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Abstract

Binocular disparity is a fundamental dimension defining the input we receive from the visual world, along with luminance
and chromaticity. In a memory task involving images of natural scenes we investigate whether binocular disparity enhances
long-term visual memory. We found that forest images studied in the presence of disparity for relatively long times (7s)
were remembered better as compared to 2D presentation. This enhancement was not evident for other categories of
pictures, such as images containing cars and houses, which are mostly identified by the presence of distinctive artifacts
rather than by their spatial layout. Evidence from a further experiment indicates that observers do not retain a trace of
stereo presentation in long-term memory.
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Introduction

Human observers possess an astonishing long-term memory for

images of objects and scenes. Early studies showed that observers

can quite accurately recognize the gist of as many as 10.000

pictures of objects and scenes [1,2].

The long-term memory for scenes, especially if enough

processing time is available, is largely mediated by their semantic

content. Observers can quickly build a conceptual representation

of the scene [3] and, if enough time is available for encoding (e.g.,

[4]), this representation is consolidated in short-term memory and

eventually transferred to long-term memory. A strong evidence for

the conceptual encoding of scenes comes from the fact that

observers are more likely to produce false recognitions when they

encounter a scene conceptually related to the memorized one [5].

Nonetheless, visual memory for scenes has been shown to be

resistant to interference ([6], but see [7]), and above all, there is

evidence that observers can recognize specific instances of objects

within a category even after learning thousands of items, visual

long-term memory is thus potentially quite detailed [8]. The visual

and conceptual codes for natural images coexist in long-term

memory and have similar decay times, as demonstrated by the

interference effects of visually and conceptually related distractors

[9]. As far as scenes are concerned, the question arises as to what

specific visual features are stored in memory and to what extent

they contribute to the successful recognition of the scene.

The role of chromatic information has been assessed in

a number of studies. In particular, Wichmann, Sharpe and

Gegenfurtner [10] showed that images of scenes presented in color

are remembered better than grayscale images. By manipulating

the presence of color selectively in the encoding and in the

recognition phase and by manipulating the exposure time of the

images in the encoding phase they were able to show that color is

stored in memory, besides contributing to the early perceptual

processing of the image in the encoding phase. The role of color in

the long-term memory for scenes was confirmed by Spence,

Wong, Rusan and Rastegar [11] and Yao and Einhäuser [12].

Partially conflicting evidence has instead been reported by

Nijboer, Kanai, de Haan and van der Smagt [13]. In their study

they found evidence that the presence of color might actually

hamper the fast encoding of natural scenes, specifically if the

image has a meaningful gist.

Another visual dimension that has been shown to contribute to

the memory for scenes is temporal change, and specifically motion.

Dynamic scenes are remembered better [14], although this

dynamic superiority effect seems to be mainly related to the

preferential processing of specific dynamic objects within the scene

rather than to a direct memorization of object motion [15].

Relatedly, multiple studies have investigated the role of observer

motion in the memory for scene layout. Observer motion due to

active navigation in an indoor scene was found to slightly improve

performance in a recognition task as compared to passive viewing

of static images [16]. Other studies however indicate that snapshot

viewing might be sufficient to support recognition of scenes

through which the observer moves [17].

Beyond luminance, chromaticity and motion, our visual system

has access to another low-level feature when faced with real-world

scenes, namely binocular disparity. Binocular disparity can be used

by the visual system when processing the three-dimensional

structure of the visual world. In particular, the presence of

disparity can be of help when observers have to recognize the

three-dimensional structure of objects [18]. The same advantage is

observed when rotated views of objects [19,20,21] and faces [22]

have to be recognized.

There is evidence that observers can memorize the spatial

layout of relatively simple scenes when this is directly relevant to
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the task, in particular they are able to detect changes in the scene

spatial arrangement despite a rotation in the view. A viewpoint-

change related performance cost is usually observed [23,24,25,26],

which might depend on whether the rotation is caused by the

locomotion of the observer [27,28].

Contrary to chromaticity and motion, no study to our

knowledge has investigated whether the presence or absence of

disparity affects the visual long-term memory for scene pictures.

The presence of disparity could influence our long-term memory

for pictures of scenes in at least two ways. At the encoding level it

could favor the segmentation of objects in the scene, furthermore,

it could contribute to the establishment of a detailed 3D

representation of the scene, including the relative distances of

objects from the observer [29], which could be stored in memory

along with their color and form.

