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Abstract 

Objective: Long-term visual memory representations, measured by recognition performance, 

degrade as a function of semantic interference, and their strength is related to eye-movement 

responses. Even though clinical research has examined interference mechanisms in pathological 

cognitive ageing and explored the diagnostic potential of eye-movements in this context, little is 

known about their interaction in long-term visual memory.  

Method: An eye-tracking study compared a Mild Cognitive Impaired group with healthy adults. 

Participants watched a stream of 129 naturalistic images from different semantic categories, 

presented at different frequencies (1, 6, 12, 24) to induce semantic interference (SI), then asked in a 

2-Alternative Forced Choice paradigm to verbally recognize the scene they remembered 

(old/novel).  

Results: Recognition accuracy of both groups was negatively impacted by SI, especially in the 

healthy adults. A wider distribution of overt attention across the scene predicted better recognition, 

especially by the MCI participants, although these fixation patterns were influenced by SI. MCI 

compensated the detrimental effect of SI by focusing overt attention during encoding and so 

accruing distinctive details of the scene. During recognition, MCI participants widened overt 

attention to boost retrieval. Independently of the group: (a) the re-instatement of fixations indicated 

a more successful recall and increased as a function of SI; and (b) attending visually salient regions 

negatively impacted on recognition accuracy, although the reliance on such regions grew as SI 

increased. 

     

Conclusions: Effects of SI on long-term memory were reduced in MCI participants. They used  

different oculo-motor strategies compared to healthy adults to compensate its detrimental effects.  

 

Key Points:  

Question: Is  visual memory of Mild Cognitive Impaired participants impacted by semantic 

interference similarly to healthy adults, and will their eye-movements reveal any difference?  

Findings: Semantic interference effects are reduced in people with MCI and their eye-movements 

show subtle compensatory strategies associated to the formation and access of visual memories.  

Importance: Visual semantic interference may be an interesting candidate mechanism to better 

study pathological memory processes.  

Next Steps: Better characterise the nature of visual interference by developing new metrics to 

disentangle its perceptual and conceptual components.    

 

Keywords: Long-term visual memory; Mild cognitive impairment; semantic interference; low-level 

visual saliency; eye-tracking 
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Semantic interference mechanisms on long-term visual memory and their eye-movement 

signatures in Mild Cognitive Impairment 

 

Introduction 

 

In a seminal study, Standing (1973) demonstrated that humans can remember thousands of 

images, highlighting our impressive capacity to retain and recollect rich and detailed visual 

information from memory.  After this initial observation , which became accepted wisdom (Reed, 

2012), the topic of long-term visual memory has been relatively neglected.  

In the last two decades, however, probably fuelled by advances in computational methods, 

there has been a surge of interest on what makes images memorable (Bylinskii et al., 2015; Isola et 

al., 2014) and on the cognitive mechanisms involved in the encoding and successful access of visual 

information from memory (e.g., Bainbridge et al., 2019; Evans & Baddeley, 2018; see Rust & 

Mehrpour, 2020, for a recent review). An insightful observation by Brady and co-workers is that the 

successful later recognition of an object, or a scene, strongly depends on how many other objects 

(or scenes) from the same semantic category were also encoded in memory (Brady et al., 2008; 

Konkle et al., 2010a, 2010b). In these studies, participants were asked to watch a stream of visual 

stimuli (i.e., scenes) from different semantic categories (e.g, kitchens or deserts) at different 

frequencies (1, 4, 16, 64). Their memory was then tested in a 2-Alternative Forced Choice 

paradigm, whereby a seen image (old) was presented side-by-side with an unseen image (novel) 

from the same semantic category. The results showed that the fidelity of visual representations in 

memory degrades as a function of number of related images: the greater the number of images from 

the same semantic category were originally encoded, the worse their retrieval, suggesting a 

semantic interference effect on memory recognition. 

The impact of interference on memory representations is not a new discovery, as it has been 

a topic of investigation since very early research (Müller & Pilzecker, 1900;  for a review see 

Dewar et al., 2007). Several factors contributing to interference have been identified (e.g., 
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retroactive vs. proactive, see Craig et al., 2015 for an overview of the distinction). Here, we focus 

on the interference on memory recognition that is generated by the similarity of stimuli at encoding 

(see McGeoch & McDonald, 1931 and Baddeley & Dale, 1966 for early work on semantic 

interference in verbal recall tasks).   

Semantic memory and the mechanisms of interference have played a prominent role also in 

clinical research investigating the neuropsychological markers of pathological ageing. People 

affected by mild cognitive impairment (henceforth MCI), with ascertained memory impairments 

(Mitchell & Shiri-Feshki, 2009), often leading to more severe forms of Alzheimer’s type dementia 

(henceforth AD), display a degraded performance in tasks tapping into semantic memory, such as 

word-to-picture matching (Adlam et al., 2006) or picture naming (e.g., Duong et al., 2006), and 

have greater difficulties recalling historical events (e.g., Leyhe et al., 2010) or faces of famous 

people (e.g., Barbeau et al., 2012). When looking more specifically at semantic interference effects, 

however, evidence is not as clear cut. Loewenstein et al. (2004) compared people with MCI, AD, 

and healthy adults on the Fuld Object Memory Evaluation task, which measures verbal memory 

recall of visually and tactilely presented real objects, and observed a clear effect of semantic 

interference in all groups. In this study, participants were first exposed to 10 common objects (and 

asked to touch, watch and name), then similarly presented with 10 novel objects from the same 

semantic category and asked to verbally recall both lists of objects. The results showed that the 

verbal recall of MCI, and especially AD participants, was significantly more impacted by the 

semantic interference than the healthy age-matched control group, even after accounting for 

differences in overall memory function. On the other hand, Mulatti et al., (2014) adopted a picture 

naming task, devised by Howard et al. (2006), and compared cumulative semantic interference 

effects in people with MCI and healthy adults. In line with Howard et al., the results showed that 

the naming latencies for healthy adults became progressively slower as the number of objects from 

the same semantic category increased; however, such an effect was not observed in the MCI 

participants.  The differential semantic interference effects observed in these two studies may relate 
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to the evidence that people with AD show preserved information about the use of objects even when 

unable to name them (Bartolo et al., 2016).  Hence, they may experience interference during the 

Fuld task, because it taps into specific object knowledge. Regardless of these mixed results, it has 

yet to be determined whether the detrimental effect exerted by visual semantic interference on the 

long-term memory of younger adults (Konkle et al., 2010b) would manifest in a healthy older 

population, and in people with MCI, and if so, what would the magnitude of this effect be. Indeed, 

there is only a handful of studies investigating long-term visual memory in people suffering from 

dementia, and despite some preliminary evidence that their capacity is well kept (e.g., Karlsson et 

al., 2003), it is a largely unexplored area of research. Our first objective is to compare long-term 

memory for naturalistic scene information for people with MCI and healthy age-matched adults, 

while examining the impact that semantic interference may exert. 

