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Abstract 45 

Similarity-based semantic interference (SI) hinders memory recognition. Within 46 

long-term visual memory paradigms, the more scenes (or objects) from the same semantic 47 

category are viewed, the harder it is to recognize each individual instance. A growing body 48 

of evidence shows that overt attention is intimately linked to memory. However, it is yet to 49 

be understood whether SI mediates overt attention during scene encoding, and so explain 50 

its detrimental impact on recognition memory. In the current experiment, participants 51 

watched 372 photographs belonging to different semantic categories (e.g., a kitchen) with 52 

different frequency (4, 20, 40 or 60 images), while being eye-tracked. After 10 minutes, 53 

they were presented with the same 372 photographs plus 372 new photographs and asked 54 

whether they recognized (or not) each photo (i.e., old/new paradigm). We found that the 55 

more the SI, the poorer the recognition performance, especially for old scenes of which 56 

memory representations existed. Scenes more widely explored were better recognized, but 57 

for increasing SI, participants focused on more local regions of the scene in search for its 58 

potentially distinctive details. Attending to the centre of the display, or to scene regions 59 

rich in low-level saliency was detrimental to recognition accuracy, and as SI increased 60 

participants were more likely to rely on visual saliency. The complexity of maintaining 61 

faithful memory representations for increasing SI also manifested in longer fixation 62 

durations; in fact, a more successful encoding was also associated with shorter fixations. 63 

Our study highlights the interdependence between attention and memory during high-level 64 

processing of semantic information.  65 

 66 

Keywords: long-term visual memory; semantic interference; visual saliency; eye-67 

tracking. 68 

 69 
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 Introduction 77 

 78 

When recalling the memory of a certain episode, other episodes sharing a similar 79 

context may interfere with it. For example, when trying to remember the specific image of 80 

a kitchen, memories of images from the same semantic category (i.e., other kitchens) may 81 

also get activated, and so interfere with the recognition of this exemplar. This cognitive 82 

phenomenon, identified for the first time by Müller and Pilzecker (1900), has been ever 83 

since at the heart of memory research (see Dewar, Cowan, & Della Sala, 2007 for a review) 84 

and attributed to either mental activities intervening between the encoding of a stimulus 85 

and its retrieval, such as comparing periods of wakeful rest versus cognitive engagement 86 

(Cowan et al., 2004; M. Dewar et al., 2012) or to response competition due to the content 87 

similarity of the stimuli that are memorised (Craig et al., 2013; Underwood, 1945), such as 88 

semantically related vs. unrelated word lists (Baddeley & Dale, 1966; McGeoch & 89 

McDonald, 1931 and see Ishiguro & Saito, 2020 for a recent review). 90 

Memory interference has historically been investigated using verbal recall or picture-91 

word associations tasks (Dale, 1964; Rosinski et al., 1975; Shulman, 1971). In recent years, 92 

interest grew around the impact of similarity-based semantic interference on long-term 93 

memory for visual information, which also constitutes the focus of the present research.  94 

In a series of studies, Konkle, Brady, Alvarez, and Oliva (2010a, 2010b) 95 

demonstrated that the fidelity of memory representations for arrays of standalone objects, 96 

or naturalistic scenes, critically depends on the semantic interference occurring between 97 

stimuli that have been encoded in memory: an increase in the frequency of scenes (or 98 

objects) per semantic category was associated with a systematic decrement in the 99 

recognition of each individual exemplar encoded in that category.  100 

Beside their semantic content, visual images also convey low-level information (e.g., 101 

colour or luminosity), which can be computationally quantified in a synthetic measure 102 

known as visual saliency (see, Itti et al., 1998 for a well-known model). When looking at 103 

the impact of low-level information on memorability, however, research seems to indicate 104 

no significant correlations between the two (see Isola et al., 2014, for natural scenes, Dubey 105 

et al., 2015, for objects, and refer to Bainbridge, 2019 for a review on the topic of 106 

memorability). Instead, visual images own an intrinsic memorability strength that is 107 

independent of their high- or low-level characteristics or to the type of tasks and the depth 108 



of cognitive processing involved (Bainbridge, 2020). The memorability of visual 109 

information also relies on patterns of extrinsic responses, e.g., eye-movements, that 110 

participants generate when encoding such information in memory (e.g., Bylinskii, Isola, 111 