The contribution of binocular stereo to scene long-term

memory could thus be generic, if binocular disparity would

contribute for instance to better define the shape of the objects in

the scene, or specific, if observers would be able to directly

remember the binocular disparity associated with elements in the

scene. Evidently, it is easier to extrapolate the three-dimensional

structure of a scene from a 2D picture than it is to extrapolate its

chromaticity from a grayscale picture, and there is no way one can

infer observer motion from a still picture. Extremely rich

monocular cues to the 3D structure of scenes, such as occlusions,

illumination patterns and texture gradients are also present in 2D

scene pictures. It could thus be the case that those monocular cues

are sufficient to generate the quality of 3D scene structure stored in

long-term memory. If so, binocular stereo would then not provide

any specific information for the purpose of long-term memory

storage, or possibly only a generic increase in the information

encoded and retained in long-term memory.

In the first experiment we set out to assess the contribution of

stereoscopic 3D information to the long-term memory for scenes,

using a paradigm inspired by the study by Wichmann and

colleagues [10], which includes separate learning and recognition

sessions and the presentation of scenes from a limited number of

categories. After finding no evidence for an enhanced recognition

of stereo pictures of scenes containing cars, buildings and pictures

of forest scenes, we tested our observers in a modified paradigm,

using once again forest images. Only in this case we found a small

increase in the recognition rate with stereo presentation. In the

third and final experiment we tested directly whether observers

retain a long-term trace of 3D presentation of the scenes. The

results indicate that the presence of binocular disparity is not

retained in long-term memory together with the identity of the

scene.

Experiment 1: Long-term Memory for Car,
Building and Forest Images

In Experiment 1 we asked whether presenting scenes in 3D

improves long-term memory performance. We used scenes

belonging to three categories, i.e. scenes containing buildings,

scenes containing cars and forest scenes. The rationale behind

the choice of the stimulus categories was to vary the relative

relevance of the spatial layout in the scenes and to vary the

strength of binocular disparity signals. The first two categories

contain mainly man-made objects in a urban setting and could

be mainly identified based on the functional characteristics of the

objects, whereas the forest scenes are completely deprived of

man-made objects and we assumed that their memorization

might be more strongly supported by a representation of the

spatial layout. The building pictures contain objects which are

comparatively more distant (usually beyond 5 meters) from the

observer and their processing should be less affected by the

weaker binocular disparity signal.

Furthermore, we manipulate presentation time. This allowed us

on one side to prove the sensitivity of our paradigm using

a manipulation which has been shown to affect long-term memory

for pictures before [10]. We also speculated that a possible

contribution of stereo could be limited to the case where enough

processing time was available.

Methods
Two groups of 28 students of the Justus-Liebig University of

Giessen volunteered for participating in the study. The first group

(23 females, mean age 22.9) was tested in the short-exposure

condition, the second group (23 females, mean age 24.5) was tested

in the long-exposure condition. Subjects in this experiment and in

the following ones provided written informed consent in agree-

ment with the Declaration of Helsinki. Methods and procedures

were approved by the local ethics committee LEK FB06 at

Giessen University (proposal number 2009-0008).

Stimuli. The stimuli were 192 3D pictures belonging to three

categories: Houses, Cars and Forest scenes (64 pictures for each

category).

The Pictures were taken with a Fujifilm Finepix W1 3D digital

camera (Fujifilm Holdings Corporation, Tokyo, Japan). Images

were first rescaled from 364862736 to 10006750 pixels. Sub-

sequently, the luminance pixel-wise mean and standard deviation

for each RGB channel and picture were normalized to the mean

and 25th percentile of the distribution in the original set,

respectively. The stimuli were presented on a black background.

The pictures were shown on a 22-inch SyncMaster 2233 LCD

Monitor (Samsung Group, Seoul, South Korea) running at

120 Hz. The monitor was viewed through Nvidia 3DVision

shutter glasses (Nvidia Corporation, Santa Clara, CA), providing

an effective frame-rate of 60 Hz.

The presentation of the stimuli was controlled using Matlab

(MathWorks, Inc., Natick, MA) and the PsychToolbox [30].

Viewing distance was 100 cm and the pictures subtended

16.2612.1u of visual angle.
At the end of the experiment all participants reported being

clearly able to see the 3D structure of the pictures under our 3D

stimulation conditions.

Procedure. The experiment consisted of a learning session

directly followed by a recognition session.