Another important aspect about the memorability of images relates to the role played by 

extrinsic responses such as eye-movements (Bylinskii et al., 2015) and their link to memory 

processes (see Hannula, 2018, Hannula et al., 2010 and  Ryan & Shen, 2020, for comprehensive 

reviews).  For example, a more spread-out distribution of fixations on a scene upon first inspection 

predicts better later recognition (e.g., Damiano & Walther, 2019). In addition, memory retrieval is 

boosted by attending to similar locations (i.e., fixation re-instatement) during encoding and 

recognition (e.g., Foulsham & Kingstone, 2013), especially for older adults (e.g., Wynn et al., 

2018). What it is still unclear is whether eye-movement responses could additionally inform about 

the impact of higher-level mechanisms, such as semantic interference, on memory processes, and 

further, help reveal any differences associated with pathological ageing.   

This proposition is supported by recent clinical research aimed at isolating abnormal 

patterns of oculo-motor control in pathologically aged populations (see Molitor et al., 2015 for a  

review). In this literature, most differences on eye-movement patterns seem to be on saccadic 

responses and using simple tasks, such as fixating at dots placed at different eccentricities, which 

mostly tap into low-level mechanisms of oculo-motor control (Fletcher & Sharpe, 1986; Yang et al., 
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2013; but see Boucart et al., 2014 for an example of a search task using naturalistic visual stimuli). 

So, even though oculo-motor responses reflect memory processes and may reveal underlying 

pathological conditions (Lagun et al., 2011), it is yet to be established whether high-level semantic 

interference mechanisms may manifest in eye-movement patterns and differ because of pathological 

cognitive ageing. Addressing this question constitutes the second objective of the current study.  

Finally, visual information does not only carry high-level semantic information, but also, 

low-level perceptual information (e.g., colour, edges or luminosity), which can be computationally 

quantified as visual saliency (see Itti & Koch, 2000, for a well-known model). This type of 

information is known to guide the allocation of overt attention when the task has no specific target 

objects to look (e.g. free-viewing, Parkhurst et al., 2002), and  has little impact on the memorability 

of an image (Isola et al., 2011). In the context of pathological ageing, only a few studies have 

examined whether the access and use of low-level information may be compromised. What is 

known originates primarily from visual search tasks, where people with dementia seem to show 

difficulty searching for visually salient targets (Tales et al., 2004) and need enhanced low-level 

perceptual features (e.g., contrast) to perform at a comparable level to healthy adults (Cronin-

Golomb et al., 2007). However, to the best of our knowledge, it is yet to be established how visual 

saliency may influence the long-term visual memory of people with MCI. This constitutes the third 

objective of the current study.      

The present study borrows the paradigm developed by Konkle et al., (2010b), in order to 

assess the magnitude of semantic interference effects on memory recognition in people with MCI 

and a healthy control group.  It also examines a few key eye-movement measures to isolate: (a) 

how, and to what extent, the allocation of overt attention contributes to memory processes, (b) 

whether they reveal clear differences between healthy adults and people with MCI, (c) if semantic 

interference leaves a signature on such measures and (d) if low-level visual saliency can contribute 

to explaining pathological memory processes.  
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If semantic interference is a robust mechanism, spared by healthy and pathological cognitive 

ageing, we would expect to replicate the findings of Konkle et al. (2010b), as well as our own 

results with younger adults (Mikhailova et al., 2021). These studies showed that the greater the 

frequency of the semantic category a scene is taken from, the worse is the subsequent retrieval of 

such a scene. If pathological ageing instead significantly impacts on the mechanisms of semantic 

interference, in light of the mixed results discussed above, we may observe either a greater effect on 

memory recognition in the MCIs (Loewenstein et al., 2004) or a reduction of this effect (Mulatti et 

al., 2014).  

 Moreover, if oculo-motor responses are significantly affected by pathological ageing, as the 

literature on the topic seems to indicate (Molitor et al., 2015), we would expect differences between 

MCI participants and healthy adults to manifest also in eye-movement measures. In particular, MCI 

participants may not show a positive effect of fixation re-instatement on memory recognition, 

contrary to expectations on younger participants and healthy older adults (Foulsham & Kingstone, 

2013; Wynn et al., 2018). Other differences between groups may emerge regarding how fixations 

distribute across the scene while encoding or recognition takes place. To address general patterns of 

viewing,  we use attention maps (Henderson, 2003), which are two-dimensional aggregates of all 

fixations that occurred on a given scene, and use the information measure of entropy to extract a 

summary measure of their spread (refer to Method for greater details). Conceptually, a higher 

fixation entropy in the attention map would reflect a wider distribution of attention than an attention 

map with a lower fixation entropy. In the context of the current study, and in line with our study on 

younger adults (Mikhailova et al., 2021), during encoding, we expect fixation entropy to decrease as 

semantic interference increases. As the fidelity of memory representations blurs due to semantic 

interference, overt attention needs to be allocated onto fewer and more specific details of the scene 

that can act as distinctive cues to enhance its later memorability. This compensatory mechanism 

maybe more strongly required in MCI participants, whose attentional capacity to keep up with 

increasing semantic interference may be reduced. During recognition, on the other hand, we expect 
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fixation entropy to increase as a function of semantic interference and so maximize information 

recall i.e., larger sections of the scene need to be viewed to boost its recognition. In this phase, this 

compensatory mechanism may be more marked in the MCI group, capturing the evidence of more 

peripheral fixations (Rösler et al., 2005), but fail to significantly improve on their recognition 

performance.  

With respect to visual saliency, previous work shows that it does not contribute to the 

memorability of images (Isola et al., 2011), but we may expect people with MCI instead to allocate 

their overt attention more prominently onto salient regions compared to healthy adults as an attempt 

to enhance low-level processing of visual information (Cronin-Golomb et al., 2007). 

 

Methods 

Participants 

A total of 54 participants with a diagnosis of Mild Cognitive Impairment (MCI), a potential 

prodromal stage of Alzheimer’s Disease, and 31 healthy age-matched controls, all native Italian 

speakers, were recruited from the Neurological Ward, Dementia and related disorders Unit at 

Ospedale Garibaldi, Catania (Italy). All participants were naive to the purpose of the current study 

and the stimuli used therein; they all voluntarily took part in the study; they received no honorarium 

and gave explicit informed consent. In Figure 1, we display a breakdown of the selection criteria 

applied to obtain the sample that was statistically analysed. We had to exclude 4 MCI participants 

and 4 healthy adults because they did not return for the follow-up session (more details below) and 

a further 23 MCI participants and 4 healthy adults because their recognition performance on the 

visual memory task was at chance. The MCI participants excluded for at-chance performance on the 

recognition memory had a similar age (Excluded = 70.68 ± 5.86, Included = 72.48 ± 9;  t(45) = -

0.84, p = 0.4) and years of education (Excluded = 10.27 ± 4.57, Included = 10.52 ± 5.19; t(45) = -

0.17, p = 0.9) to the participants included. However, they had marginally lower performance on the 

MMSE (marginal) and significantly lower performance on the CORSI and on the REY for the 
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Delayed condition (see Table S1 in the Supplementary Material for a full comparison). This 

indicates that the long-term memory of the excluded participants was particularly compromised, 

and consequently were unable to perform the long-term visual memory task. The remaining 27 MCI 

participants (7 women, age = 72.48 ± 8.99) and 23 healthy adults (14 women, age = 68.08 ± 9.66) 

contributed to the analyses of the recognition performance. The eye-tracking data of these 

participants had to be further selected for quality purposes. We excluded 3 MCI participants and 3 

healthy adults because we could not perform the first calibration, and 1 more MCI participant 

because of data loss in his/her eye-tracking record (> 30% of the total). Therefore, 23 MCI 

participants and 20 healthy adults contributed to the analyses of the eye-movement data. The 

diagnosis of MCI was structured following international guidelines (Arnáiz et al., 2004; Gauthier et 

al., 2006; Petersen, 2016) and based on the Mini Mental State Examination (see Grigoletto et al., 

