The analytical SER calculation provides a relatively simple metric for measuring link qual-
ity. However, in the user selection stage, the scheduler needs to consider multiple user
combinations, The accumulative effect of calculating the SER of multiple users adds up the
total processing complexity. In this research, we have also considered alternative metrics
to replace the SER calculation in the UCC. The motivation is to find a metric that can be
used for UCC, but with lower complexity.

In our investigation, we could not find any meaningful correlation between the proposed
alternative metrics and the analytical SER calculation, therefore, none of the metrics are
used in the simulation. For this reason, the results are not included in the main body of
research. They can be found in Appendix B instead.
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4.4 Summary

In this chapter we explained the operations of the different user selection algorithms, and
we proposed a user partitioning method which could further reduce the complexity of
user selection. The partitioning of users can be ranked by their channel power, which may
increase the likelihood of successful user allocation. We also explained the operation of
the UCC. In the next chapter, we evaluate the performance of the proposed user selection
algorithms.



Chapter 5

Simulation Results

In general, the effectiveness of resource allocation depends on the performance of both the
user selection algorithm and the user compatibility check (UCC). In the earlier chapters,
we have explained the benefits of making scheduling decisions using long-term power,
and shown that the proposed UCC is an effective metric for evaluating the compatibility.
In this research, our primary focus is developing a resource allocation method using long-
term power. Therefore, in this chapter we assume that the proposed UCC is the preferred
method of evaluating user compatibility, and we do not further evaluate the UCC in the
scope of this analysis. Under this premise, the prime focus is evaluating the performance
of user selection algorithms in different environments.

The performance of the user selection algorithms is evaluated in two parts: utilisation and
complexity. As defined in Chapter 3, utilisation refers to the percentage of the theoretical
user capacity of the system that is utilised by the user selection algorithm. Complexity
is evaluated by the number of SER calculations required to reach the resource allocation
solution. Using the system model proposed in Chapter 3, we consider four environmental
parameters that may affect the system performance. First, we look at the user capacity of
the system with different numbers of resources and BSs, and how complexity changes as
a result. With a larger system dimension, we also look at how user partitions can reduce
the complexity. Secondly, we look at the performance under a clustered user distribution,
and how utilisation varies if the cluster is at a different location. Thirdly, we look at the
performance under different propagation parameters, considering different path-loss ex-
ponents (PLE) and shadow fading factors (SF). Lastly, we looked at the performance with
a higher link quality requirement. These scenarios aim to represent a range of real life en-
vironments, and the simulation results help us better understand the system behaviour in
different environments. Collectively, this represents the overall performance of the pro-
posed resource allocation method.

55
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5.1 System Dimensions

One of the major challenges of resource allocation in macrodiversity systems is the com-
plexity of user selection, which increases with system dimension. Here, the system dimen-
sion refers to the number of resources and the number of cooperating BSs in the system. As
described in (3.17), the more resources and BSs in the system, the greater the user capacity.
This also means more possible user selection combinations. Heuristic solutions that can
find an appropriate user selection without an excessive number of SER calculations make
resource allocation for larger system dimension possible, thereby realising a greater user
capacity potential.

The following subsections look at the performance of two macrodiversity systems. One is
a BSG with 3 BSs, another is a BSG with 7 BSs. Within each system, the performance is
evaluated in terms of the utilisation of the system under different levels of user loading,
and the number of SER calculations required to find the solution. The performance of the
BSGs are also evaluated with more resources. We also look at the reduction in complexity
when user partitions is applied to the system. Table 5.1 shows a summary of the environ-
ment settings used in the simulations.

Table 5.1: The environment settings for different system dimensions.

System Parameters Symbol Value

Number of BSs NBS 3, 7

Number of Resources NRB 5, 20

Number of Partitions NP 1, 2, 4

Number of Users N 0 ∼ 100% User Capacity

User Distribution - Uniform

Modulation Scheme - QPSK

SER Threshold - 10−2

Path Loss Exponent γ 3.5

Shadow Fading s.d. σSF 8

Power Scaling Factor A Adaptive

5.1.1 Small BSG Size: 3 BSs

To keep the analysis simple, a small BSG with 3 BSs is used as the default network lay-
out for most simulations. Under the standard setup, NRB = 5, and the user capacity of the
system is 15 (Nmax = 15). In most cases, a uniform user distribution and standard propaga-
tion parameters are assumed. Figure 5.1 shows the network layout of the BSG with users
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randomly located in a uniform distribution around the BSs.
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Figure 5.1: BSG layout with 3 BSs. N = 200.

Figure 5.2 shows the system performance with different levels of user loading. As defined
in Chapter 3, maximum utilisation refers to the maximum capacity utilisation for the given
number of users; this is also the percentage of user loading of the system. Theoretically, the
ES algorithm finds the best possible resource allocation solution for the any scenarios. In
the case of Figure 5.2, the ES algorithm has a utilisation performance equal to the maximum
utilisation. However, ES also has the highest complexity. When the number of users is
equal to the full capacity (N = 15), the number of SER calculations approaches 108. The
FF and BF algorithms have a similar utilisation performance, the PO+SR has a moderate
performance, and the PO algorithm has the worst result. PO, PO+SR, FF, and BF algorithms
are relatively low complexity compared to the ES algorithm.

Figure 5.3 shows the system performance with NRB = 20. Here, the user capacity is in-
creased to 60. With the increased number of users, the complexity also increases. At this
point, we are not able to simulate the ES algorithm, so it is omitted from the results. The
complexity of the BF algorithm has increased significantly to the order of 103, and the FF
algorithm has also increased to the order of 102. The utilisation of BF and FF algorithms in
Figure 5.2 is slightly better compared to the results in Figure 5.2. This is because the avail-
ability of additional resources has increased the degrees of freedom for the user selection.
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Figure 5.2: Performance of user selection with NBS = 3 and NRB = 5.
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Figure 5.3: Performance of user selection with NBS = 3 and NRB = 20.

Both Figure 5.2 and Figure 5.3 show that utilisations of all algorithms start to deviate from
the maximum utilisation only when the number of users is greater than 10 and 40 respect-
ively. This is because 10 and 40 corresponds to the maximum number of users where each
resource only need to be shared NBS − 1 times, and it is easier to find independent signal
paths if the spatial dimension of the channel matrix is not fully utilised. When the resources
are being utilised at the maximum dimension, such as between N = 10 ∼ 15 for NRB = 5,
and N = 40 ∼ 60 for NRB = 20; the user groups become more crowded. This increases the
likelihood of users not meeting the link quality requirement.