In the learning session observers viewed half of the picture set

(32 pictures for each category) in sequence. Each picture was

shown for either 200 or 1000 ms to the observers of the short-

exposure group and for either 1 or 7 seconds to the observers in

the long-exposure group. Images were shown either in 2D or in

3D, followed by a 2 s interval during which only a fixation point

was presented (Figure 1A). The category, exposure time and

display type varied randomly from one picture to the next.

Observers were instructed to look carefully at the pictures and to

try to remember them in order to be able to recognize them in the

subsequent session.

In the recognition session observers viewed the complete picture

set in random sequence. Each picture was presented until the

participant pressed one of two keys on a computer keypad

(Figure 1B). The observers were instructed to press the right key to

indicate that the image had been presented during the learning

session (‘‘old’’) and the left key to indicated that the image had not

been presented before (‘‘new’’). The keypress triggered the

appearance of a fixation point for one second, which was followed

by the presentation of the next picture. The observers were also
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informed that an equal number of ‘‘new’’ and ‘‘old’’ pictures

would be presented in the recognition session.

Like in the learning session, half of the pictures were presented

in 3D and half were presented in 2D. The display type for the old

pictures was also the same in the two sessions, i.e. if a picture was

presented in 3D in the learning session it was also presented in 3D

in the recognition session and vice-versa. Like in the learning

session, the display was randomly interleaved in the sequence.

Results and Discussion
The responses collected in the recognition session were analyzed

considering the ‘‘old’’ picture as a signal, and thus the correct

recognition of an ‘‘old’’ picture as a Hit and the incorrect

identification of a ‘‘new’’ picture as a False Alarm.

In the Short-Exposure group the overall Hit Rate was 53.47%

whereas the overall FA rate was 31.96%. In the Long-Exposure

group the overall Hit Rate was 60.82%, whereas the overall FA

rate was 22.57%. This indicates that in both cases performance

was better than chance level and far below perfection, avoiding

floor and ceiling effects.

We first analyzed the Hit and False Alarm rates separately,

average values are depicted in Figure 2.

We also first analyze separately the data from the Short-

Exposure Group and from the Long-Exposure Groups.

As for the Short-Exposure Group, a repeated-measure ANOVA

on Hit Rate with Display Type (2D vs. 3D), Category (Cars vs.

Buildings vs. Forest) and Exposure Time (200 vs. 1000 ms) as

factors yielded a significant main effect of Exposure time

(F(1,27) = 26.025, p,.001, gp2= .490) and a significant Exposure

Time6Category interaction (F(2,54) = 4.256, p,.019,

gp2= .136). The main effect of Category (F(1,27) = 0.758,

p = .473, gp2= .027) was not significant and, crucially, none of

the effects and interactions involving Display Type was significant

(main effect: F(1,27) = .089, p= .768, gp2= .003, Display Type6
Exposure Time interaction: F(1,27) = 2.522, p= .123, gp2= .085,

Display Type6Category interaction: F(2,54) = .165, p = .848,

gp2= .006, three-way interaction: F(2,54) = 2.099, p = .132,

gp2= .085 ).

The False Alarm rate was analyzed with a repeated-measure

ANOVA with Display Type (2D vs. 3D) and Category (Cars vs.

Buildings vs. Forest) as factors (the factor Exposure Time is not

defined for the False Alarm rate which is calculated from ‘‘new’’

pictures). This revealed a significant main effect of Category

(F(2,54) = 12.659, p,.001, gp2= .32), whilst both the main effect

of Display Type (F(1,27) = 0.395, p = .535, gp2= .01) and the two-

way interaction (F(2,54) = .682, p = .51, gp2= .02) were not

significant.

As for the Long-Exposure Group, a repeated-measure ANOVA

on Hit Rate with Display Type (2D vs. 3D), Category (Cars vs.

Buildings vs. Forest) and Exposure Time (1000 vs. 7000 ms) as

factors yielded a significant main effect of Category

(F(2,54) = 24.701, p,.001, gp2= .477) and a significant main

effect of Exposure Time (F(1,27) = 65.471, p,.001, gp2= .708).