1999; Measso et al., 1993 for Italian norms) raw score ≥ 18, family and medical history interviews, 

as well as imaging data (e.g., MRI) and genetic data (e.g., ApoE), when available. Other inclusion 

criteria for the current study were: 1) between 50 and 90 years of age; 2) no less than 3 years of 

schooling (MCI = 10.51 ± 5.19; Control = 10.73 ± 4.92); 3) normal or corrected-to-normal vision 

with no history of eye surgery; 4) no history of neurological (other than memory disturbances) 

and/or psychiatric disorders; 5) no history of alcohol or substance abuse and/or use of medications 

likely to affect cognitive functioning; 6) able to understand the instructions and perform the task. 

The two groups were matched on age [t(45.48) = 1.65, p = 0.1)] and years of education [t(47.40) = -

0.15, p = 0.9)].  In order to gather a better picture of the neuropsychological profiles of the two 

groups, we administered the following battery of tests spanning different cognitive functions: (a) 

Digit span and Corsi’s Block Tapping Test to assess attention and short-term memory (verbal and 

non-verbal respectively), (b) Rey’s Complex Figure, copy and delayed to assess visuo-spatial 

organization and non-verbal long-term memory, (c) Mesulam’s Cancellation test to assess eye 

motor coordination and visuo-spatial scanning (letters and symbols) and (d) the Dubois’ 5 Words 

test to assess free and cued recall (Dubois et al., 2002; see Girtler et al., 2012 for an application of 
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this test to an Italian sample). In Table 1, we report the descriptive statistics of these tests for the 

two groups, and assess statistical significance using a Welch two sample t-test (p-values are 

reported in the table). In Appendix A, we report a correlation analysis of the MCIs’ individual 

performance on the neuropsychological tests, recognition accuracy, and semantic interference.  The 

NHS South East Scotland Research Committee approved the protocol and material of this study 

prior to starting the data collection (Ref: 16/SS/0109). 

------------------------------------ 

INSERT FIGURE 1 AND TABLE 1 ABOUT HERE 

------------------------------------    

Design and Stimuli 

We selected 834 naturalistic images from the SUN database (Xiao et al., 2010) with a 

minimum of 550*550 pixels resolution, which are provided as thumbnails in the Supplementary 

Material. In the first session, we used 576 scenes from this pool drawn from 12 different semantic 

categories, 6 human-made environments (i.e., amusement park, bathroom, gas station, highways, 

kitchen, library) 6 six natural environments (i.e, beach, desert, field, forest, mountain, river). Similar 

to Konkle et al., (2010b) the frequency of scenes from each semantic category that were viewed by 

the participants was manipulated to induce semantic interference effects.  The twelve types of 

semantic category scenes were randomly distributed with frequencies of 24, 12, 6, or 1 within the 

encoding and recognition phases. In the analyses, we treated SI as a continuous rather than 

categorical variable, with the aim of capturing its incremental impact on memory representations. 

For example, if the semantic category highways were set to have a total frequency of 6 for a certain 

participant, it meant that she/he viewed 6 different highways trials, randomly presented across the 

stream, during encoding. Then, during recognition she/he was tested on these same (old) 6 

highways trials, plus a novel highways image displayed side-by-side, also randomly presented. 

Continuous SI, in this example, was obtained by incrementally counting the number of  highways 

administered, i.e., from 1 to 6 for the encoding phase and from 7 to 12 for the recognition phase, 
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which correspond to the maximum number of highways trials a participant will be administered in 

this running example during her/his entire session.  

Each participant saw 129 scenes during the encoding phase, and the same 129 (old) scenes 

side-by-side with 129 novel scenes from the same semantic categories during the recognition phase.   

In order to counterbalance for the amount of interference for each semantic category, we rotated the 

scenes in 4 different lists (e.g., if the kitchen category had an SI of 4 in list 1, the same category had 

an SI of 20 in list 2, and so on). Four further lists were then created by swapping old with novel 

scenes between the encoding and the recognition phase. 

In a follow-up session, the same participants were called back to do the same task, after an 

average number of months of 3.88 ± 2.86 (SD), and administered the remaining 258 scenes from 

the original 834 image pool (129 for the encoding phase, and 129 novel scenes for the recognition 

phase).  These scenes belonged to 129 different semantic categories according to the SUN 

classification, and hence were not expected to result in across-scenes semantic interference within a 

session. The purpose of this follow-up session was to estimate a by-participant baseline memory 

capacity, i.e. no-interference, and so compare it to the main session where the frequency of scenes 

for each semantic category was instead manipulated (refer to the Analysis section for more details). 

Two lists for this follow-up session were created by swapping old with novel scenes between the 

encoding and the recognition phase so to ensure that all scenes were seen in both conditions. Note 

also that the number of scenes administered was identical in the main session and the follow-up 

session (i.e., 129), but scenes were not repeated between sessions, i.e., we did not reuse scenes 

between the main and the follow-up session. SI was analysed following the same logic described 

above, but now, we have a frequency value of 1 for all encoding trials, as all scenes come from 

different semantic categories, and a value of 2 for all recognition trials as we are including in the 

count the trial viewed during encoding. 
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Apparatus 

Visual stimuli were displayed on an AOC 19.5 inch flat-screen monitor (44.4 cm width and 

23.7 height) with a 50Hz refresh rate at a resolution of 1600 × 900, and eye movements binocularly 

recorded using an EyeTribe eye-tracker (55 Hz sampling rate). The spatial resolution of the 

EyeTribe system reported by the manufacturer is 0.1 root mean square (RMS) and its accuracy and 

precision for scientific research validated by Ooms & Krassanakis, (2018). The experiment was 

implemented using OpenSesame (Version 3.1.9, Mathôt, Schreij, & Theeuwes, 2012) and the 

PyGaze Python plug-in (Dalmaijer et al., 2014) was used to acquire the eye-movement data. Each 

participant was calibrated on a 9-points grid at the beginning of each experimental session, and 

recalibrated if necessary. The visual angle deviation error (mean and standard deviation) accepted at 

the calibration for the two groups were: 0.79º ± 0.61º on the x-axis and 0.65º ± 0.38º on the y-axis 

for the healthy adults, and 1.24º ± 0.93º on the x-axis and 1.04º ± 0.57º on the y-axis for the MCI 

group. 