Bainbridge, Torralba, & Oliva, 2015; and see Hannula, 2018, for a review of the topic). For 112 

example, a higher number of fixations, or smaller pupil dilations while scenes are studied 113 

in preparation for a recognition test are associated with a better memory performance 114 

(Kafkas & Montaldi, 2011).  115 

Global measures of exploration as obtained from attention maps (Pomplun et al., 116 

1996), in which all fixations on a given image are portrayed along its two-dimensions, are 117 

an important predictor of its memorability too. In this context, the more spread out fixations 118 

were on an image during encoding, which implied that several regions were attended to, 119 

the better this image was later recalled (e.g., Damiano & Walther, 2019; and Lyu et al., 120 

2020, for another application of attention maps in the context of image memorability).  121 

The duration of individual fixations can also express ongoing memory processes. 122 

Meghanathan et al. (2015), for example, showed that fixation duration linearly increases as 123 

the number of target distractors present in the context also increases in a change detection 124 

task. Or Loftus et al., (1992) where increasing fixation durations were associated with the 125 

amount of degradation in low-level features of images to be later remembered. 126 

Another important aspect of oculo-motor control, which has been relatively neglected 127 

in the context of memory processes, is the tendency of observers to re-orient their overt 128 

attention towards the centre of the display during scene viewing (i.e., centre bias, Tatler, 129 

2007). To the best of our knowledge, Lyu et al., (2020) is the only study that has examined 130 

the role of centre bias on memory recognition. A centre proximity map was computed to 131 

weight low-level saliency maps generated with the Graph-Based Visual Saliency (GBVS) 132 

algorithm (Harel et al., 2006) and a single value, representing the probability of salient 133 

regions to be positioned in the centre of the display, generated. Their result did not show 134 

any significant relationship between centre bias and memorability, which seems to confirm 135 

the marginal role played by low-level visual features on scene memorability.        136 

Attending and memorising are indeed closely coupled; but high-level semantic 137 

mechanisms of interference may influence overt attention as memories get formed. If this 138 

supposition is true, we should be able to bridge the expected decrement in recognition 139 

memory onto eye-movement responses. Our proposition is that as the fidelity of individual 140 



memory representations (e.g., the specific image of a kitchen) degrades under the influence 141 

of semantic interference (i.e., a memorised pool of kitchens), oculo-motor compensatory 142 

strategies are adopted to cope with the increased complexity of discriminating the memory 143 

of each individual instance from a pool of semantically overlapping competitor instances.     144 

Thus, the current study aims at demonstrating that semantic interference on long-term 145 

visual memory directly mediates overt attention at encoding of visual information. Most 146 

importantly, our goal is to gauge the oculo-motor dynamics that underlie the successful 147 

formation and later access of memory representations as they degrade due to semantic 148 

interference.  149 

We manipulated semantic interference of naturalistic images following the procedure 150 

by Konkle et al., (2010b), but tested recognition memory on an old/new paradigm rather 151 

than a two-alternative forced choice (2AFC), which elicits recollection more than 152 

familiarity mechanisms (for a direct comparison of these two paradigms see Bayley, 153 

Wixted, Hopkins, & Squire, 2008 and Cunningham, Yassa, & Egeth, 2015). Eye-tracking 154 

was included in the procedure to examine oculo-motor patterns associated with the 155 

encoding of visual information in memory. Departing from previous work, we examined 156 

the impact of semantic interference as a continuous, rather than as a categorical, variable. 157 

This approach allowed us to estimate the incremental (trial-by-trial) impact of semantic 158 

interference on recognition accuracy and how this is accommodated by changes in eye-159 

movement responses. 160 

On recognition accuracy, we expect to replicate the semantic interference effect 161 

observed by Konkle, et al., (2010b), whereby the higher the interference of the semantic 162 

category a scene is encoded into, the worst it would be its future recognition. However, if 163 

this effect truly relates to memory representations, then it should more strongly manifest in 164 

old rather than new images. Moreover, even though images are intrinsically memorable 165 

(Bainbridge, 2020), in our paradigm, we expect their memorability to reduce under the 166 

influence of semantic interference, and so observe a lower inter-participant correlation than 167 

Isola et al. (2014), where the semantic interference between images was not manipulated. 168 