Contrary to what we observed in the Short Exposure Group, the

Exposure Time6Category interaction was not significant

(F(2,54) = 1.994, p = .146, gp2= .068). Like in the Short Exposure

Group, none of the effects and interactions involving Display Type

was significant (main effect: F(1,27) = . 553, p = .463, gp2= .020,

Figure 1. Experimental procedure in the Learning session (A) and in the Recognition session (B) of Experiment 1. In the Recognition
session observers indicated whether they had seen the picture in the learning session (‘‘old’’) or whether they thought it had not been presented
before (‘‘new’’).
doi:10.1371/journal.pone.0049947.g001
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Display Type6Exposure Time interaction: F(1,27) = 2.498,

p = .091, gp2= .084, Display Type6Category interaction:

F(2,54) = .165, p = .848, gp2= .006, three-way interaction:

F(2,54) = .036, p = .965, gp2= .001 ).

Like in the case of the Short-Exposure Group, the False Alarm

rate in the Long-Exposure Group was analyzed with a repeated-

measure ANOVA with Display Type (2D vs. 3D) and Category

(Cars vs. Buildings vs. Forest) as factors. This revealed a significant

main effect of Category (F(2,54) = 14.741, p,.001, gp2= .35),

whilst both the main effect of Display Type (F(1,27) = 0. 197,

p = .660, gp2= .01) and the two-way interaction (F(2,54) = . 178,

p = .837, gp2= .01) were not significant.

The 1000 ms exposure time was common to both the Short-

and Long-Exposure groups. In order to exploit the full statistical

power of our sample we analyzed the corresponding Hit Rate data

in an overall ANOVA with Category (Cars vs. Buildings vs. Forest)

and Display Type (2D vs. 3D) as within-subject factors and Group

(Short-Exposure vs. Long Exposure) as a between-subject factor.

The effect of Category was significant (F(2,108) = 10.759, p,.001,

gp2= .166), whereas all other effects and interactions were not

significant (main effect of Display Type: F(1,54) = .817, p = .370,

gp2= .015, main effect of Group: F(1,54) = 1.740, p = .193,

gp2= .031, Display Type6Group interaction: F(1,54) = .659,

p = .420, gp2= .012, Group6Category interaction:

F(2,108) = .519, p = .597, gp2= .010, Display Type6Category

interaction: F(2,108) = .479, p = .620, gp2= .009, three-way in-

teraction: F(2,108) = 2.195, p= .116, gp2= .039 ).

For comparison, we also performed an ANOVA with Category

(Cars vs. Buildings vs. Forest) and Display Type (2D vs. 3D) as

within-subject factors and Group (Short-Exposure vs. Long

Exposure) as between-subject factor on the False Alarm rate.

The main effect of Category (F(2,108) = 26.993, p,.001,

gp2= .333) and the main effect of Group (F(1,54) = 8.618,

p = .005, gp2= .138) were significant, whereas all other effects

and interactions were not significant (main effect of Display Type:

F(1,54) = .031, p= .862, gp2= .001, Display Type6Group in-

teraction: F(1,54) = .585, p = .448, gp2= .011, Group6Category

interaction: F(2,108) = .233, p = .793, gp2= .004, Display Type6
Category interaction: F(2,108) = .588, p = .557, gp2= .011, three-

way interaction: F(2,108) = .378, p= .686, gp2= .007).

Figure 2. Average Hit Rate as a function of Display Type, Picture Category and Exposure Time in Experiment 1. Correct recognitions of
old pictures are classified as Hits. The Blue and purple brackets indicate data from the Short Exposure and Long Exposure groups, respectively. Gray
bars represent the corresponding average False Alarm Rate. Incorrect recognitions of new pictures are classified as False Alarms. Error bars are
between-observer 95% confidence intervals of the mean.
doi:10.1371/journal.pone.0049947.g002
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In a second analysis we computed sensitivity (d) and criterion (c)

measures from our results. Given that the Exposure Time is

undefined for the ‘‘new’’ pictures, d and c cannot be analyzed as

a function of this factor. Moreover, we decided to collapse the

three categories in order to calculate the rates from a larger trial

number thus reducing the necessity to deal with infinite d or c

values. One observer in the Long-Exposure group did not produce

any false alarms in the 2D Display. A False Alarm Rate equal to

half a trial (1.04%) was assumed in this case. The average d and c

values are depicted in Figure 3. Sensitivity was almost twice as

high in the long-exposure group as compared to the short-

exposure group. Nonetheless, in neither case dscores indicate an

advantage for stereo presentation. Moreover, in both groups the

criterion values were negative, indicating that observers tended to

identify the pictures as new.