------------------------------------ 

INSERT FIGURE 2 ABOUT HERE 

------------------------------------    

Procedure 

 During the encoding phase, each participant watched the stream of 129 images, 

randomly distributed (i.e., the semantic interference manipulation was not blocked). Each 

scene was presented for 3 seconds with an 800 ms fixation crosshair inter-trial interval, and 

semantic interference was manipulated as previously described. Participants had a 10 

minutes break after the encoding phase. In the recognition phase, participants were shown 

258 images side-by-side (i.e., 129 trials), half of which had been seen during encoding (old 

images) and the other half were novel (new images), again in randomized order and with 

equal frequency per semantic category (e.g., for 6 kitchen images in the encoding phase, 

there were 6 old and 6 novel kitchen images in the recognition phase). In this phase, on 

each trial, participants were asked to choose the scene they remembered by saying out loud 

either uno (Italian for number one) or due (number two) and so indicate either the left or 
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the right image respectively (see Figure 2 for an illustration of the task). The experimenter 

would log the response by pressing either 1 or 2 on the keyboard. The follow-up session 

followed the same experimental procedure but at its end, participants were now 

administered the battery of neuropsychological tests described above.  

The size of the images was not the same for the encoding and the recognition phase. 

During encoding, the image was presented in the centre of the screen at a resolution of 700 

× 700 pixels, which corresponds to 16.38° × 16.38° degrees of visual angle. During 

recognition, the two images were shown at a resolution of 560 × 560 off-centre, to the left 

and to the right (i.e., 12.97° × 12.97° of visual angle each picture) at an equal distance of 

280 pixels from the centre of the display (i.e., 6.57° of visual angle). This distance 

guarantees that each image was presented in extra-foveal vision during a recognition trial, 

and so participants had to make a saccade towards it to explore an image of the pair. The 

long-term visual memory task lasted approximately 30 minutes, and the follow-up session 

about 30 minutes longer, due to the neuropsychological assessment.  

 

Data analysis 

Data processing 

Out of the 12,900 recognition trials considered in the analysis (i.e., 50 participants × 

129 scenes × 2 sessions), we excluded 5 images (23 trials) that were recognized at (or 

below) chance level, and 150 further trials that had a response time either faster than 1% or 

slower than 99% of all trials, as computed independently for each participant. The number 

of recognition trials analysed was 5,854 trials for the healthy adults, with a by-participant 

average of 254.52 ± 0.79, and 6,873 trials for the MCI group, with a by-participant average 

of 254.55 ± 0.75.  

All eye-movement data was collected after performing calibration at a low-resolution 

(55 Hz), which approximately corresponds to a sample every 33 ms. For this reason, we 

could not use any velocity/speed threshold algorithm to extract saccade onsets, and 

consequently detect fixations, because most saccades are likely to be as fast as, or even 

faster than a single datapoint. Moreover, the eye-movement measures that we are interested 

in for this study do not relate to any specific area-of-interest but rather tap into global 

patterns of viewing behaviour, and so we opted to compute our dependent measures directly 
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from the raw samples. Out of the total 10,794 eye-movement trials (43 participants × 129 

trials × 2 sessions), we excluded a further 1,945 trials from the encoding phase and 2,177 

trials from the recognition phase because of machine error or when more than 35 % of the 

eye-tracking samples of the trial were out of range. Thus, for the encoding phase, we 

considered a total of 4,147 trials for the healthy adults with a by-participant average of 

207.35 ± 67.04 [48 – 255], and a total of 4,702 for the MCI group with a by-participant 

average of 204.43 ± 59.88 [116 – 255]; for the recognition phase, we considered a total of 

4,104 for the healthy adults with a by-participant average of 205.2 ± 68.35 [12 – 255] and 

a total of 4,513 trials for the MCI group with a by-participant average of 196.21 ±  67.77 

[39 – 255].  

------------------------------------ 

INSERT FIGURE 3 ABOUT HERE 

----------------------------------- 

Dependent variables  

The impact of semantic interference on the memorability of images is statistically analysed 

as: recognition accuracy (a binary variable coded as 0 = Incorrect; 1 = Correct), which reflects the 

choice (1, 2) of the seen (old) image, and interference slope, which we calculate, independently for 

each participant, by fitting a linear model predicting recognition accuracy as a function of the 

frequency of scenes in their semantic category (i.e., SI) expressed as a continuous variable. A 

negative beta coefficient associated to the frequency manipulation implies that the memory 

performance worsens with additional scenes of the same category (see Konkle et al., 2010a, for a 

similar approach). Additionally, we investigate whether the impact of semantic interference may 

relate to the overall recognition accuracy of each participant. To do so, we created a quasi-

experimental variable (Performance) by classifying each participant in either low-performer or 

high-performer based on the median of her/his reference group, i.e., independently for MCI and 

healthy adults. This further analysis is performed on a d-prime transformation of the recognition 

accuracy, and on the recognition difference of each participant under interference (6, 12, 24) against 

her/his accuracy in the follow up no-interference session (i.e., interference of 1).  
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The dependent measures computed from the eye-movement data and explained in 

greater details below are: (a) the entropy of the fixation distribution displayed by a 

participant while encoding or recognizing a seen (old) image, (b) the scan-pattern similarity 

between the eye-movements of the participant viewing the same scene at encoding and 

recognition and (c) the Normalized Scanpath Saliency (NSS, Peters et al., 2005) to measure 

the correspondence between fixation positions and low-level visual saliency (see Figure 3 

for an illustration of the approaches used to compute fixation entropy and visual saliency). 

For (a) the fixation probability map was computed for each trial by fitting a Gaussian filter 

at the coordinate location of each fixation sample with a standard deviation of 1º of visual 

angle to approximate the size of the fovea. Then, the entropy of the resulting fixation 

probability map was calculated as ∑ 𝑝(𝑆𝑥,𝑦)𝑙𝑜𝑔2𝑥,𝑦 𝑝(𝑆𝑥,𝑦), where 𝑝(𝑆𝑥,𝑦), is the 

normalised fixation probability at the coordinates of the fixation (x, y) in the scene S (see 

Castelhano et al., 2009 or Coco & Keller, 2014, for related examples). For (b), a grid of 

5*5 equal sized quadrants fully covering the size of each scene was used to map the 

coordinates of each fixation sample to each quadrant uniquely identified with a categorical 

label (e.g., aa, ab, ac, etc., see Nuthmann & Einhäuser, 2015 for a similar approach). In 

this way, we obtained a categorical sequence of fixated locations (i.e., a scan-pattern). 

Then, we used the Longest Common Subsequence (LCS, Gusfield, 1997), to find the 

longest ordered common subsequence of the two scan-patterns (encoding and recognition) 

and derived a similarity score by taking the ratio between the length of the LCS and the 

geometric mean of the lengths of the two sequences. The similarity value obtained ranges 

from 1 for most similar to 0 for least similar (see Coco & Keller, 2012 for an application to 

eye-movement data). For (c), a low-level visual saliency map of each scene was computed 

using Fast and Efficient Saliency model (FES, Tavakoli et al., 2011), which was 

standardized to have zero mean and unit standard deviation before taking the average of 
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saliency values corresponding to all fixation positions observed in each trial, i.e., the NSS 

(Peters et al., 2005).  

The data and R script to run the analyses and visualise the results of this manuscript 

are available on the Open Science Framework at https://osf.io/x6jbs/ 

 

Statistical analyses 

Linear and generalized linear mixed-effects models (G/LMM), as implemented by 

the lme4 package (Bates et al., 2015) in R (version 4.0.2), were used to analyse the data. 