On the eye-movement data collected while scenes were viewed for the first time (i.e., 169 

at encoding), we focus on four complementary measures: (a) the amount of visual 170 

information that was attended to, by looking at the overall spread of fixations across the 171 

scene, (b) the attentional effort to acquire visual information from the scene, by looking at 172 



fixation duration,  (c) the reliance of participants on low-level visual features of the scene, 173 

by looking at the correspondence between fixation positions and visual saliency at such 174 

locations and (d) the tendency of participants to re-orient their overt attention towards the 175 

centre of the screen, by looking at the correspondence between fixation positions and a 176 

centre proximity map (see section Dependent Variables for formal definitions of these 177 

measures).  178 

In line with Damiano & Walther (2019), a high spread of the fixation distribution 179 

across a scene during its encoding, which indicates that it was widely inspected, should 180 

reflect a later better recognition. However, as the exposure to scenes from the same 181 

category increases (i.e., semantic interference) the representational fidelity of each 182 

individual scene decreases, and so we expect participants to attend more local regions in 183 

search for its potentially distinctive features. This suggestion would theoretically 184 

corroborate that the repeated exposure to the same visual scene is associated with a 185 

systematic reduction in the number of regions explored (see Althoff & Cohen, 1999 and 186 

Ryan et al., 2000 for an example using naturalistic scenes). This strategy may support the 187 

successful encoding of an image up to a certain level of semantic interference though. As 188 

fixation entropy is expected to drop due to semantic interference, it may reach the same 189 

level for scenes that will and scenes that will not be later correctly recognised, and so lose 190 

discriminative power.  191 

Semantic interference degrades the representational fidelity of individual instances 192 

by reinforcing their categorical overlap, and so we expect fixation duration to significantly 193 

increase to keep instances discriminable as a response. This prediction will conceptually 194 

align with the study by Ryan et al. (2007), showing that the repeated exposure to familiar 195 

faces resulted into progressively longer fixation durations; and connect with Loftus et al. 196 

(1992) showing that degradation, albeit in the perceptual domain, was associated to an 197 

increase in fixation duration in a long-term visual memory task. Moreover, as fixation 198 

duration is an index of processing effort (see Coco et al., 2020 for an example in the context 199 

of object-scene semantic integration), we expect it to be negatively associated with 200 

recognition accuracy, whereby the longer the average fixation duration is, the less likely 201 

the scene was efficiently encoded into memory.   202 

Moreover, if participants indeed search for potentially diagnostic features in scenes 203 

as semantic interference increases, they would rely more on low-level visual features of the 204 



scene, i.e., a higher correspondence between fixation position and low-level visual saliency. 205 

Building upon Isola et al. (2014), however, we do not expect low-level image features to 206 

significantly contribute on whether the scene will be later correctly recognised, or not.  207 

Finally, an increased tendency to re-centre gaze during the encoding of the scene may 208 

indicate that it was not exhaustively explored, and so, along with our prediction about 209 

fixation entropy (Damiano & Walther, 2019), we would expect it to be negatively 210 

associated with memory recognition, i.e., the greater the centre bias the poorer memory 211 

recognition. This may especially be true if fixation responses and centre-bias are analysed 212 

in tandem. Instead, if centre-bias is considered as independent from eye-movement 213 

responses, in line with Lyu, et, al., (2020), we would predict a lack of its association with 214 

recognition memory.  215 

 216 

---------------------------------------- 217 

Insert Figure 1 218 

---------------------------------------- 219 

 220 

Method 221 

Participants 222 

Twenty-five native English speakers (17 females, age = 21.95 ± 3.47 SD, range: 20-223 

36) with normal or corrected to normal vision took voluntarily part in the study. 224 

Participants’ sample size and number of trials were based on Konkle et al. (2010b), as our 225 

aim was to replicate as close as possible the original design, even if with a different memory 226 

paradigm, and so draw sounded comparisons between the original study and our results1. 227 

As the eye-movement data of 2 participants were not correctly acquired, they were 228 

excluded from these analyses (i.e., N = 23) and kept in for the analyses of their manual 229 

recognition responses. The Psychology and Research Ethics Committee of the University 230 

of Edinburgh approved the study before data collection, and all participants gave their 231 

written consent at the start of the experimental session.  232 

 233 

 234 

 
1 The power and p-value in 100,000 simulated experiments based on the same number of conditions and participants of 

our study show that it is possible to detect a significant effect with a power above .3 assuming a p-value < 0.05, which 

should minimize the chance of incurring into Type 2 errors. 