The d9 values were submitted to an ANOVA with Display Type

(2D vs. 3D) as a within-subject factor and Group (Short-Exposure

vs. Long Exposure) as a between-subject factor. Not surprisingly,

given the significant increase in hit rate as a function of exposure

time in each individual group, the main effect of Group was

significant: F(1,54) = 19.242, p,.001, gp2= .263), whereas the

main effect of Display Type (F(1,54) = .268, p = .606, gp2= .005)

and the Display Type6Group interaction (F(1,54) = .032, p = .858,

gp2= .001) were not significant.

The same analysis performed on c values failed to provide any

significant result (main effect of Group: F(1,54) = 1.396, p = .243,

gp2= .025, main effect of Display Type: F(1,54) = 1.321, p = .255,

gp2= .024, Display Type6Group interaction: F(1,54) = .079,

p = .780, gp2= .001).

Overall, the results of the first experiment suggest that

presenting images in 3D might not enhance the probability that

they will be recognized from long-term memory. This was the case

for the car and building scene images, whereas the level of

performance in the forest images might have been too low thus

masking the potential benefit due to stereo presentation.

The recognition of car and building images might have been

mediated primarily by the recognition of diagnostic man-made

objects within the scene, whose storage might in principle not be

supported by a visual code. The forest images, on the contrary, are

primarily identified by their spatial arrangement and it is crucial to

understand whether binocular stereo can be of any help in this

specific image category.

Experiment 2: Forest Images

In the first experiment memory performance was much lower

than one could expect based on the capacity of long-term visual

memory for scenes [1,2]. A possible reason might be related to the

fact that memory for scenes is very often supported by a conceptual

representation, which involves some form of distinctive categori-

zation of the picture [7,31]. Since we always used relatively similar

items belonging to the same category as targets and distractors,

this form of long-term memory for pictures was neutralized.

This was particularly true for the forest category, where

observers were faced with extremely similar distractors. This

however might indicate that a potential advantage with stereo

presentation was masked by floor effects. In Experiment 2, in

order to get a more stable index of memorization performance, we

increased the number of pictures that were presented. In order to

increase the recognition performance we used a 2AFC task rather

than an old/new task. In order to gain more statistical power we

also decided to simplify the experimental design by only presenting

our images for 7 seconds, the condition in which the results from

Experiment 1 seemed to suggest a possible stereo advantage. In

order to keep the duration of the experiment, and thus the

retention period, comparable to Experiment 1, we also presented

our observers with a set of office scenes.

Methods
One groups of 28 students of the Justus-Liebig University of

Giessen (23 females, mean age 23.9) volunteered for participating

in the study.

Stimuli. The stimuli were 80 3D pictures depicting forest

scenes (taken from the larger database to which the images used in

Experiment 1 belonged) and 80 images of office scenes.

Image processing and stimulus presentation were conducted as

in Experiment 1 with the difference that the size of the pictures

was reduced to 60% of the original size in the recognition session.

At the end of the experiment all participants reported being

clearly able to see the 3D structure of the pictures under our 3D

stimulation conditions.

Procedure. The experiment consisted of a learning session

directly followed by a recognition session.

In the learning session observers viewed half of the picture set

(80 pictures) in sequence. Each picture was shown for 7000 ms to

the observers. Images were shown either in 2D or in 3D, followed

by a 2 s interval during which only a fixation point was presented

(Figure 4A). The display type varied randomly from one picture to

the next. Observers were instructed to look carefully at the pictures

and to try to remember them in order to be able to recognize them

in the subsequent session.

In the recognition session observers viewed again all the pictures

which were presented in the learning session in random order.

Each old picture was presented together with a new picture from

the same category. The old picture and the new one were

Figure 3. Average d9 (red and green bars) and c (gray bars)
values as a function of Display Type in the two Groups. Error
bars are between-observer 95% confidence intervals of the mean.
Sensitivity is not influenced by stereo presentation but increases
significantly with longer exposure. In both groups observers are biased
not to report 3D presentation (c values are on average negative).
doi:10.1371/journal.pone.0049947.g003
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presented randomly on the right and left side of the screen

(Figure 4B). The pictures remained on the screen until the

participant pressed one of two keys on a computer keypad. The

observers were instructed to press the right or left key to indicate

which of the images they thought was old. The keypress triggered

the appearance of a fixation point for one second, which was

followed by the presentation of the next couple of pictures. The

observers were informed that each pair contained a new and an

old picture.

The display type was the same for both pictures in a pair and

corresponded to the display type of the old picture in the learning

session.