In our modelling approach, we started with a full fixed-effect structure (i.e., all main effects 

and interactions) and a maximal random effect structure (i.e., random variables included 

both as intercepts and uncorrelated slopes; Barr et al., 2013). Then, fixed and random 

parameters were evaluated and backwards-reduced using the lmerTest package 

(Kuznetsova et al., 2017) to retain the model that was parsimonious in the number of 

parameters (Matuschek et al., 2017). The main predictors centred to reduce collinearity (see 

Jaeger, 2008, for an explanation of this strategy) were: (1) Group (Control = -.5, MCI = .5), 

(2) SI, standardised using z-scores and computed as a frequency of each particular scene 

category, ranged from 1 to 24 for the encoding data, and 2 to 48 for the recognition data, 

which are the maximum number of scenes belonging to the same category that could be 

sequentially seen up to the end of the two phases respectively1. For the analyses of d-prime 

and recognition difference we treat SI as a categorical, rather than as continuous variable 

(1 – reference level; 6 - for the difference score analysis) because these dependent measures 

are aggregated by participant, and we add the Performance (Low, High; Low - reference 

level) as a predictor in the model to examine whether the effect of semantic interference 

 

1 If the semantic interference condition is 1, a participant would view a scene at encoding, and then again side 

by side with a novel scene from the same category (2AFC) during recognition (i.e., 1 + 1 = 2). If the semantic 

interference condition is instead 24, a participant would view 24 scenes from the same category at  encoding phase, and 

24 novel scenes at  recognition , i.e., a possible maximum of 24 + 24 = 48.  
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would be stronger (or weaker) according to the overall recognition performance of the 

participants. For the analysis of the dependent measures extracted from eye-movement 

data, we consider the Accuracy2 (Incorrect = -.73, Correct = .26) which allows us to 

examine how such responses relate to the memorability of the images. The random effects 

considered in this study were Participants (50 for the model predicting response accuracy, 

and 43 for the models predicting eye-movement measures) and the semantic Category of 

the scene (141; 12 from the main session and 129 from the follow-up session). Moreover, 

we computed standardized beta estimates, which make it possible to compare the relative 

effect of each predictor in relation to the dependent variable, using the package 

effectsize (Mattan et al., 2020) and calculated effect sizes such as Cohen’s d, using 

the package esc (Lüdecke, 2019). In the tables, we report the standardised (β) and 

unstandardized beta coefficients (B), standard errors (SE), and t-values only for those 

predictors that were significant after model selection. The p-values are based on 

Satterthwaite approximation of the effective degrees of freedom for LMMs models and on 

asymptotic Wald tests for GLMM models and their level of significance are reported in the 

Tables, next to the t-value, using asterisks (e.g., * = p < 0.05). The analysis of the 

interference slope was carried out using a general linear model because this measure was 

computed using by-participant linear models (see the Dependent Measure subsection 

above), and so it will be reported directly in the text. Finally, as gender was slightly 

unbalanced between groups (e.g., more males than females in the MCI sample) we included 

gender as a random effect in our LMM models, but this showed no significant improvement 

on the fit of the models for any of the dependent measures reported in this study3.   

 

 

2 The values for incorrect and correct trials are not exactly -.5 and .5 because there are more correct than 

incorrect responses, and this difference arises more clearly when the variable is centred.   
3 In future studies, we aim at better matching gender within groups  to explore more systematically the effects 

of gender in  semantic interference.  



18 

 

Results 

Recognition performance 

Figure 4A shows the percentage of accurately recognized scenes as a function of semantic 

interference while Figure 4B displays the interference slope observed for the two groups. We found 

main effects of SI and Group, whereby the recognition of a scene decreased for increasing SI, and 

MCI participants displayed an overall poorer performance. Moreover, healthy adults were affected 

by SI more than MCI participants, as shown by the steeper decrease in memory recognition for 

increasing SI (refer to Table 2 for the model coefficients).  The weaker effect of SI on recognition 

memory in the MCI group is confirmed on the interference slope, which is significantly more 

positive compared to healthy adults [β = .014, t(49) = 2.76,  p < .01]. For the d-prime, we found it to 

be significantly lower in the MCI participants compared to the healthy adults, and stronger for the 

high-performing compared to the low-performing participants (see Figure 4C and refer to Table 3). 

D-prime was significantly lower only when interference was at its maximum level, i.e., 24, 

compared to no-interference (i.e., 1), but significantly less in the MCI group. Additionally, high-

performing participants had significantly reduced d-primes at higher levels of interference 

compared to low-performing participants (i.e., 12 and 24). Crucially, we did not find any significant 

three-way interaction between group, performance, and SI, which indicates that the reduction of 

semantic interference effect in the MCI group may be ascribable to the low performers. On the 

recognition difference, we corroborated this overall pattern of results, as we found it significantly 

greater for increasing levels of SI (i.e., 12 and 24), but smaller in the MCI participants compared to 

the healthy adults, even though a greater difference was observed in the high performers of this 

group (see Figure 4D and refer to Table 3).  
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------------------------------------ 

INSERT TABLES 2 AND 3; FIGURE 4 ABOUT HERE 

----------------------------------- 

Eye-movement behaviour 

When looking at eye-movement measures and starting from the entropy of fixation 

distribution during encoding, we found a wider spread of attention (i.e., higher entropy) for 

correctly recognized scenes, which significantly narrows (i.e., lower entropy) as SI 

increased (two-way interaction Accuracy:SI). Fixation entropy was also higher on healthy 

adults compared to MCI participants for increasing SI (two-way interaction Group:SI). 

During recognition, we confirmed a higher fixation entropy for the correctly as compared 

to incorrectly recognised scenes. In contrast to what was observed during encoding, 

however, fixation entropy significantly increased as SI also increased, especially for 

correctly recognised scenes (two-way interaction Accuracy:SI), but significantly less for 

the MCI group when the scene was correctly recognized (three-way interaction 

Accuracy:Group:SI).  This was the case even though their fixation entropy tended to be 

wider for correctly recognised scenes compared to healthy adults (marginal two-way 

interaction Accuracy:Group, refer to Figure 5 for a visualisation and Table 4 for the model 

output). 

------------------------------------ 

INSERT TABLES 4 AND 5; FIGURES 5 AND 6 ABOUT HERE 

----------------------------------- 

The scan-pattern similarity between encoding and recognition was higher when the scene 

was correctly recognized, and it increased as a function of SI (refer to Figure 6A and Table 

5 for the model output). Crucially, there was no significant difference between the two 

groups either with respect to the main effect or the interaction with the other predictors. 
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Finally, the correspondence between fixation positions and saliency maps (i.e., NSS) 

was significantly lower, in both phases of encoding and recognition, for correctly 

recognized scenes (see Figure 6B and refer to Table 5). Moreover, only during encoding, 

reliance on low-level visual saliency significantly increased as a function of SI. On this 

measure, we also did not find any significant effect of group, either as a main effect or in 

interaction with any other predictor.  