Material and Apparatus 235 

We selected 1,488 naturalistic images from SUN database (Xiao et al., 2010) with a 236 

minimum of 550 x 550 pixels resolution and which did not include animate objects like 237 

humans or animals. All images were cropped and rescaled to 800 x 800 pixels to collect 238 

finer-grained eye-movement responses, and were equally drawn from one of twelve 239 

categories, six human-made environments (i.e., amusement park, bathroom, gas station, 240 

highway, kitchen, library) and six natural environments (i.e., beach, desert, field, forest, 241 

mountain, river). Miniatures of all scenes by category are reported in Appendix A and with 242 

a greater resolution in the Supplementary Materials2 (S1).  243 

Images (800 x 800 pixels) were centrally presented on a black background at their 244 

resolution3 with a 19'' Dell Monitor (16.2-inch x 7.2 inch) screen resolution of 1920 x 1024 245 

and set at a viewing distance of ~60 cm. Eye-movement data was recorded binocularly 246 

using a Gazepoint GP3 HD eye-tracker sampling 150Hz. The experiment was built on 247 

OpenSesame 3.1.9 (Mathôt et al., 2012) and the acquisition of eye-tracking data made 248 

possible through the PyGaze Python plug-in (Dalmaijer et al., 2014). Each participant was 249 

calibrated on a 9-points, and recalibrated if necessary. The mean degree of visual angle 250 

deviation accepted for the calibration was 0.37 degrees on the x-axis (SD = 0.15) and 0.53 251 

degrees on the y-axis (SD = 0.29). 252 

 253 

Procedure 254 

Participants were administered the WASI-II test of intelligence4 (Wechsler, 1999) 255 

at the start of each session (Full Scale = 117.79 ± 10.25; 97-140) and then completed a 256 

long-term visual memory task which assessed their recognition accuracy using an old/new 257 

approach (see Figure 1 for a visualisation of the experimental design). Each participant 258 

watched a stream of 372 images, each presented for 3 seconds with 800ms fixation 259 

crosshair inter-trial, during encoding. After a short 10 minutes break, she/he was tested on 260 

744 images, presented one-by-one. Half of these scenes were the 372 images seen during 261 

the encoding phase and the remaining 372 were novel scenes. They were asked to indicate 262 

 
2 The full stimuli dataset will be made available upon request. 

3 Images were not scaled to fit the display dimensions. 
4 WASI-II was administered as pedagogical training for the undergraduate students who helped us with the data 

collection. As this test did not show any significant link with the long-term visual memory study, we only reported the 

full-scale score for completeness.     



whether they remembered or not the image using the keyboard (> yes; < no). The image 263 

was visible until a recognition response was made. To implement the semantic interference 264 

manipulation, we varied the frequency of images of each semantic category that 265 

participants were exposed to. In line with Konkle et al. (2010b), we varied SI in 4 levels 266 

(4, 20, 40 or 60 images per category). The total of 1,488 scenes was obtained by selecting 267 

124 unique scenes for each of the 12 different categories (124 * 12), which is the number 268 

of images needed to cover all 4 levels of semantic interference, distributed across 8 269 

randomization lists. Each level of interference was distributed in each list to 3 different 270 

categories (4 * 3) and all 4 levels of interference were counterbalanced across semantic 271 

categories by rotating such levels onto 4 different lists (e.g., if the kitchen category had an 272 

SI of 4 in list 1, the same category had an SI of 20 in list 2, an SI of 40 in list 3 and of 60 273 

in list 4). Four additional lists were created by swapping old with novel scenes between the 274 

encoding and the recognition phase to ensure that all scenes were seen in both conditions. 275 

Images from each semantic category and level of interference were randomly assigned to 276 

the lists making sure that they were never repeated within each list. Images in both phases 277 

of encoding and recognition were presented in randomized order, i.e., we did not block 278 

images sharing the same semantic category to appear contiguously, and equal frequency 279 

per semantic category (e.g., for 20 kitchen images in the encoding phase, there were 20 old 280 

and 20 novel kitchen images in the testing phase). The experimental session took 281 

approximately 2 hours. 282 

 283 

Analyses 284 

Data exclusion 285 

Of the 18,600 recognition trials (25 participants × 744 recognition trials), we excluded 393 286 

trials (2.11%) with a response time either faster than 1% or slower than 99% of all trials as 287 

separately computed independently per participant. The number of recognition trials 288 

analysed was 18,207 (an average of 728.28 ± 1.4 per participant). On 8,556 encoding trials 289 