In Figure 5.2 and Figure 5.3, the utilisation performances of both the PO and PO+SR al-
gorithms start to significantly deviate from the maximum utilisation when N > 10 for
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NRB = 5, and N > 40 for NRB = 20. This indicates that statistically, it is likely that the NBS-
th users who share the same resource with others do not meet the SER threshold, or cause a
degradation in link quality to other previously allocated users. In particular, PO has worse
utilisation than PO+SR because it employs a more aggressive user removal strategy. In
the PO algorithm, if the primary user fails the SER threshold, it removes the allocation of
all secondary users to preserve the link quality of the primary user. In general, FF and
BF have better utilisation performance than PO and PO+SR because they check other user
combinations, and choose only users that meet the SER threshold. When the system is
fully loaded, the utilisations of FF and BF are 10% lower than the maximum utilisation,
showing that when the system is in full user loading, it becomes much more challenging
to find compatible users for all user groups. It is also worthy of noting that FF and BF have
very similar utilisation performance, in some cases the utilisation of FF is slightly better
than the BF. This suggest that the selecting the best-fit user from the unallocated user pool
may not be the best strategy for the overall system performance.

5.1.2 Large BSG Size: 7 BSs

We also investigated the performance of the algorithms in a larger macrodiversity system.
Here, we choose a BSG with 7 BSs because it is sufficiently larger than the 3 BSs system,
and it is also a network layout proposed in the LTE CoMP system [3]. Figure 5.4 shows the
network layout of the BSG with users randomly located in a uniform distribution.
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Figure 5.4: BSG layout with 7 BSs. N = 200.

Figure 5.5 and Figure 5.6 show the system performance of different resource allocation
algorithms in the BSG, with NRB = 5 and NRB = 20 respectively. Because the BSG now
has more BSs, the system can now support more users for the same number of resources.
In this case, the spatial dimension of the channel matrix is 7. The system allows more users
to share the same resource, but as in the 3 BSs system, when the system is in high user
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loading, it also experiences a degradation in utilisation. For the PO algorithms, utilisations
start to deviate from the maximum when user loading is above 65%. Beyond 85% user
loading, the utilisation of the PO algorithm drops significantly. This shows that at this
point, the number of users removed from the system is greater than the number of users
added into the system. This is because for the 7 BSs system, there are more secondary users
sharing resources with the primary users. When one primary user fails the SER threshold,
all 6 other users who share the same resource are removed from the resource schedule. For
the PO+SR, FF and BF algorithms, the increment in utilisation starts to tail off around 85%
user loading. This corresponds to N = 30, which is the maximum number of users for
NBS − 1 resource-sharing for NRB = 5.

In terms of complexity, the 7 BSs system in general has a higher complexity than the 3BSs
system. This is because with a higher user capacity, the scheduler needs to check through
more user combinations, resulting in a general increase in the user selection complexity.
However, if the number of users and resources in the system is the same, the complexity of
both 3 BSs and 7 BSs systems are of a similar order of magnitude. Table 5.2 shows a com-
parison of user selection complexity between the two systems, when both have the same
number of users and resources. For most cases, the 7 BSs system still has a slightly higher
complexity compared to the 3 BSs system, but they are of the same order of magnitude. It
is worth noting that the complexity of the ES algorithm is beyond comparison for these al-
gorithms. For the system dimension in Figure 5.5, with 100% user loading, the complexity
of ES would be in the order of 1036 (2.2).
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Figure 5.5: Performance of user selection with NBS = 7 and NRB = 5.
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Figure 5.6: Performance of user selection with NBS = 7 and NRB = 20.

NRB = 5, N = 15 NRB = 20, N = 60

PO PO + SR FF BF PO PO + SR FF BF

3 BSs 15 20 40 130 60 84 320 1894

7 BSs 15 22 51 315 60 63 118 1868

Table 5.2: A cross-comparison of complexity (NSER) between BSGs with the same number
of users (N) and resources (NRB) but different number of BSs (NBS).

5.1.3 User Partitions

One strategy for reducing the complexity is by assigning users and resources into smal-
ler partitions, and making scheduling decisions within each partition. The goal of user
partitions is for systems with a large number of resources and users to achieve similar
complexity to that of a smaller system. To emphasise the effect of complexity reduction,
NRB in the BSGs in Section 5.1.1 and Section 5.1.2 is increased to 20. With more resources,
the user capacity for the 3 BSs system is increased to 60; the user capacity for the 7 BSs sys-
tem is increased to 140. We use these systems as a platform for evaluating the effectiveness
of complexity reduction by user partitions.

Figure 5.7 and Figure 5.8 show the performance of the PO, PO+SR, FF, and BF algorithms
with user partitions in different macrodiversity systems. For the PO and PO+SR algorithms,
there is no change in utilisation and complexity because all users are allocated in a fixed
manner (according to the user priority order); there is only one user combination. For the
FF algorithm, there is no change in utilisation and complexity when the user loading is low.
The results with user partitions start to deviate from those without user partitions when
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the user loading is high: For the 3 BSs system, it is N ≥ NRB × (NBS − 1). For the 7 BSs
system, it is N = NRB× (NBS−1). Because the complexity for the FF algorithm remains the
same with low user loading, it also suggests that it is easy to pass UCC when the dimen-
sion of the channel matrix is not fully utilised. The FF algorithm tends to accept the first
candidate user available. For the BF algorithm, the reduction in complexity has a linear
relationship with the number of partitions. It is also worth noting that although user parti-
tions can reduce the complexity of the BF algorithm, the complexity of the FF algorithm is
still lower than BF. With users and resources grouped into smaller partitions, the selection
diversity decreases. We therefore observe a slight degradation in the utilisation for both
the FF and the BF algorithm.
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Figure 5.7: Performance of user selection with partitioning. NBS = 3 and NP = 1, 2, 4.
(a) PO (b) PO + SR (c) FF (d) BF.
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Figure 5.8: Performance of user selection with partitioning. NBS = 7 and NP = 1, 2, 4.
(a) PO (b) PO + SR (c) FF (d) BF.
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Power Ranking:

In Section 4.2, we suggested that degradation in link quality occurs mostly in situations
where user channels are non-orthogonal, particularly when one user has similar chan-
nel characteristics to the other, but at a much higher power level. We proposed a very
simple method of minimising the occurrence of one user dominating the channel over other
resource-sharing users by ranking users according to their combined power, Figure 5.9
shows the performance comparison of a partitioned system without power ranking, and
with power ranking. Contrary to the expectations, from these results, we cannot observe
any significant differences in performance between user partitions with power ranking and
user partitions without power ranking. One possible explanation is that the user selection
algorithms inherently select the compatible users and reject the incompatible users, hence
the occurrence of incompatible users being in the same group has already been minim-
ised. The result suggests that power ranking is not an effective strategy for improving user
compatibility.
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Figure 5.9: Performance of user selection algorithms with partitioning and power ranking:
NBS = 3, NRB = 20, and NP = 4.