 

Discussion 

Long-term memory for visual information has an incredible capacity, and its fidelity 

is known to depend upon intrinsic properties of the scenes (or objects), as well as reflected 

by extrinsic responses associated to the processing of such information (e.g., Bainbridge et 

al., 2019; Brady et al., 2011; Bylinskii et al., 2015; Goetschalckx et al., 2018; Isola et al., 

2014; Standing, 1973). On one hand, a general high-level intrinsic property of a scene is 

the semantic category it belongs to, which was shown to interfere with memory recognition: 

the more scenes from the same category that are encoded by participants into memory, the 

less accurate is their recognition (Konkle et al., 2010b). On the other hand, the formation 

and access of memory has been shown to be significantly and consistently reflected by the 

patterns of eye-movement responses as stimuli are encoded or recalled from memory (e.g., 

Hannula et al., 2010; Ryan & Shen, 2020). Even though research on neurodegenerative 

disorders of old-age, e.g., MCI, has long been interested in the diagnostic aspect of semantic 

interference (e.g., Loewenstein et al., 2004; Mulatti et al., 2014), and recently regarded eye-

movement responses as possibly revelatory about it (e.g., Lagun et al., 2011; Molitor et al., 

2015), there has been, to the best of our knowledge, no research simultaneously addressing 

these two key insights, especially in the context of long-term memory for visual 

information. 
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The aim of this study was to advance our understanding about semantic interference 

mechanisms on recognition memory of visual information in healthy and pathological 

cognitive ageing while examining possible links between overt attention, low-level 

perceptual properties of visual information and memory processes. We adapted the 

experimental design developed by Konkle et al., 2010b to test and compare people with 

MCI and healthy age-matched controls. We implemented the same experimental 

manipulation of semantic interference, i.e., different number of scenes were presented for 

each semantic category, but their frequency was reduced in total numbers to make the task 

shorter and more feasible to our older groups of participants (i.e., 1, 6, 12, 24, instead of 1, 

4, 16, 64). We also added eye-tracking to the procedure and so monitored eye-movement 

responses while scenes were firstly encoded, and then recognized. Additionally, we 

examined the correspondence between eye-movement and low-level visual saliency of the 

scenes to explore the role that stimulus-driven properties may bear on the overt allocation 

of attention and on memory processes. 

We found that the recognition memory of both groups was susceptible to semantic 

interference effects, whereby increasing numbers of scenes viewed from the same semantic 

category (semantic interference) resulted into poorer recognition performance. This result 

corroborates the original finding by Konkle et al., (2010b) and our own results on a sample 

of young healthy adults but tested under a different memory paradigm (Old/New vs. 2AFC, 

Mikhailova et al., 2021). We critically contribute to this area of research by showing that 

the mechanism of semantic interference on memory recognition manifests also in older 

participants even though it appears to be significantly reduced for people with MCI. One 

possible explanation for this result is that MCI participants have an inefficient access to 

semantic knowledge and so do not experience cumulative interference effects, i.e., the 

fidelity of memory representations for visual scenes does not tend to blur, which resonates 

with the findings reported by Mulatti et al. (2014) using lexical material in an object naming 
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task. An alternative explanation of reduced semantic interference in the MCI group may 

relate to each individual performance on the recognition memory and on the associated 

neuropsychological profile. We explored this hypothesis by classifying participants into 

low- and high- performers based on the median accuracy of their respective group (healthy 

adults, MCI), and compared their d-primes, as well as, the recognition difference of each 

participant’s individual performance with, and without, semantic interference (from the 

follow-up session). We observed a nearly identical effect of semantic interference on both 

high-performing groups but showed a marked difference in the low-performing groups, 

with the MCI group showing no-interference effect compared to the healthy adults. Even 

though this result suggests that the reduced effect of semantic interference in the MCI 

participants was driven by those with an overall poorer recognition accuracy, it still remains 

a possibility that the mechanism of semantic interference, per-se, was to some extent 

compromised as a result of their neuropathological condition. In fact, when looking at 

correlations between interference slopes and individual neuropsychological results of the 

MCI participants (see Appendix A), we found that those with a better performance on the 

5 Words test (X5WT), which is a verbal recall task with a semantic cueing component, also 

were more strongly impacted by semantic interference [r(25) = -.52, p = 0.008]. This result, 

however, also cannot be conclusive as cognitive capacity (MMSE) and recognition 

accuracy in the visual memory task both positively correlated with the 5 Words test. 

Admittedly, these correlation analyses highlight two limitations of our study: (1) some of 

our participants may have presented with early AD, and (2) a more extensive 

neuropsychological testing was needed to better frame whether the cognitive impairment 

of our MCI participants was purely amnestic, or multifarious in nature. In general, it should 

be noted that several participants were excluded from both groups and especially in the 

MCI group (i.e., 54 % of the sample), which indicates that long-term memory capacity of 

visual information in older populations does not seem to be as striking as previous research 
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on younger participants showed (e.g., Brady et al., 2008; Isola et al., 2011; Standing, 1973). 

This observation also casts doubts on the reliability of previous research with AD patients 

demonstrating instead a rather high recognition performance by this population in a similar 

task (Karlsson et al., 2003). Future research should try to further reduce the total number 

of scenes participants are asked to memorise, so aiming at increasing their capacity, as well 

as manipulating the consolidation phase of the task to minimize retroactive interference, 

e.g., by utilising a rest condition (Dewar et al., 2012).       

When looking at the eye-movement behaviour, we found some commonalities 

between the two groups but also some intriguing differences. Confirming previous 

literature looking at the similarity of scan-patterns between the encoding and recognition 

phase of the task, we found that a higher re-instatement similarity score was predictive of 

better memory recognition (Foulsham & Kingstone, 2013; Wynn et al., 2018). Moreover, 

to corroborate this finding, we can report that fixation re-instatement increased as a function 

of semantic interference, which indicates that as the fidelity of memory representations 

degrades, there is a greater need to rely on the sequential oculo-motor coding of visual 

information to help distinguish among them. Contrary to what was originally expected, 

however, we did not find any significant difference between the two groups. This result 

may indicate that the consistency of sequential eye-movements remains a key mechanism 

to maintain memory and support memory recognition, even when neuropathological 

conditions are affecting it. Future studies may examine in greater detail the featural 

information that is stored when sequences of eye-movements are generated, perhaps by 

testing memory of participants directly on the locations of the scene that have been actively 

viewed, rather than just their overall recognition.  

When looking at the entropy of fixation distribution, we found that a larger 

exploration of the scene, either at encoding or at recognition, was associated with better 

memory performance, which is largely in line with recent research on the topic (Damiano 
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& Walther, 2019). In line with our study on young adults (Mikhailova et al., 2021), the 

semantic interference manipulation exerted a general effect of focusing overt attention 

during encoding while widening it during recognition, especially for scenes that would be 

later correctly recognized. As the fidelity of visual representations blurs due to the 

increasing interference during encoding, participants need to focus on more specific details 

of the scenes (i.e. lower entropy) to make them more distinctively memorable, and this was 

especially the case for MCI participants, who may have a reduced ability to accrue visual 

information from the context (Mosimann et al., 2004). When participants were later asked 

to recognize a scene encoded in a highly interfering semantic category, they needed to 

acquire as much information as possible to trigger its correct retrieval (i.e., higher entropy), 

but this strategy did not prove to be successful in MCI participants. In fact, even though 

MCI participants needed to explore more widely the scene during recognition than healthy 

adults to correctly retrieve it from memory, possibly due to their hypothesised reduction in 

focal attention (Rösler et al., 2005), they did not compensate in the face of increasing 

semantic interference. An interesting follow-up germinating from this work could 

systematically compare the amount of information that is gained from the periphery by 

using gaze-contingency methods to blur extra-foveal regions of the visual field at different 

eccentricities. This paradigm may reveal a cut-off point between MCI and healthy-control 

participants at which they reach equal recognition performance.  