(23 participants × 372 encoding trials), we excluded 255 trials (2.98%) because most 290 

fixations were out-of-range (i.e., bad eye-tracking), and a further 389 trials (4.54%) which 291 

had an average fixation duration (164), total number of fixations (48) or a subsequent 292 



recognition response time5 (177) below 1% or above 99% of their respective distributions. 293 

Thus, the number of encoding trials analysed was 7,942 trials (an average of 345.3 ± 28.17 294 

per participant). 295 

 296 

Independent variables 297 

The key independent variable of this study is SI, which was manipulated in the design 298 

as frequency of scenes belonging the same semantic category (i.e., 4, 20, 40, 60), and 299 

incrementally administered to participants during the entire experimental session (i.e., from 300 

1 to 60 during encoding and from 1 to 120 in the recognition phase, which were the 301 

maximum number of scenes belonging to the same category that could be seen in either 302 

phase). We treated SI as a continuous variable6 to capture its incremental impact on 303 

recognition accuracy and oculo-motor responses on a trial-by-trial basis (refer to 304 

Supplementary Material S2 for a visualization of this measure) and standardised it into z-305 

scores to minimize convergence issues (e.g., co-linearity) when it was introduced in the 306 

regression.  Image novelty (old and new, set as reference level) was another independent 307 

variable that we included in the analyses of recognition accuracy to distinguish between 308 

hits and correct rejections. The last independent variable included in the analysis of eye-309 

movement at encoding was the recognition accuracy of old scenes, which made possible 310 

to differentiate oculo-motor strategies that support effective (vs. ineffective) memory 311 

processes. This independent variable was also scaled prior to entering it in the regression 312 

to minimize co-linearity with the other predictors.   313 

 314 

---------------------------------------- 315 

Insert Figure 2 Here 316 

--------------------------------------- 317 

Dependent variables 318 

Manual responses: Recognition accuracy is a binomial variable which indicates 319 

whether a scene was correctly remembered as already seen (old) or rejected as novel (new). 320 

Following Konkle et al., (2010a), we also fit a general linear model (binomial link) 321 

 
5 Recognition accuracy was used as predictor in all eye-movements models, and so if the response time were unrealistic 

then the associated response accuracy would also be unreliable, hence motivating the exclusion of these trials in these 

analyses. 
6 The post-hoc analysis showed corroborating results when SI was introduced in the analysis as a categorical variable, 

although its effect became weaker. 



predicting recognition accuracy as a function of SI  independently for each participant, and 322 

separately for old and new trials. In this way, we derived the interference slope (i.e., the 323 

beta coefficient associated with SI), which reflects how much was the recognition accuracy 324 

of each participant impacted by increasing interference for scenes she/he already viewed 325 

(old) or had never seen (new).  Negative coefficients indicate that recognition accuracy 326 

decreased when semantic interference increased. In Appendix A, we report additional 327 

analyses of d-prime and criterion to explore how was the signal (hit) discriminated from 328 

the noise (false-alarm) by the participants of our task, whether they adopted a conservative 329 

or a liberal strategy, and examined the impact of semantic interference on both. Finally, 330 

from the recognition accuracy we obtained the intrinsic memorability of our images. We 331 

used the method by Isola et al., (2014) and computed the Spearman correlation between the 332 

recognition accuracy of each individual scene (as hits) in two randomly split sets of 333 

participants, and iterated this procedure 50 times to avoid that findings may spuriously 334 

relate to a precise random selection of the participants’ split. 335 

Eye-movement responses: As we were mainly interested in how the initial patterns 336 

of scene exploration related to memory formation, we only considered eye-movement data 337 

of the encoding phase in this analysis. Raw eye-movement sample were parsed into 338 

fixations and saccades using the I2MC algorithm by Hessels, Niehorster, Kemner, and 339 

Hooge (2017), implemented in MATLAB, which is suited to low-resolution data.  340 

From fixation events, we computed four dependent measures: (a) the average fixation 341 

duration of all fixations in a trial to index processing effort, (b) the entropy of the spatial 342 

spread of fixations to get at global patterns of scene exploration, (c) the Normalized 343 