Results and Discussion
The observers’ performance with office scenes was substantially

at ceiling, in both Display Types 10 observers out of 28 had 100%

accuracy. The corresponding data were not evaluated further.

The responses from the observers with forest scenes are reported

in Figure 5, both in terms of percent correct answers and d.

Evidently, in this paradigm observers perform largely over chance

with forest images. Crucially, observers identify correctly 6% more

stereo presented pictures as compared to non stereo presentation,

i.e. on average 2.4 pictures out of 40.

A paired-t test on d scores revealed that the correct recognition

was higher for 3D images as compared to 2D presentation

(t(27) = 2.053; p,0.05).

The significant effect of Display Type corresponds to an average

increase in the correct response rate of 6.0%, which, in the 2AFC

recognition task, implies an increase of 12% in the number of

actually recognized pictures. Overall, the results of Experiment 2

indicate that when enough time is available in order to encode the

Figure 4. Experimental procedure in the Learning session (A) and in the Recognition session (B) of Experiment 2. In the Recognition
session observer indicated which of the two images had been presented in the previous session (‘‘old’’ picture). Target images were always paired
with a distractor from the same category.
doi:10.1371/journal.pone.0049947.g004

Figure 5. Average performance in terms of percentage correct
responses and d̀ in Experiment 2, as a function of Display Type.
Error bars are between-observer 95% confidence intervals of the mean.
The 6% increase in the rate of correct responses with 3D presentation
was statistically significant.
doi:10.1371/journal.pone.0049947.g005
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images, forest scenes, which are poorly identified by the objects

they contain, can be remembered better with binocular stereo

presentation.

Overall, the result is compatible with the tendency which we

observed for an increased hit rate in the recognition of forest

pictures in Experiment 1 when they were presented for 7 seconds

in the learning phase. We are inclined to interpret the fact that the

effect was significant in Experiment 2 as a consequence of the

reduced task difficulty in the forced-choice task, i.e. a floor effect

might have reduced the enhancement in Experiment 1. Task

difficulty however cannot explain the lack of any enhancement in

the memory for building and car scene stereo pictures in

Experiment 1. Average din Experiment 2 was 0.77, whereas in

Experiment 1, using the FA rate shared between short and long

duration trials we estimated a d’ value of 1.06 for the 1 second

presentation averaging over groups, display types and the two

categories. Thus, we can be confident that the lack of any

contribution of stereo presentation to the long-term memory of

building and car scenes in Experment 1 was not simply due to the

fact that the task was too difficult, as we think was the case for the

forest images.

Experiment 3: Testing the Memory for Stereo
Presentation

The results from the first two experiments indicate that stereo

presentation enhances long-term visual memory for scene images

only when observers are allowed to encode the scene for an

extremely long time and when the scenes are maximally identified

by their spatial arrangement. The lack of any advantage for 3D

presentation in Experiment 1 could have two interpretations. On

one hand, the observers might not have retained a trace of the

stereo quality of the pictures, alternatively, the observers might

have retained a memory of whether the display was 3D but this

could be not relevant for picture recognition, which could be

mediated by non-spatial attributes of the picture. In the third and

last experiment we explicitly test our observers memory for the

picturesdisplay type in a modified version of Experiment 1.

Methods
One groups of 28 students of the Justus-Liebig University of

Giessen (18 females, mean age 24.5) volunteered for participating

in the study.

Stimuli. The stimuli were 96 3D pictures randomly sampled

from the ones used in Experiment 1 (32 pictures for each

category).

Image processing and stimulus presentation were conducted as

in Experiment 1 with the difference that the size of the pictures

was reduced to 60% of the original size in the recognition session.

At the end of the experiment all participants reported being

clearly able to see the 3D structure of the pictures under our 3D

stimulation conditions.

Procedure. The experiment consisted of a learning session

directly followed by a recognition session.

The learning session followed exactly the same procedure as in

Experiment 1 (Figure 6A). Observers were instructed to look

carefully at the pictures and to try to remember them in order to

be able to recognize them in the subsequent session. At the end of

the learning session the observer was instructed to call the

experimenter, who explained the actual task for the memory

testing session. Observers were informed that their task would not

be the one of recognizing the pictures but to indicate for each

picture whether they thought it had been presented in 2D or 3D.