Finally, we explored how much and to what extent MCIs and healthy adults attended 

to low-level visual features of scenes, and whether this would relate to image memorability 

and semantic interference. Contrary to Isola et al., (2011), who found no effect of visual 

saliency, but in line with our sibling study on younger adults (Mikhailova et al., 2021), we 

found that attending to scene locations which were more visually salient, in either phases, 

was linked to poorer recognition. Interestingly, we did not find any significant difference 

between the two groups, which departs from previous literature showing instead a weaker 
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reliance of people with dementia to low-level visual features of stimuli (Cronin-Golomb et 

al., 2007). We acknowledge that the results presented in this study are based on the natural 

visual saliency of scenes, and perhaps, a more controlled study where visual saliency is 

systematically manipulated is needed to provide more conclusive results.  

Our results lend support to theories advocating a unitary approach to the study of 

memory and overt attention, whereby the explicit responses of the latter may inform about 

the ongoing processes of the former (Ryan et al., 2020; Ryan & Shen, 2020). We found a 

few significant differences in the eye-movement of the MCI participants and healthy adults, 

confirming that it may prove important to add this component to clinical research (Molitor 

et al., 2015), though such differences were more subtle than expected.  

In sum, this study shows that the long-term capacity to retain naturalistic 

information in older populations is less efficient than previously assumed to be, and 

recognition is strongly susceptible to semantic interference, especially in individuals not 

affected by neuropathological conditions. People with MCI seem to utilise the oculo-motor 

system similarly to healthy adults; but also display subtle differences, which may partly 

help explain the reduced impact that semantic interference had on their long-term memory.   
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Appendix A 

 

Correlational analyses of neuropsychological tests and recognition memory measures in the 

MCI group.  

In this section, we briefly discuss the most important correlations observed between the 

performance at the neuropsychological tests, the recognition accuracy and interference slopes of our 

MCI participants. In Figure 1A, we report the Pearson’s correlations of all measures, standardised 

and centred, leaving in only those values that were significant at p < 0.05, and blanking anything 

else that was below the stated level of significance. The findings that we highlight are: (a) MMSE 

positively correlates with recognition accuracy and on tests tapping into memory processes, 

especially when involving long-term mechanisms (e.g., REY, Delayed); and (b) semantic 

interference is negatively correlated with (1) the MMSE, indicating that cognitive capacity matters 

for this mechanism to manifest, (2) the REY (Delayed), showing that indeed it semantic 

interference is a mechanism relying on long-term processes, and (3) the 5 Words test, which is a 

task tapping maintenance and retrieval of semantic information.   

------------------------------------ 

INSERT FIGURE 1A ABOUT HERE 

----------------------------------- 
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Table 1: Neuropsychological battery of tests administered at the end of the follow-up session: Mini 

Mental State Examination (MMSE); Rey’s Complex Figure (REY); Digit span (DIGIT); Corsi’s 

Block Tapping Test (CORSI); Mesulam’s Cancellation test; Dubois’ 5 Words test. Means and 

standard deviation (in parentheses) for the MCI participants and healthy aged-matched controls. 

The p-value is obtained by comparing the two groups using a Welch two sample t-test, in bold when 

the difference was significant. 

 

Neuropsychological Test  MCI (N = 27) Control (N = 23) p-value 

MMSE  24.58 (3.45) 28.74 (1.66) < .001 

REY 
Copy 26.57 (7.26) 32.3 (3.2) < .001 

Delayed 6.28 (6.27) 11.07 (4.41) 0.01 

DIGIT 
Forwards 4.12 (0.83) 4.78 (1.04) 0.02 

Backwards 2.68 (0.69) 3.39 (0.78) < .001 

CORSI 
Forwards 3.88 (0.93) 4.57 (0.79) 0.01 

Backwards 3 (0.87) 3.61 (0.94) 0.02 

Cancellation Test 
Letter 57.04 (4.81) 58.61 (1.97) 0.14 

Symbol 55.4 (4.04) 56.22 (4.77) 0.53 

5 Words test  8.12 (1.92) 10 (0) < .001 
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Table 2: Generalized and linear mixed-effects model outputs for the recognition accuracy  

 

Dependent 

Variable 

Predictor B SE β d z 

 

Response 

Accuracy 

Intercept 1.13 0.08 1.13 4.24 14.02*** 

Group -0.66 0.15 -0.32 0.69  -4.38*** 

SI -0.27 0.03 -0.27 0.56  -9.44*** 

Group:SI  0.21 0.04 0.1 0.21  5.13*** 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

Note.   Predictors (centered) were: Group (Control = -.5, MCI = .5), and Semantic Interference (SI, 

a z-scored continuous variable ranging from 2 to 48). The random effects introduced as intercept 

and slopes were Participants (50) and the semantic Category of the scene (141).  
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Table 3: Linear mixed-effects model outputs for the d-prime and the recognition difference between 

the recognition accuracy of participants without semantic interference (follow-up session) and with 

it (main session, 6, 12, 24).  

 

Dependent 

 variable 

Predictor β S

E 

β d t 

 

 

 

 

 

 

 

D-prime 

Intercept     1 0.15  0.12 0.24     6.82*** 

Group  -0.68 0.16 -0.88 3.83 -4.3*** 

SI (6)     0 0.18  0.01 0.02      0.05 

SI (12)   -0.3 0.18 -0.39 0.84  -1.66(*) 

SI (24) -0.42 0.18 -0.54 1.3    -2.32 

Performance  1.08 0.16 1.4 2.85    -2.32* 

Group:SI (6) -0.08 0.19 -0.11 0.22    -0.43 

Group:SI (12) 0.3 0.19 0.4 0.84     1.57 

Group:SI (24)   0.39 0.19 0.5 1.18 2.01* 

SI (6):Performance   -0.18 0.19 -0.23 0.48     0.35 

SI (12):Performance  -0.59 0.19 -0.76 2.4 -3.03** 

SI (24):Performance  -0.78 0.19 -1.02 10.27  -4.02*** 

 

 

Recognition 

Difference 

 

Intercept -5.4 2.7 0.21 0.44     -2* 

Group 11.36 3.33 0.9 4.26 3.4** 

SI (12) -3.38 1.69 -0.27 0.55 -1.99* 

SI (24) -7.25 1.69 -0.57 1.41   -4.27*** 

Performance -2.43 3.33 -0.19 0.39    -0.73 

Group:Performance -14.34 4.52 -1.14 4.1    -3.17** 

 

Note.  Predictors (centered) in the linear-mixed effect models were: Group (Control, MCI; Control 

as reference level), Performance (Low, High; Low as reference level), and Semantic Interference (1, 

6, 12, 24; 1 as reference level). The only random effect introduced as intercept was Participants 

(50).  
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Table 4: Linear mixed-effects model outputs for the fixation entropy observed during encoding and 

recognition of the seen (old) image.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Predictors (centered) in the linear-mixed effect models were: Accuracy (Incorrect = -0.73; 