5.1.4 Discussion

With larger system dimensions, user capacity increases, but complexity also increases. The
increased capacity translates to real benefits only if it can be effectively utilised. In general,
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utilisation is close to maximum if the system is not heavily loaded. In a lightly loaded
system, when the spatial dimensions of the channel matrix (NBS, as defined in Section 3.3.2)
is greater than the number of resource-sharing users, it is easier to find semi-orthogonal
paths in which users can transmit with limited interference from others; in a heavily loaded
system, performance in utilisation varies between different algorithms.

From the results, the ES algorithm provides the best utilisation of user capacity, however,
the complexity of the algorithm prohibits its deployment in any large systems. For the PO
and PO+SR algorithms, utilisations start to deviate when user loading is high (> 60%).
Due to the aggressive user removal strategy in the PO algorithm, utilisation drops signific-
antly in a high user loading environment. This is because for the PO algorithm, in order to
preserve the primary users, a lot of secondary users are removed even if they have good
link quality. In this worst-case scenario, when the system is experiencing full user loading,
utilisation drops from 70% to 40%. The PO+SR algorithm has consistently shown better
performance in utilisation than the PO algorithm, with a relatively small increase in com-
plexity. This is because the PO+SR algorithm removes users one by one, checking SER of
remaining users in the group each time a user is removed. User removal stops as soon as all
remaining users meet the SER threshold. Therefore, unless minimum complexity is abso-
lutely critical, PO+SR would be considered as the more effective solution than PO. FF and
BF algorithms have similar performance in terms of utilisation. However, the complexity
of the FF algorithm is much lower than that of the BF algorithm. Therefore, in general, FF
would be considered as a more effective solution than BF.

Assigning users into smaller partitions reduces the complexity of the FF and BF algorithms
but not the PO and PO+SR algorithms. For PO and PO+SR algorithms, complexity does not
change with user partitions because users are allocated in a fixed manner, according to their
priority order; there is only one user combination. For FF, complexity reduction becomes
noticeable only when the user loading is high, particularly when N ≥ NRB × (NBS − 1).
For BF, a significant complexity reduction is observed across all user loadings. This is
because the BF algorithm checks all users in the user selection pool before making the
user selection decisions. When user loading is high, the complexity of both FF and BF
has a linear relationship with the number of partitions; it reduces linearly according to the
number of partitions. In general FF has a better utilisation performance than the PO+SR
algorithm, but also has a higher complexity, even with user partitions.

In general, complexity increases as the number of users in the system increases. Some com-
plexity reduction can be obtained by assigning users into smaller partitions, but mostly it
depends on the user selection algorithms. This section has shown that the PO+SR and
FF algorithms can achieve reasonable performance with relatively low complexity. Se-
lecting between these algorithms will depend on the utilisation requirement and system
processing power of the particular implementation envisaged. We have also observed that
there is a strategically advantageous point when N = NRB × (NBS − 1). If user loading is
less or equal to this point, most user selection algorithms return utilisation performance
close to the maximum utilisation.
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5.2 Clustered User Distributions

The simulations in the previous section assume a uniform distribution of all users. In real
life, users do not always follow a uniform distribution. In spaces such as shopping malls,
train stations, or conference centres, people tend to cluster at one particular spot. With
users clustered at one spot, the power profile of users is different, and as a consequence, the
system performance may change. This section investigates the system performance of mac-
rodiversity systems with user clustering. The user cluster is modelled by a 2-dimensional
Gaussian distribution as defined in Chapter 3. In the figures, we plot 500 users on the map
to give readers a stronger sense of user distribution. In the simulation, we consider only
small systems with 15 users, to keep the simulation manageable. Two sample scenarios are
investigated: the user cluster at the centre of the BSG, and the user cluster away from the
centre of the BSG, at one of the cooperative BSs. Table 5.3 shows the environment settings
for the simulations.

Table 5.3: The environment settings for clustered user distributions.

System Parameters Symbol Value

Number of BSs NBS 3

Number of Resources NRB 5

Number of Partitions NP 1

Number of Users N 0 ∼ 100% User Capacity

User Distribution - Gaussian: N (0, 0.3752)

Modulation Scheme - QPSK

SER Threshold - 10−2

Path Loss Exponent γ 3.5

Shadow Fading s.d. σ
SF

8

Power Scaling Factor A Adaptive

5.2.1 Cluster at the Centre of the BSG

Figure 5.10 shows the user cluster at the centre of the BSG, the density of the distribu-
tion decreases with the radius away from the centre. Figure 5.11 shows the corresponding
system performance of the cluster under different user loadings. From the figure, the per-
formance is slightly better compared to similar results for users in a uniform distribution
(Figure 5.2). For the PO and PO+SR algorithms, the improvement in utilisation compared
to a uniform distribution is about 10%; for the FF and the BF algorithms, the improve-
ment is about 5%. In terms of the complexity, PO and BF have the same complexity as in
scenarios where users are in a uniform distribution. PO+SR and FF have slightly lower
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complexity in high user loading, compared to the uniform distribution.
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Figure 5.10: An example of a user cluster at the center of the BSG. The center of the cluster
is at coordinates (x, y) = (0, 0). The position of users is modelled by a 2D
Gaussian distribution with standard deviation = 0.375. N=500.
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Figure 5.11: System performance with NBS = 3 and NRB = 5.

5.2.2 Cluster away from the Centre of the BSG

Figure 5.12 shows the user cluster away from the centre of the BSG. In this case, the user
cluster is centred around BS3, having the same Gaussian distribution as in Figure 5.10. Fig-
ure 5.13 shows the corresponding system performance of the cluster under different user
loadings. Under heavy user loading, the utilisation of the PO+SR, FF and BF algorithms
degrades by about 15% when compared to the uniform user distribution, and for the PO
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algorithm by about 25%. The PO algorithm has its peak utilisation performance at 65% of
user loading, for the heavier user loading, the utilisation performance starts to degrade.
In terms of the complexity, for the PO and BF algorithms, the complexity remains fixed.
For the PO+SR and FF algorithms, complexity has also risen compared to Figure 5.11. This
indicates that in this environment, it is more difficult to find compatible candidate users,
meaning that it takes more iterations to find the appropriate solutions.
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Figure 5.12: An example of a user cluster away from the centre of the BSG. The center of
the cluster is at BS3 (x, y) = (0.866, 0.5). The position of users is modelled by
a 2D Gaussian distribution with standard deviation = 0.375. N=500.
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Figure 5.13: System performance with NBS = 3 and NRB = 20. The cluster is off-centred.
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5.2.3 Discussion

When users are clustered at the centre of the BSG, we observed a slight increase in the sys-
tem utilisation. This can be attributed to the more equal distribution of the received powers
by all BSs: In general, signals received by BSs become weaker as users get further away.
When users are at the centre of a BSG, although each BS only receives moderate power on
average from the users, the transmitted signals tend to be more equally supported by all
BSs. This allows the channel to operate at a higher spatial diversity, hence increasing the
chance of users to co-exist with each other, sharing the same resource.