Scanpath Saliency (NSS, Peters et al., 2005) to tap into the attentional guidance provided 344 

by low-level visual features of the scene and (d) the NSS score between a centre proximity 345 

map and fixation positions to examine the tendency of our participants to re-centre their 346 

gaze.  347 

To compute (b), we first built a fixation probability map of each trial by placing at 348 

fixation coordinates, Gaussian kernels with a bandwidth set at 1 degree of visual angle 349 

(roughly 27 pixels) to approximate the size of the fovea. The height of the Gaussian was 350 

weighted by the proportion of time spent fixating at that location to better integrate 351 

differences in the amount of overt attention deployed across the scene. Then, the entropy 352 

of the resulting fixation map was calculated as -∑ p(Sx,y)log2x,y p(Sx,y), where p(Sx,y) is 353 



the normalized fixation probability at the coordinates of the fixation (x, y) in the scene S 354 

(see Castelhano et al., 2009; Coco & Keller, 2014 or Henderson, 2003 for related 355 

examples). Thus, the higher the fixation entropy, the more spread out fixations across the 356 

scene are. In Figure 2, we visualize four example heatmaps of fixation distributions in low 357 

vs. high entropy organized as columns and low vs. high interference organized as rows and 358 

report the value of fixation entropy for each map.  359 

The NSS score (c) was instead obtained by first computing a visual saliency map of 360 

each scene using the Fast and Efficient Saliency model (FES, Tavakoli et al., 2011), where 361 

saliency is estimated from contrasts of local features (centre-surround) in a Bayesian 362 

framework and central bias in eye movement responses taken into account by using an 363 

average fixation map. Then, saliency maps were normalized to have zero mean and unit in 364 

standard deviation, and saliency values at fixation positions of each trial extracted, and 365 

averaged to the NSS score (refer to Bylinskii et al., 2019 for the implementation we used). 366 

NSS is invariant for linear transformations and positive scores indicate above chance 367 

correspondence between fixation positions and visual saliency of the image.  368 

Finally for (d), we created a centre proximity matrix (800 x 800 pixels) by first 369 

calculating the Euclidian distance of each pixel with respect to the centre pixel, then 370 

normalizing this distance map to range between 0 and 1 and inverting it (see Hayes & 371 

Henderson, 2020). As a second step, we computed the NSS score between fixation 372 

positions and the centre proximity map for each scene and each participant. Note, this 373 

approach differs from Lyu et al., (2020) and Hayes & Henderson, (2020), as we only used 374 

the centre proximity map to isolate the tendency of viewers to re-centre their gaze, 375 

independently of any other low-level features of the scene. See also Supplementary 376 

Material S4, replicating the approach by Lyu et al. (2020), and confirming: (1) a lack of 377 

association between centre bias and memorability when eye-movement responses are not 378 

taken into account and (2) a clear effect of visual saliency on memorability with, and 379 

without, weighting the saliency maps by centre bias when eye-movement responses are 380 

instead integrated in the analysis.  381 

 382 

Inferential statistics 383 

We used linear mixed-effects models (LMM) and generalized linear mixed-effects 384 

models (GLMM) as implemented in the lme4 package in R (Bates et al., 2015) to conduct 385 



the statistical analyses of our dependent measures. The fixed effects of our models, i.e., our 386 

independent variables, were introduced as main effects as well as in interaction. The 387 

random effects were Participant (23) and Scenes (1,488), which were nested into their 388 

respective Categories (12) and introduced as intercepts. In the table of results, we reported 389 

the beta coefficients, t-values (LMM), z-values (GLMM), and p-values for each model. 390 

The level of significance was calculated from an F-test based on the Satterthwaite 391 

approximation to the effective degrees of freedom (Satterthwaite, 1946), whereas p-values 392 

in GLMMs were based on asymptotic Wald tests. Interference slopes were instead analysed 393 

using general linear models because they were obtained from by-participant linear 394 

regressions (i.e., we have no random effects, see section Dependent Variables). We 395 

predicted recognition accuracy, expressed as a probability, as a function of the interference 396 

slope separately for old and new trials to examine whether semantic interference was 397 

stronger in any of these two conditions. These models will be directly reported in the text.  398 

