410 research outputs found

    On the contribution of binocular disparity to the long-term memory for natural scenes

    Get PDF
    Binocular disparity is a fundamental dimension defining the input we receive from the visual world, along with luminance and chromaticity. In a memory task involving images of natural scenes we investigate whether binocular disparity enhances long-term visual memory. We found that forest images studied in the presence of disparity for relatively long times (7s) were remembered better as compared to 2D presentation. This enhancement was not evident for other categories of pictures, such as images containing cars and houses, which are mostly identified by the presence of distinctive artifacts rather than by their spatial layout. Evidence from a further experiment indicates that observers do not retain a trace of stereo presentation in long-term memory

    Long-Term Visual Memory and Its Role in Learning Suppression

    Get PDF
    Long-term memory is a core aspect of human learning that permits a wide range of skills and behaviors often important for survival. While this core ability has been broadly observed for procedural and declarative memory, whether similar mechanisms subserve basic sensory or perceptual processes remains unclear. Here, we use a visual learning paradigm to show that training humans to search for common visual features in the environment leads to a persistent improvement in performance over consecutive days but, surprisingly, suppresses the subsequent ability to learn similar visual features. This suppression is reversed if the memory is prevented from consolidating, while still permitting the ability to learn multiple visual features simultaneously. These findings reveal a memory mechanism that may enable salient sensory patterns to persist in memory over prolonged durations, but which also functions to prevent false-positive detection by proactively suppressing new learning

    Artificial Neural Network Simulations of Human Learning Suggest the Presence of Metastable Attractors in Visual Memory

    Get PDF
    The attractor hypothesis states that knowledge is encoded as topologically-defined, stable configurations of connected cell assemblies. Irrespective to its original state, a network encoding new information will thus self-organize to reach the necessary stable state. To investigate memory structure, a multimodular neural network architecture, termed Magnitron, has been developed. Magnitron is a biologically-inspired cognitive architecture that simulates digit recognition. It implements perceptual input, human visual long-term memory in the ventral visual pathway and, to a lesser extent, working memory processes. To test the attractor hypothesis a Monte Carlo simulation of 10,000 individuals has been run. Each simulated learner was trained in recognizing the ten digits from novice to expert stage. The results replicate several features of human learning. First, they show that random connectivity in long-term visual memory accounts for novices’ performance. Second, the learning curves revealed that Magnitron simulates the well-known psychological power law of practice. Third, after learning took place, performance departed from chance level and reached a minimum target of 95% of correct hits; hence simulating human performance in children (i.e., when digits are learned). Magnitron also replicates biological findings. In line with research using voxel-based morphometry, Magnitron showed that matter density increases while training is taken place. Crucially, the spatial analysis of the connectivity patterns in long-term visual memory supported the hypothesis of a stable attractor. The significance of these results regarding memory theory is discussed

    Eye-movements reveal semantic interference effects during the encoding of naturalistic scenes in long-term memory

    Get PDF
    Similarity-based semantic interference (SI) hinders memory recognition. Within long-term visual memory paradigms, the more scenes (or objects) from the same semantic category are viewed, the harder it is to recognize each individual instance. A growing body of evidence shows that overt attention is intimately linked to memory. However, it is yet to be understood whether SI mediates overt attention during scene encoding, and so explain its detrimental impact on recognition memory. In the current experiment, participants watched 372 photographs belonging to different semantic categories (e.g., a kitchen) with different frequency (4, 20, 40 or 60 images), while being eye-tracked. After 10 minutes, they were presented with the same 372 photographs plus 372 new photographs and asked whether they recognized (or not) each photo (i.e., old/new paradigm). We found that the more the SI, the poorer the recognition performance, especially for old scenes of which memory representations existed. Scenes more widely explored were better recognized, but for increasing SI, participants focused on more local regions of the scene in search for its potentially distinctive details. Attending to the centre of the display, or to scene regions rich in low-level saliency was detrimental to recognition accuracy, and as SI increased participants were more likely to rely on visual saliency. The complexity of maintaining faithful memory representations for increasing SI also manifested in longer fixation durations; in fact, a more successful encoding was also associated with shorter fixations. Our study highlights the interdependence between attention and memory during high-level processing of semantic information

    Using recognition-induced forgetting to assess forgetting of racial minority faces

    Get PDF
    Recognition-induced forgetting is a forgetting effect whereby items held in visual long-term memory are forgotten as a consequence of recognizing other items of the same category. Previous research has demonstrated that recognition-induced forgetting occurs for White faces but not Black faces. Specifically, while recognizing one White face leads to the forgetting of another, memory for Black faces is undisturbed in the same situation. In the real world, the immunity of Black faces to recognition-induced forgetting could cause disproportionately more positive eyewitness identifications of Black suspects than White suspects. Are racial minority faces immune to recognition-induced forgetting? Here we tested recognition-induced forgetting of Asian faces. Despite replicating the immunity of Black faces to recognition-induced forgetting, Asian faces were susceptible to recognition-induced forgetting. These findings suggest that racial minority status of the face does not create immunity to recognition-induced forgetting.No embargoAcademic Major: Psycholog

    Psychiatric profile of motor subtypes of de novo drug-naïve Parkinson's disease patients

    Get PDF
    Background: Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder. It is well established that different motor subtypes of PD evolve with different clinical courses and prognoses. The complete psychiatric profile underlying these different phenotypes since the very early stage of the disease is debated. Aims of the study: We aimed at investigating the psychiatric profile of the three motor subtypes of PD (akinetic-rigid, tremor-dominant, and mixed) in de novo drug-naïve patients with PD. Methods: Sixty-eight patients with PD, divided into 39 akinetic-rigid (AR), seven mixed (MIX), and 22 tremor-dominant (TD) patients underwent a complete assessment of psychiatric, cognitive, and motor symptoms. Results: No significant differences were found among groups. Conclusions: Our results suggest that a differentiation of the psychiatric symptoms associated with specific motor subtypes of PD is not detectable in de novo drug-naïve patients. Previous evidence that emerges later along the disease progression may be a consequence of the dopaminergic and nondopaminergic damage increase

    A pilot study on the effects of probiotic supplementation on neuropsychological performance and microRNA-29a-c levels in antiretroviral-treated HIV-1-infected patients

    Get PDF
    The gut microbiota is involved in the regulation of cognition, mood, anxiety, and pain, and can impact cognitive functions by producing neuroactive substances or releasing bacterial by-products and metabolites. No information is available on the effects of a probiotic supplementation on brain function of HIV+ subjects. In light of the above considerations, we performed a pilot study in cART-treated HIV-1-positive patients with long-term virologic suppression. The aims were to analyze the effect of high-concentration multistrain probiotic supplementation (Vivomixx®; Visbiome®) on several neurocognitive abilities and to evaluate the safety of this supplementation

    Predation risk modifies behaviour by shaping the response of identified brain neurons

    Get PDF
    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs Neohelice granulata from two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome.Fil: Magani, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Luppi, Tomas Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Nuñez, Jesus Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin
    • …
    corecore