On the other hand, when users are clustered at one of the BSs near the edge of the BSG,
we see a significant degradation in system utilisation. In the example studied, BS3 receives
strong signals from the users but signals received by BS1 and BS2 are weak. Spatial di-
versity provided by BS1 and BS2 diminishes because of the weak power received by the
BSs, and the BSG behaves like a single cell system where available resources are overloaded
by multiple users. The performance of the PO algorithm is sensitive to the channel condi-
tion. As in the previous section, the utilisation performance peaks at N = NRB× (NBS− 1),
and starts deteriorating with higher user loadings.

In terms of the complexity, the PO and BF algorithms have fixed complexity, regardless
of the channel condition. For the PO+SR and FF algorithms, the complexity is lower in
environments where it is easier to find compatible users (i.e. cluster at the centre of the
BSG). The complexity is higher in environments where it is more difficult to find compat-
ible users (i.e. cluster away from the centre of the BSG), as compared to users in a uniform
distribution.

The results also show that the utilisation performance is mostly affected by how well the
users are being equally support by all BSs in the BSG, rather than by the user clustering
itself. The system achieves good utilisation performance when the cluster is at the centre
of the BSG. It may be advantageous to construct the BSG dynamically, according to the
location of the user cluster, hence maximising the system capacity [82].

5.3 Propagation Parameters

Depending on the physical environments in which the system is operating (rural, sub-
urban, or urban), the wireless channel has different propagation characteristics. Having an
understanding of how the propagation parameters affect system performance can help us
in designing systems that are appropriate to the environments, or in predicting the likeli-
hood of an outage.

In this section, we investigate the performance of the macrodiversity system under dif-
ferent propagation parameters. Since SER is calculated using long-term power, we look
at only those factors that affect long-term power, such as path loss and shadow fading.
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The effects of different propagation parameters are also investigated under different user
distributions. Table 5.4 shows the environment settings used in the simulation. The val-
ues used for the path loss exponent (γ), and the shadow fading standard deviation (σSF),
are commonly quoted in the literature [23, 83]. Standard power scaling is applied in the
simulations.

Table 5.4: The environment settings for different propagation parameters.

System Parameters Symbol Value

Number of BSs NBS 3

Number of Resources NRB 5

Number of Partitions NP 1

Number of Users N 0 ∼ 100% User Capacity

User Distribution - Uniform, Gaussian

Modulation Scheme - QPSK

SER Threshold - 10−2

Path Loss Exponent γ 2, 4

Shadow Fading s.d. σSF 6, 12

Power Scaling Factor A Adaptive

5.3.1 Effects of Path Loss

Figure 5.14 and Figure 5.15 show the performance comparison of a standard 3 BS macro-
diversity system under different path loss exponents. The minimum path loss exponent
usually considered in a wireless system is γ = 2, which is the path loss in free space. The
typical path loss exponent for urban environment is γ = 4, which includes signal attenu-
ation through building structures. For the FF and BF algorithms, the performance variation
due to γ change is almost unnoticeable. For the PO and PO+SR algorithms with γ = 2, util-
isation has increased by about 5%, compared to the standard PLE factor where γ = 3.5 and
with γ = 4, the change is almost unnoticeable. This is because the effects of path loss are
normalised due to the adaptive power-scaling scheme applied in the system.
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Figure 5.14: System performance with γ = 2 and σSF = 8.
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Figure 5.15: System performance with γ = 4 and σSF = 8.
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User Cluster at the centre of the BSG:

Figure 5.16 and Figure 5.17 show the effect of path loss where users are clustering at the
centre of the BSG. Compared to Figure 5.14 and Figure 5.15, we see a general improve-
ment in utilisation for the same reasons explained in Section 5.2. Between Figure 5.16 and
Figure 5.17, the utilisation results are very similar.
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Figure 5.16: User cluster at the centre of the BSG with γ = 2 and σSF = 8.
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Figure 5.17: User cluster at the centre of the BSG with γ = 4 and σSF = 8.

5.3.2 Effects of Shadow Fading

Figure 5.18 and Figure 5.19 show the performance comparison of a standard 3 BS system
under different shadow fading factors with a uniform user distribution. Compared to the
standard settings in Figure 5.2, the change in performance is very small. The utilisations for
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PO and PO+SR algorithms have dropped by 2% when σSF = 6, and increased by 3% when
σSF = 12. For the FF and BF algorithms, there is little to no change in the performance.
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Figure 5.18: System performance with γ = 3.5, and σSF = 6.
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Figure 5.19: System performance with γ = 3.5, and σSF = 12.

User Cluster at the centre of the BSG:

Figure 5.20 and Figure 5.21 show the effect of shadow fading when users are clustered at
the centre of the BSG. Compared to Figure 5.18 and Figure 5.19, we see an overall improve-
ment in utilisation for σSF = 6, and a minor improvement in utilisation for PO and PO+SR
algorithms for σSF = 12. With an increase in shadow fading, signal variation also increases.
Hence, from the perspective of the BSG, users are seen as more randomly distributed than
clustered. Hence, we see a similar utilisation as for users in a uniform distribution.
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Figure 5.20: User cluster at the centre of the BSG, σSF = 6.
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Figure 5.21: User cluster at the centre of the BSG, σSF = 12.

5.3.3 Discussion

For different path-loss exponents, we do not see much performance variation, either in
the uniform distribution, or in the cluster distribution. This is due to the adaptive power-
scaling in the system. For different shadow fading factors, there is little to no change in
utilisation for users in a uniform distribution. However, for users in a cluster distribution,
shadow fading has an equivalent effect of randomising the user distributions.

When users are clustered at the centre of the BSG, with σSF = 6, we see an improvement
in the utilisation performance; with σSF = 12, we see the utilisation performance becomes
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similar to users in a uniform distribution. This is because higher shadow fading averages
out the effect of user clustering, making the power profile of users seem more varied. If
the environment has higher shadow fading, we can expect a more consistent system per-
formance, which is close to that of a uniform user distribution, regardless of the actual user
distribution.

5.4 A Higher Link Quality Requirement

There are situations where a higher link quality is required: One way of achieving this is by
appropriate scaling of the transmission power, but there may be cases such that the power
is limited, or the system is interference limited. In these cases, we can ensure a higher
link quality by changing the SER threshold in the UCC. Table 5.5 shows the environment
settings used in the simulation. Here, the usual power scaling is applied to the system (i.e.
95% of users meet the SER threshold of 10−2 in single-cell systems), but the SER threshold
for the UCC is reduced to 10−3. Having a more stringent SER threshold also implies that
the system can transmit at higher data rates (if an adaptive MCS is employed).