Correct = 0.26), Group (Control = -.5, MCI = .5), and Semantic Interference (SI, a z-scored 

continuous variable originally ranging from 2 to 48). The random effects introduced as intercept 

and slopes were Participants (43) and the semantic Category of the scene (141).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fixation 

Entropy 

Predictor B SE β d t 

 

Encoding 

Intercept 10.93 0.05 0 0    221.93*** 

Accuracy  0.05 0.01 0.05 0.1   4.14*** 

Group -0.05 0.1 -0.05 0.1       -0.5 

SI -0.01 0.01 -0.02 0.04       -1.64(*) 

Accuracy:SI -0.02 0.01 -0.02 0.04       -2.31* 

Group:SI -0.03 0.01 -0.04 0.08   -4.51*** 

 

 

 

 

Recognition 

(old image) 

Intercept 10.7 0.03 -0.01 0.03     312.33*** 

Accuracy 0.15 0.02 0.15 0.31        6.9*** 

Group 0.08 0.06 0.1 0.19        1.25 

SI 0.02 0 0.04 0.08 2.65* 

Accuracy:Group 0.07 0.04 0.04 0.04        1.68(*) 

Accuracy:SI 0.04 0.01 0.04 0.08  3.86** 

Group:SI 0.01 0.01 0.01 0.03        1.28 

Accuracy:Group:SI -0.05 0.02 -0.26 0.05       -2.88** 
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Table 5: Linear mixed-effects model outputs for the eye-movement measures of scan-pattern 

similarity between the sequence of fixations on the seen (old) image during encoding and the 

sequence of fixations on the same seen image during the recognition phase; and the normalized 

scan-path correspondence between fixation position and low-level visual saliency value observed 

during encoding and recognition of the seen (old) image.   

 

Note.  Predictors (centered) entered in the linear-mixed effect models were: Accuracy (Incorrect = -

0.73; Correct = 0.26), Group (Control = -.5, MCI = .5), and Semantic Interference (a z-scored 

continuous variable originally ranging from 2 to 48). The random effects introduced as intercept 

and slopes were Participants (43) and the semantic Category of the scene (141).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent 

Variable 

Predictor B SE β d t 

Scan-Pattern 

Similarity 

Intercept 0.27 0.008 -0.3 0.06   34.55*** 

Accuracy 0.02 0.003 0.07 0.13 6.41*** 

SI   0.006 0.002 0.05 0.1     3.4*** 

NSS 

(Encoding) 

Intercept 0.57 0.01 -0.04 0.09 37.97*** 

Accuracy -0.02 0.006 -0.03 0.05    -2.55* 

SI 0.01 0.004  0.04 0.08     2.29* 

NSS 

(Recognition) 

Intercept 0.5 0.01 -0.06 0.12   42.16*** 

Accuracy -0.02 0.007 -0.03 0.06    -3.18** 
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Figure 1: 

 

 

Figure 1: Selection tree illustrating the different steps (and reasons) of participants’ exclusion, 

organized as columns.  
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Figure 2: 

 

  

 

Figure 2: Illustration of the long-term visual memory task. During the encoding phase (upper row) 

participants were asked to watch a stream of naturalistic scenes, each from a different semantic 

category, and belonging to any of the four semantic interference blocks (1, 6, 12, 24). The only 

difference between the main experiment and the follow-up session is that in the latter there was no 

semantic interference (i.e., a semantic interference level of 1). In the recognition phase, participants 

verbally indicated the scene they remembered by speaking out loud either “one” (for the left scene) 

or “two” (for the second scene). We used a different set of scenes for the main experiment and for 

the follow-up session.  
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Figure 3: 

 

 

 

Figure 3: Illustration of the dependent measures considered in this study exemplified from a single 

trial. (A) A naturalistic scene used in our study with overlaid fixations as red dots. (B) Fixation 

distribution obtained by fitting Gaussians at fixation locations and normalized to be a probability 

map. Entropy can be computed over this map and used to represent the overall spread of overt 

attention across the scene (C) Another way of portraying the fixation distribution using a heatmap. 

(D) The low-level visual saliency map of the scene as computed using Fast and Efficient Saliency 

model (FES, Tavakoli, Rahtu and Heikkil, 2011).  
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Figure 4: 

 

 

Figure 4: (A) Recognition accuracy (y-axis) as a function of semantic interference (x-axis). Each 

point represents the average recognition accuracy for each level of interference, represented as a 

continuous variable ranging from 2 to 48. Lines indicate the estimates from a linear model fit to the 

data and the shaded bands represent the 95% confidence intervals. (B) Beta coefficient of the 

semantic interference slope, by-participant, as linear predictor of recognition accuracy, and 

averaged for the two groups (MCI, Control). The whiskers represent the 25th and 75th percentile of 

the measure (lower and upper quartiles). (C) D-prime (y-axis) as a function of different levels of 

semantic interference (1, 6, 12, 24; x-axis). (D) Percentage of difference in recognition accuracy (y-

axis) for different levels of semantic interference (6, 12, 24) compared to the no-interference 

condition (i.e., 1 from the follow-up session). In (A), (B) and (D) the Groups are marked using point 

type and color (Control = green circles; MCI = brown triangles). In (C) and (D) the recognition 

Performance of the participants within their group (Low, High) is organized as panels. 
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Figure 5: 

 

 

Figure 5: Entropy of the fixation distribution (y-axis) as a function of semantic interference (x-axis: 

a continuous variable ranging from 2 to 48) during encoding and recognition of the old (seen) image 

organized as columns for Correct (top-panel) and Incorrect (bottom panel) recognition responses. 

The Group of participants is marked using point type and color (Control = green circles; MCI = 

brown triangles), and each point represents the average of fixation entropy for each level of 

interference.  Lines indicate the estimates from a linear model fit to the data and the shaded bands 

represent the 95% confidence intervals. The dark red dashed mid-line present in all the panels 

represent the average fixation entropy and it serves to more easily compare relative differences 

across the four panels. 
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Figure 6: 

  

 

Figure 6: (A) Similarity between eye-movement scan-patterns during the encoding and recognition 

of an old (seen) image as a function of semantic interference.  The similarity is computed using the 

Longest Common Subsequence (range from 0 to 1). (B) The Normalized Scan-Path Saliency 

between fixation position and low-level visual saliency of the scene for the two phases of the 

memory task. In both (A) and (B), recognition accuracy is visualized using point type and color 

(Correct = blue squares; Incorrect = red diamonds). Each point represents the average scan-pattern 

similarity or NSS for each level of interference, represented as a continuous variable ranging from 2 

to 48 for correct vs incorrect recognition memory responses. Lines indicate the estimates from a 

linear model fit to the data and the shaded bands represent the 95% confidence intervals.  
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Figure 1A: 

 

Figure 1A: Correlation of neuropsychological tests, the recognition accuracy in the long-term 

memory task, and the individual interference slope of the MCI participants. All measures have been 

standardised and centred before running the correlation. The correlation values presented are only 

those ones that are significant at p < 0.05, while the empty cells indicate all those correlations that 

were non-significant. The color palette indicates the strength of the correlation from red (−1) to blue 

(1).   

 