In the memory test session a 3D version and a 2D version of

each picture were presented on the right and left side of the screen

(Figure 6B). The association between the display type and the side

of the screen was alternated between observers. The pictures

remained on the screen until the participant pressed one of two

keys on a computer keypad. The observers were instructed to press

the right or left key to indicate in which display type they thought

the image had been presented in the learning session. The keypress

triggered the appearance of a fixation point for one second, which

was followed by the presentation of the next couple of pictures.

The observers were informed that each pair contained a new and

an old picture.

Results and Discussion
The responses of the observers are depicted in Figure 7A.

Although the task is framed as a 2AFC, it is in essence a present-

absent task. Each trial can be identified as signal present/absent

depending on the pictures display type in the learning sessions and

the observers choice is coded along this dimension (i.e. they had to

report whether they thought the picture had been presented in 2D

or 3D. This allowed us to define Hits, False Alarms, Sensitivity and

Criterion. The Hit and False Alarm rates (considering 3D

presentation as the signal) are similar within each picture category

and in the overall results, although the tendency to report

(correctly or falsely) that a picture had been presented in 3D differs

between categories. In particular, observers were likely to report

that forest scenes had been presented in 2D whereas they tended

to report that car and house pictures had been presented in 3D.

The results have been converted to sensitivity (d) and criterion

(c) for further analysis (Figure 7B). Limitedly to the Car category

one observer had a False Alarm Rate of 100% and another

observer had both a False Alarm and a Hit Rate of 100%. In all

three cases an error rate equal to half trial (3.1%) was assumed for

d̀ and c calculation.

One-sample t-tests were performed on d̀ and c values in order to

test whether observers were able to recollect the original display

type and whether they had a bias to report one of the two types.

Sensitivity (d̀) was neither significantly different from 0 overall

(t(27) = .848, p = .404) nor in the single categories (Cars:

t(27) = 1.299, p = .205; Buildings: t(27) = 1.140, p = .264; Forest:

t(27) = 1.393, p= .174). The overall criterion was not different

from 0 (t(27) = .848, p = .404).

The observers’ sensitivity regarding stereo presentation is

limited by their ability to retain a trace of the picture in the first

place, i.e. it is unlikely that observers can recollect the display type

of a given picture without recognizing the picture in the first place.

Unfortunately, only a rough estimate of the observers sensitivity in

recognizing the pictures can be obtained from the results of

Experiment 1. In general, from Figure 3 we can deduce that the

average d̀ value as observed in the short-exposure group (0.59) was

around three times larger than the average of the lower arm of the

corresponding confidence interval (0.17). Obviously, the sensitivity

in the short-duration condition of Experiment 1 is a conservative

estimate of the expected sensitivity in Experiment 3, given that half

of the pictures were encoded with a shorter presentation time and

that observers were not exposed to new distractor pictures during

the recognition test phase. Overall, this suggests that, despite the

level of noise, even if the observers had recollected correctly the

display type of only a subset of the pictures that they could

recognize, they would still have provided non-zero sensitivity in

Experiment 3.

Observers also had a quite strong tendency to report that house

and car images had been presented in 3D, whereas they tended to

report that the forest images had been presented in 2D. In Greene
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and Olivas [32] terminology, the three categories of scenes differ

markedly in their structural properties. In particular, car and

house images have a much larger expansion as compared to forest

images, also due to the fact that in order to maximize the disparity

gradients most buildings and cars were captured from rather

angled points of view. The expansion in the scene might have

conveyed a rather strong impression of three-dimensionality even

from a 2D presentation.

Figure 6. Experimental procedure in the Learning session (A) and in the Recognition session (B) of Experiment 3. The learning session
was identical to the one of Experiment 1 (with 1 s exposure). In the Recognition session observer indicated the type of the display in which the image
had been presented in the previous session by choosing the corresponding target. For each observer the 3D version of the image was always
presented on the same side of the screen.
doi:10.1371/journal.pone.0049947.g006

Figure 7. Results from Experiment 3 in terms of Hit and False Alarm rates (A) and of Sensitivity and Criterion (B). Hits are defined as
the correct indication that an image had been presented in 3D. Data are presented separately for each category of pictures (colored bars) and for the
overall data (black bars). Error bars represent between-observer 95% confidence intervals of the mean. Sensitivity (d̀) did not differ from 0 in any of
the single categories nor in the overall data. Observers were biased to report that car and building images had been presented in 3D, whereas they
tended to report that forest images had been presented in 2D.
doi:10.1371/journal.pone.0049947.g007
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Discussion

In a delayed recognition task, we investigated whether the

presence of binocular disparity can improve the long-term

memory for scenes. The results indicate that this is only the case

when an extremely long time is available to encode pictures and

when the spatial layout of the scene is prominently relevant to

distinguish target pictures from foils belonging to the same

category. Specifically, we only found a stereo enhancement of

the long-term memory for forest pictures which had been studied

for 7 seconds. When observers memorized images of houses or

vehicles, which are more likely to be encoded conceptually, the

recognition performance, both in terms of Hit Rate and in terms

of sensitivity was no better for stereo pictures as compared to 2D

scene pictures.