Table 5.5: The environment settings for a higher QoS requirement.

System Parameters Symbol Value

Number of BSs NBS 3

Number of Resources NRB 5

Number of Partitions NP 1

Number of Users N 0 ∼ 100% User Capacity

User Distribution - Uniform

Modulation Scheme - QPSK

SER Threshold - 10−3

Path Loss Exponent γ 3.5

Shadow Fading s.d. σSF 8

Power Scaling Factor A Adjust to SER = 10−2

5.4.1 Changing the SER Threshold

Figure 5.22 and Figure 5.23 show the utilisation performance for 3 BSs and 7 BSs systems.
With the SER threshold is reduced to 10−3, we observe a reduction in utilisation, particu-
larly when the system is under a heavy user loading. In Figure 5.22, utilisation of the PO
algorithm reaches a peak at 58% when the system is at 66% user loading. The utilisation is
reduced to 40% when the system is at the maximum user loading. For the PO+SR, FF and
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BF algorithms, utilisations are 60%, 70%, and 70% at the maximum user loading, respect-
ively. This is about 10% degradation from the utilisation seen in the equivalent scenario
where the SER threshold was 10−2 (Figure 5.2). Similar results are observed in the 7 BSs
system: In Figure 5.23, utilisation of the PO algorithm reaches a peak at 58% when the
system is at 70% user loading. This is reduced to 18% at the maximum user loading. For
the PO+SR, FF and BF algorithms, utilisations are 65%, 77%, and 82% at the maximum
user loading. These results are about 15%, 10%, and 5% degradation respectively from the
utilisation in the equivalent scenario where the SER threshold was 10−2 (Figure 5.5).
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Figure 5.22: System performance with NBS = 3 and SER Threshold = 10−3.
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Figure 5.23: System performance with NBS = 7 and SER Threshold = 10−3.

In Figure 5.24, the power is scaled so that 95% of users meet the new SER threshold of 10−3.
In this case, we observed good utilisation performance for all algorithms.
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Figure 5.24: System performance with NBS = 3 and SER Threshold = 10−3. Power is scaled
to SER Threshold = 10−3.

5.4.2 Discussion

From the results, a general degradation in utilisation is observed when the SER threshold
is reduced to 10−3. Particularly for the PO algorithm, with 3 BSs, the utilisation peaked at
58% when the system was between 65% ∼ 70% user loading. For the PO+SR, FF, and BF
algorithms, at the maximum user loading, the utilisation performance dropped by about
10% in both the 3 BSs and 7 BSs systems.

In general, we observe that the user link quality is highly dependent on the overall power
level received by the BSG. To achieve a lower SER threshold with the same power setting,
utilisation performance suffers. If the power is scaled appropriately according to the SER
threshold, then the utilisation performance returns to normal levels. In other words, for
the PO+SR, FF, and BF algorithms, the utilisation performance is close to the maximum
utilisation, if the system is not fully loaded. The performance “sweet-spot” is around N =

NRB × (NBS − 1), as was already established in Section 5.1.

5.5 Summary

This chapter shows the trade-offs between utilisation and complexity for all the algorithms
proposed in Chapter 4. The simulation results show that the ES algorithm is highly com-
plex, even for a small system dimension. Although it has the best utilisation performance,
in practice, it is not an efficient solution for most systems. Amongst the PO, PO+SR, FF,
and BF algorithms, PO+SR and FF have a good balance between utilisation performance
and complexity. The FF algorithm has a better utilisation performance than the PO+SR
algorithm, but it is also more complex when the system is under heavy user loading. The
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final choice of algorithm will depend on the processing power of the particular system.

When the number of BSs increases, the user capacity of the system increases because of
the increase in the spatial dimension of the system. However, the complexity of user se-
lection also increases. For the FF and BF algorithms, where resources are dynamically
allocated, user partitions is a reasonable method of reducing the complexity; the degree
of complexity reduction is proportional to the number of user partitions. For the PO and
PO+SR algorithms, since the resources are allocated in a fixed manner, user partitions does
not affect the complexity. In the simulations, PO and PO+SR have much lower complexity
even without user partitions. The simulation results also show that power ranking does
not make any meaningful improvement to system performance, either in utilisation, or in
complexity.

In our investigation of user distributions, we observed that utilisation is strongly affected
by the ability of all BSs to simultaneously support the users. In the scenario where users are
clustered at the centre of the BSG, all users are equally supported by all BSs, and utilisation
is better than that for users in a uniform distribution. In the scenario where users are
clustered near the edge of the BSG, users are strongly supported by one BS, and poorly
supported by the other BSs. Here, the utilisation is lower. Utilisation does not vary greatly
with path loss. This is because in our simulations, we assumed that the system power
is scaled according to the path loss of the environment. Shadow fading has the effect of
randomising the power profile of the users. In an environment with high random shadow
fading, users with a clustered distribution have a similar utilisation performance to that
users randomly located in a uniform distribution.

We have also looked at system performance where user selection is based on a higher link
quality requirement. As we increased the link quality requirement by lowering the SER
threshold of the UCC, we observed a significant drop in utilisation of all the algorithms.
For the PO algorithm, we started seeing degradation in utilisation when the user loading
exceeded 60%. For the PO+SR, FF, and BF algorithms, we saw that utilisation started to
plateau when N > NRB × (NBS − 1). If we set the system power with the higher link qual-
ity requirement, then we saw similar performance to systems with higher SER threshold
(lower link quality requirement). Based on this observation, it is clear that utilisation per-
formance is highly dependent on the overall power level of the system.

In the simulations, we also observed a strategic region of user loading, which offers a good
trade-off between utilisation and complexity. In general, when the number of users is less
than N = NRB × (NBS − 1), we see that utilisation generally trends towards the maximum
utilisation. When the number of users is greater than N = NRB × (NBS − 1), we start to
see utilisation deviating from the maximum utilisation. It may be an advantage to limit
the user loading so the number of users is always below this threshold. This way, we are
likely to achieve good utilisation performance even with very simple and low-complexity
algorithms.



Chapter 6

Conclusion

Macrodiversity systems have many promising features that can improve system perform-
ance from a network perspective, such as improving the weak signals of users affected
by shadow fading, or users at the cell-edge. They also allow multiple users to share the
same resource in time and frequency, improving the overall user capacity. As a result, it
has been adopted as a part of the LTE standard since Release 11. However, there are still
many challenges remaining in the implementation of such systems. The issue of multi-
user resource allocation is one such challenge. Traditionally, evaluating link quality of the
resource-sharing users requires instantaneous channel state information (CSI), and users
are selected based on performance measures such as sum capacity, or symbol error rate
(SER). This becomes a challenging task in macrodiversity systems. For macrodiversity sys-
tems, instantaneous CSI could be passed to the backhaul processing unit (BPU) through
the network backhaul. This creates a delay in the signal, and makes instantaneous CSI a
less accurate reflection of the channel environment at the time. Passing instantaneous CSI
of all users also creates a significant amount of network overheads, reducing the overall
efficiency of the network. Since the system can cover a larger geographical area and more
users compared to multi-user MIMO (MU-MIMO) in single-cell systems, the number of
user selection combinations can become extremely large, making scheduling decisions in
real time an even more challenging task. These problems limit the realisation of the user
capacity potential of macrodiversity systems.

One approach to the problem is using long-term power for resource allocation decisions.
Using long-term power bypasses the issue of channel estimation error introduced by the
network delay, and it also reduces the communication overhead on the network backhaul.
In this research, we implemented a method of finding approximate SER of users in a mac-
rodiversity system using long-term power. This method is much more efficient than the al-
ternative Monte Carlo methods, which find SER by repetitively sending a dummy symbol
over a simulated channel; it allows us to evaluate link quality of many users in a relatively
short time frame. This is particularly useful in resource allocation problems where we need
to evaluate the performance of multiple user combinations before reaching an acceptable
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solution. Compared to the Monte Carlo method, the proposed method overestimates SER
in low SNR scenarios. In this research, we consider it an acceptable defect, because for the
link quality, it is better to overestimate SER than underestimate SER, and the improvement
in computation efficiency outweights the gain in accuracy. For these reasons, the approx-
imate SER is used as the default metric for evaluating link quality. We have also considered
alternative metrics for evaluating link quality, however, none of them are effective.

Our contribution in this research is developing a resource allocation method for macro-
diversity systems using long-term power. This method uses the approximate SER as a
prediction for link quality, and we define a UCC such that it allows resource-sharing only
if all users in the user group meet the SER threshold. As a part of the resource allocation
method, four different heuristic user selection algorithms were proposed, from very low
complexity to moderate complexity. We developed a framework for evaluating the per-
formance of the user selection algorithms. In this framework, we measure performance in
terms of utilisation and complexity. Utilisation refers to the percentage of allocated users
over the theoretical user capacity. Complexity refers to the number of SER calculations
required to find a resource allocation solution. Using the framework, resource allocation
is simulated in four different aspects: system dimension, user distribution, propagation
parameters, and a higher link quality requirement. The key points are the following:

• Complexity reduction with the heuristic user selection algorithms.
Compared to the ES algorithm, the proposed heuristic user selection algorithms have
much less complexity. For a small system as in Figure 5.2, the difference in complex-
ity is the order of 108 dropping to 102. However, even for the heuristic algorithms,
the complexity can become quite significant for larger system dimensions. In Fig-
ure 5.6, the complexity of the BF algorithm is greater than 104. To keep user selection
complexity manageable, we partitioned users and resources into smaller subsets, in
the hope that this would minimise complexity for larger system dimensions. This is
effective for the BF algorithm, because the complexity of the algorithm has a linear
relationship with the number of users in the system. For the PO, PO+SR, and FF al-
gorithms, the complexity varies depending on the channel condition, so the benefits
are less obvious. We also ranked users according to their combined power before
user selection takes place. However, we cannot observe any noticeable improvement
in utilisation or complexity based on this idea. Overall, FF and PO+SR algorithms
are the preferred choices because they offer good trade-offs between utilisation and
complexity.

• Utilisation is optimised if all users are equally supported by all BSs.
From Chapter 5, we observed that the performance is best if all users are equally sup-
ported by all BSs with strong power. In Section 5.2, if users are clustered at the centre
of the BSG, the signals transmitted by all users are received by the BSs at a similar
level. In this scenario, the spatial diversity of the system is maximised. On the other
hand, if users are clustered around only one BS, there is low spatial diversity, so the
utilisation performance is poor. This observation suggests that if there is a tendency
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of users clustering at one particular spot, we could optimise the system perform-
ance by aligning the centre of the BSG with the centre of the cluster. If, on the other
hand, there is a tendency for users to cluster, but in different locations at different
times, we could optimise the system performance by having dynamic formations of
the BSG according to the user cluster. Where users follow more a uniform distribu-
tion, we would not see much difference in performance. If the shadow fading of the
environment is high, this causes a higher variance in received signal powers, making
the users appear more distributed. This suggests that in urban environments where
shadow fading is high, assuming random shadow fading, we can expect the received
channel power has an equivalent effect of users in a uniform distribution.

• Higher allocation rate if the spatial dimensions of the channel matrix are not fully utilised.
In the simulations, we observed across a range of environments, all algorithms have
utilisation performance close to the maximum utilisation as long as the user loading
is less than N = NRB× (NBS− 1). For this system model, the spatial dimension of the
system is defined by the number of BSs, NBS. This observed phenomenon suggests
that as long as the spatial dimension of the channel is not fully utilised, most users can
co-exist with one another regardless of their power profiles. From user’s perspective,
this means they have a higher allocation rate when they demand a resource from the
network. In designing macrodiversity systems, we may be able to utilise this feature
to minimise the user selection complexity.

From the key points, utilisation is close to maximum as long as the number of users in a
user group is less than the maximum spatial dimension. When designing a macrodiversity
system, we could first decide the maximum number of users which the system is intended
to cater for, then have one additional BS so the maximum user capacity is always greater
than the expected number of users. With this system size, we can use a low-complexity user
selection algorithm, such as PO+SR or FF, and still achieve utilisation close to the maximum
utilisation. Although the user capacity is not fulfilled, we can be almost certain that all
users will be allocated in these very low-complexity systems, therefore the allocation rate
is high. The following shows the steps for implementing a low-complexity macrodiversity
system:

1. Decide on the maximum number of users (Nmax) which the system intends to sup-
port.

2. Have BSs in the system so that Nmax ≤ (NBS − 1)×NRB.

3. If users have the tendency to cluster at one area. Plan the system so that the BSG is
centred at the user cluster.

4. Choose a user selection algorithm, so the system meets the complexity and allocation
rate goals.
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As an example, consider we have 20 resources available, and we want to deploy a macro-
diversity system that can cater for up to 120 users. If we design the macrodiversity system
so that it has 7 BSs, then according to Figure 5.6, we can achieve 76.4% utilisation with the
PO+SR algorithm, and 83.8% utilisation with the FF algorithm. For the allocation rate as
defined in (3.18), that equates to, respectively, an 89.1% and 97.7% guarantee of service,
with complexity of about 180 and 930 SER calculations. If there are only 6 BSs in the sys-
tem, at the full user loading (N = 120), we can expect utilisation to be about 80% and
90% respectively, and the allocation rate would be 80% and 90% as well. The complexity
is higher because lower allocation rate also means the likelihood of the first candidate user
meeting the UCC is lower (240 and 1820 SER calculations for the PO+SR and FF algorithms
respectively).