Based on the fact that we were able to demonstrate a highly

significant effect of Exposure Time, thus replicating a finding

which was reported by Wichmann and colleagues [10], we believe

that the paradigm we used in Experiment 1 was powerful enough

to detect relevant modulations of recognition performance. Still,

the fact that stereo presentation did not enhance the recognition

rate of car and house images does not per se imply that stereo was

ignored while encoding the pictures. Indeed, we have indications

that stereo presentation had a differential effect depending on the

scene category (i.e. it was only advantageous for forest pictures),

thus the lack of a stereo recognition advantage might be related to

the fact that pictures containing distinctive artifacts are recognized

based on a conceptual rather than visual code. Recognizing scenes

through distinctive objects might be the default way, especially

when enough time is available to proceed from the encoding of the

general structure of the scene to a more detailed description [33].

In Experiment 3 we asked explicitly whether our observers

retained a trace of whether the pictures had been presented in

stereo. This did not seem to be the case, even for the scene

categories which proved to be well recognizable in Experiment 1.

Overall, the results indicate that binocular stereo is only useful

while encoding scene pictures to retain in long-term memory if the

tree-dimensional structure of the scene is crucial for the task and

when enough time is available. Otherwise, the trace which is

retained from a 3D picture is equivalent to the trace retained from

a 2D picture, both in the information it conveys for the purpose of

recognition and in its visual quality.

This result parallels the general finding that the contribution of

binocular disparity to visual perception and memory for compar-

atively simple objects and faces is maximally evident when their

3D structure is made explicitly relevant by the task, e.g. when

rotated views have to be recognized [18,19,20,21,22].

Conversely, the relatively limited enhancement of long-term

memory for stereo pictures of scenes is in contrast with the robust

advantages induced by chromaticity [10,11,12] and motion [14].

One possible explanation might relate to the fact that the

information conveyed by chromaticity may not be easily recovered

from a grayscale picture, given that chromaticity is relatively

independent from luminance in natural images [34], and for

instance observer motion is not coded at all in static images. The

depth arrangement of objects in a scene can instead be recovered

from a number of monocular cues, such as occlusions, illumination

gradients, perspective. This might undermine the relevance of

stereo when a coarse coding of the spatial structure of the scene is

sufficient.

The question of what specific mechanism supports the stereo-

viewing enhancement of long-term memory performance for

forest pictures remains open. On one side, the fact that this

enhancement is particularly evident when images are presented for

7 seconds suggests that visual segmentation might probably not be

the most important factor and that observers stored a better

representation of the relative depth of one or more elements within

the scene, which later helped to distinguish the target scenes from

foils containing conceptually similar elements but located on

different depth planes. In this sense, binocular disparity would

contribute specific information to memory. On the other side, we

cannot exclude that the presence of stereo might have favored the

initial encoding of the scene simply by enhancing the segmentation

of the different elements which in turn are learned. Binocular

disparity would then not constitute a specific source of information

for the memory task, as is the case with chromaticity and motion.

This would be consistent with the results of Experiment 3, showing

that observers do not retain a trace of the compelling three-

dimensionality impression which was induced by binocular

disparity while they were viewing the scene picture.

If it is true that binocular disparity contributes a specific source

of information to long-term memory, and this contribution

becomes relevant when most cues to recognition based on form,

chromaticity and semantics are degraded to a large extent, we can

predict that a benefit due to binocular stereo could emerge also for

urban scenes, as long as they contain a limited set of objects

distinguished by their spatial arrangement, rather than by their

color, shape and functional meaning.

In general, future research should aim at testing the contribu-

tion of binocular disparity to visual long-term memory in a larger

sample of scene categories, in order to establish whether the

enhancement we found in the case of forest images is a rare

exception or a widespread phenomenon.
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