6.1 Future Work

Some of the assumptions made in this research may not accurately reflect the real-life en-
vironments where macrodiversity systems are deployed. The following represents a short
list of potential directions for research to take:

• Resource Allocation with multiple BSGs, including the effect of inter-group interference
(IGI).
In this research we did not consider the scenario where there are multiple BSG co-
existing with one another. If there are multiple BSGs, all using different resources,
it would be very inefficient in terms of the overall spectral efficiency. However, if
the BSGs all use the same resources, then IGI is likely to occur. How to model IGI
while integrating resource allocation for the broader picture that encompasses mul-
tiple BSGs, would be an important study for the deployment of macrodiversity sys-
tems on a large scale.

• Dynamic BS grouping strategies.
As shown in Section 5.2, utilisation is maximised if a user cluster is at the centre of the
BSG. On the contrary, utilisation is very poor if the user cluster is at the edge of the
BSG. This depends on the number of BSs that could simultaneously support users in
the system. If the formation of the BSGs can be adaptive to the user distribution at the
time, then it is possible to achieve an even higher system performance and spectral
efficiency.

• Data aggregation at the network backhaul.
In this research we assume that once a resource is allocated to a user, and a connec-
tion between the user and the BSG is established, the signal received by the BSG will
behave as it would in MIMO systems with co-located antennas. In reality, the signal
received by all BSs will pass through the network backhaul before it is centrally com-
bined and detected at the BPU. How to aggregate the data flows and to operate the
network in the most effective manner, is an important study of its own.
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6.2 Final Remarks

The big picture in this thesis is multi-user resource allocation in macrodiversity systems
using long-term power. The goal is to increase user capacity with minimum complexity
and network overhead.

Without resource-sharing, user capacity is limited to the number of available resources.
With resource-sharing, user capacity within the BSG can increase greatly, based on the
number of BSs. For a macrodiversity system with 3BSs, we see nearly a 100% increase in
utilisation even with the simplest user selection algorithm. With more complex algorithms,
utilisation can increase up to 200%. Alternatively, we can design the system so it does
not use the full capacity, but the additional spatial diversity allows most users to have
guaranteed services. In this thesis, we have identified that using the PO+SR, or the FF
algorithm for user selection can achieve good utilisation with relatively low complexity.
The final choice of the algorithm will depend on the processing power of the particular
system.

Based on the framework presented here, decisions about how to construct a macrodiversity
network can now be made in a way that takes account of the needs of each particular situ-
ation. These networks are a promising resource, and as we move forward, it is hoped that
the research conducted here will allow us to take advantage of the best points of balance
between speed and reliability of service delivery.
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Appendix A

SER Calculation using Long-Term

Power

A.1 Derivation of exact SER in Macrodiversity Scen-
arios with No Resource-Sharing

This section describes the derivation of exact SER for the single user macrodiversity scen-
ario assuming Quadrature Phase Shift Keying (QPSK) is used for the base-band modulation
scheme. Equation numbers listed in reference to integrals are taken from the 7th edition of
Table of Integrals, Series and Products by Gradshteyn and Ryzhik [79].

Consider the received signal from a single source given by

r = hs+ n, (A.1)

where r is the signal received at the BS array, h is the channel matrix with dimension
[NR × 1], where NR is the number of receive antennas; for the case of BSs with a single
antenna, NR is the number of BSs. s is the transmit symbol, in the form of a scalar complex
number. We assume E|s|2 = 1 for the following derivation. n is the noise added at the
receiver where each element, nj , of n satisfies nj ∼ CN (0, σ2).

As explained in Section 3.3, the channel matrix h has the structure:

h =


h1,1

h2,1
...

hNR,1

 =


√
P1,1u1,1√
P2,1u2,1

...√
PNR,1uNR,1

 , (A.2)

where hi,1 is the channel coefficient between the user and the BSi, The hi,1 term can be
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represented by the long-term power component, Pi,1, and the fast fading component, ui,1.
Here hi,1 ∼ CN (0, Pi,1) and ui,1 ∼ CN (0, 1).

The transmit symbol can be detected by applying a decoding matrix, w, to the received
signal, r, giving

r̂ = wr, (A.3)

where r̂ is the output of the receive combiner. r̂ = s+ n̂.

In the single user scenario, maximum ratio combining (MRC) and zero-forcing (ZF) detec-
tion schemes have the same decoding matrix where

w =
h†

h†h
. (A.4)

The combiner output r̂, is therefore

r̂ =
h†

h†h
r

=
h†

h†h
hs+

h†

h†h
n

= s+
h†

h†h
n

= s+ n̂,

(A.5)

where n̂ is the adjusted noise after receive combining.

The signal-to-noise ratio (SNR) is

SNR =
E[|s|2]
E[|n̂|2]

=
1

E [(wn)(wn)†]

=
1

E [wnn†w†]

=
1

E
[

h†

h†h
nn† h

hh†

]
=

1

σ2(hh†)−1

=
1

σ2(h†
−1

h−1)

=
h†h

σ2
.

(A.6)
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Hence, if MRC or ZF is used for signal detection, the output signal power is h†h:

h†h = [h1,1
∗ . . . hNR,1

∗]


h1,1

...

hNR,1


=

NR∑
i=1

|hi,1|2

=

NR∑
i=1

Pi,1|ui,1|2.

(A.7)

To compute the SER, we need to first find the probability density function (PDF) of h†h.
We can describe h†h in (A.7) as a sum of multiple random variables having Chi-Square
distributions:

h†h =

NR∑
i=1

Pi,1|ui,1|2

=

NR∑
i=1

Pi,1
2
× 2|ui,1|2

=

NR∑
i=1

Pi,1
2
X2

2(i),

(A.8)

where X 2
2 (i) is the ith fast fading component normalised to a standard Chi-Square distri-

bution with two degrees of freedom. Hence, h†h is a weighted sum of X 2
2 variables.

Now, from [84], it is known that the PDF of h†h in (A.8) is given by

Px(x) =
1

2

NR∑
i=1

bi,1
βi,1

e
− x

2βi,1 , (A.9)

where
βi,1 =

Pi,1
2
,

bi,1 = βi,1
NR−1

NR∏
i 6=j

(βi,1 − βj,1)−1 .
(A.10)
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Figure A.1 describes a standard constellation map for the QPSK modulation scheme with
symbol amplitude normalised to 1. SER is calculated based on the tail error probability of
the symbol moving out of the constellation boundaries.

1
2

1
2

I

Q

Figure A.1: QPSK constellation plane. Blue dots are designated signal points, red dots are
closest signal boundaries in reference to the upper right blue dot where an error
occurs.

From Figure A.1, assuming s = 1√
2

+ j 1√
2
, SER can be expressed as

SER = 1− P
(

1√
2

+
nI√
h†h

> 0

)
P

(
1√
2

+
nQ√
h†h

> 0

)
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P (nI > −
√

h†h

2

)2
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(
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√
h†h

2

))2
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(1− P

(
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h†h

2σ
2

2

))2


= 1−E

(1−Q

(√
h†h

σ2

))2


= 1−E

[
1− 2Q

(√
h†h

σ2

)
+Q2

(√
h†h

σ2

)]

= 2E

[
Q

(√
h†h

σ2

)]
−E

[
Q2

(√
h†h

σ2

)]
.

(A.11)

In (A.11), nI and nQ are the in-phase and quadrature components of the noise, n, where
each element in nI and nQ ∼ CN (0, σ

2

2 ). ñ is a real noise component with variance normal-
ized to 1. The Q-function is the tail probability of the standard Gaussian channel.



A.1 Derivation of exact SER in Macrodiversity Scenarios with No Resource-Sharing 91

Substituting (A.9) in (A.11), gives

SER =

NR∑
i=1

(
bi,1
βi,1

)∫ ∞
0

Q

(√
x

σ2

)
e
− x

2βi,1 dx−

1

2

NR∑
i=1

(
bi,1
βi,1

)∫ ∞
0

Q2

(√
x

σ2

)
e
− x

2βi,1 dx.

(A.12)

From (A.12), we see that integrals of the form of
∫∞
0 Q(

√
bx)e−axdx and

∫∞
0 Q2(

√
bx)e−axdx

are required to compute the SER. These integrals are derived in A.1.1 and A.1.2 below.

A.1.1 Computation of
∫∞

0 Q(
√
bx)e−axdx:

The Q-function can be expressed in terms of the error function as

Q(x) =
1

2
− 1

2
erf

(
x√
2

)
. (A.13)

The expression,
∫∞
0 Q(

√
bx)e−axdx, then becomes

∫ ∞
0
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√
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∫ ∞
0

(
1

2
− 1

2
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2
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− 1
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2
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− 1
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2

)
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(A.14)

In Gradshteyn and Ryzhik (eqn.6.283.2) [79],∫ ∞
0

erf(
√
qt)e−ptdt =

√
q

p

1√
p+ q

. (A.15)

Applying (A.15) in (A.14) gives

∫ ∞
0
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1
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− 1

2

(
1

a

√
b

2

1√
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1− 1√
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b + 1

 .
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A.1.2 Computation of
∫∞

0 Q2(
√
bx)e−axdx:

Using integration by parts, the expression
∫∞
0 Q2(

√
bx)e−axdx becomes∫ ∞
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(A.17)
For the Q-function, the derivative in (A.17) is expanded as below:

Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du, (A.18)

d
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Applying (A.21) in (A.17) we have
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For y =
√
bx, x = y2
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For v = y√
2
, y =

√
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√
2dv, (A.23) becomes∫ ∞

0
Q2(
√
bx)e−axdx =

1

4a
− 1

a
√

2π

∫ ∞
0

(1− erf(v)) e−(
a
b
+ 1

2
)2v2
√

2dv

=
1

4a
− 1

a
√
π

∫ ∞
0

(1− erf(v)) e−(
2a
b
+1)v2dv.

(A.24)

In Gradshteyn and Ryzhik (eqn.6.285.1) [79],∫ ∞
0
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2v2dv =
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. (A.25)

Hence, (A.24) becomes∫ ∞
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Substituting (A.26) and (A.16) in (A.12) gives
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Substituting a = 1

2βi,1
= 1

Pi,1
, b = 1

σ2 , (A.27) becomes
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where bi,1 =
Pi,1
2

(NR−1)∏NR
i 6=j 2 (Pi,1 − Pj,1)−1. We now have a full expression for SER in

terms of the noise variance, σ2, and the long-term powers, Pi,1, given by
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Appendix B

Results of Alternative Metrics for UCC

We are interested in finding alternative metrics M , that can effectively replace the existing
SER calculation with lower complexity. In our investigation, we proposed three different
metrics, and we compare their proximity to the analytical SER using a log-log scale plot.

We are primarily interested in modelling the SER for the resource-sharing scenarios. We
use a small macrodiversity system to observe the relationship. The system has 3 BSs, 1
resource, and 3 users. All 3 users share the same resource. To maximise the dynamic
range of our signals, we make the path loss exponent γ = 5, and shadow fading standard
deviation σSF = 12. Table B.1 shows the environment settings used in the simulation.

Table B.1: Summary of the environment settings.

System Parameters Symbol Value

Number of BSs NBS 3

Number of Resources NRB 1

Number of Partitions NP 1

Number of Users N 3

User Distribution - Uniform

Modulation Scheme - QPSK

SER Limit - 10−2

Path Loss Exponent γ 5

Shadow Fading s.d. σSF 12

Power Scaling Factor A Adaptive

To find out the relationship between the alternative metrics and the analytical SER in a stat-
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istical sense, we simulate 1000 samples, each sample has users located in different places.
Figure B.1 shows an example of the log-log scale plot. Here, M is the analytical SER itself.
From the figure, we see the two parameters follow a linear relationship, from a very low
SER (10−10), to a very high SER (∼ 100). Ideally, we would like the alternative metric to
follow a similar relationship.

Figure B.1: Log-log plot of the analytical SER results with themselves.

Alternative metric with no resource-sharing:

This metric assumes that we can replace the analytical SER for resource-sharing scenarios
by the exact SER for no resource-sharing scenarios. From the figure, we can see that for a
given SER, the variation in M is of the order of 106, which is too wide for the purpose of
the metric.
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Figure B.2: Log-log plot of the analytical SER results v.s. the SER calculation for single-user
scenario.

Alternative metric using part of equation (3.9):

Consider using part of K̃0 as the simplified metric, where

M =
Perm(Qn)

|Pn|
. (B.1)

We could not observe any meaningful correlation between M and SER.

Figure B.3: Log-log plot of the analytical SER results v.s. M = Perm(Qn)
|Pn| .
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From our investigation, we could not find any alternative metric that is a meaningful low-
complexity replacement of the analytical SER calculation for the resource-sharing scen-
arios. Therefore, the only metric we used for determining the compatibility criteria of the
UCC is the SER.
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