 399 

---------------------------------------- 400 

Insert Figure 3 and Table 1 Here 401 

--------------------------------------- 402 

 403 

Results 404 

 405 

Recognition Accuracy and Interference Slope: We found significant main effects of SI 406 

and image novelty. The higher the SI, the worse the recognition performance was. New 407 

images were more likely to be correctly rejected as not seen, than old images being 408 

correctly recognized as seen. Interestingly, we observed a significant interaction between 409 

SI and image novelty, such that the effect of semantic interference was stronger for old than 410 

new images (refer to Figure 3A for a visualisation and Table 1 for the model coefficients). 411 

This interaction is substantiated by recognition probability being significantly predicted by 412 

interference slopes only in old trials [β = .3, t(24) = 2.53, p = .02] compared to new trials 413 

[β = .15, t(24) = 1.67, p = .11], which corroborates that the effect of SI was more prevalent 414 

for images previously seen (see Figure 3B for a visualisation). When looking at the intrinsic 415 

memorability of our images, we confirmed that there is a significant correlation between 416 

the split halves (rs = .2, p < 0.001), i.e., there is consistency in the images that are better 417 



remembered, but the strength of our correlation was much weaker than the one originally 418 

reported (rs = .72, p < 0.001; refer to Isola et al., 2014). 419 

---------------------------------------- 420 

Insert Figure 4 and Table 2 Here 421 

--------------------------------------- 422 

 423 

Fixation entropy7: The spread of fixations, indexed as entropy, was significantly greater 424 

for images that were later better recognized. Most importantly, entropy significantly 425 

decreased as a function of SI, and the slope of this decrease was steeper for images that 426 

were better recognised (refer to Figure 4A, Table 2 for the model coefficients and to 427 

Supplementary Material S3 for additional visualisations).  428 

 429 

Average fixation duration: Fixations had a significantly shorter duration in images that 430 

were subsequently correctly recognized compared to those that were not (Table 2). Again, 431 

we observed a significant main effect of SI, whereby the duration of individual fixations 432 

increased as SI also increased (refer to Figure 4B, and inferential results in Table 2). 433 

 434 

NSS (fixation/saliency): The correspondence between fixation position and low-level 435 

visual salient regions of the scene was also significantly related to the memorability of the 436 

scene and it was impacted by semantic interference. NSS was significantly lower for later 437 

correctly recognized scenes, and higher for increasing SI (refer to Figure 4C and Table 2).   438 

 439 

NSS (fixation/centre bias): The higher the correspondence between fixation locations and 440 

the centre proximity map during the encoding of the scene, the less likely it would be that 441 

a scene is later correctly recognized. We did not find any significant main effect of semantic 442 

interference, nor this factor interacted with memory recognition (refer to Figure 4D and 443 

Table 2)8. 444 

 445 

 
7 We also examined number of fixations, which correlates with fixation entropy (r = 0.76) and found a very similar 

pattern of results.  
8 We re-used the centre proximity map weighting FES maps to compute the NSS correspondence between such a map 

and fixation positions. We corroborated the same result shown in the main text using the weight matrix by Hayes & 

Henderson, 2020: a greater tendency to inspect the centre of the display was associated with worsen memory 

recognition (β = - .05, SE = .001, t = - 8.95, p < .001).   



Discussion 446 

 The concept of interference has played a pivotal role in the theories of memory since 447 

its very beginning (e.g., McGeoch & McDonald, 1931; Müller & Pilzecker, 1900; Skaggs, 448 

1933), and helped framing the processes that may hinder, or aid, the formation and access 449 

of information in memory (e.g., mental activities, Cowan et al., 2004, or competition 450 

between stimuli sharing content, Craig et al., 2013). Similarity-based semantic interference 451 

of visual information, operationalised as the frequency of images (or objects) belonging to 452 

the same category that participants are asked to memorise, for example, was shown to be 453 

detrimental to recognition processes: the higher the semantic interference, the poorer the 454 

recognition performance (Konkle et al., 2010a, 2010b). Most importantly, the information 455 

we store in memory is acquired through our senses and so, memory for different types of 456 

stimuli (e.g., words or images) is known, for example, to be linked to eye-movement 457 

responses (see Hannula, 2018 or Ryan & Shen, 2020 for reviews).  458 

The core objective of the current study was to provide empirical links between the 459 

detrimental effect of similarity-based semantic interference on long-term visual memory 460 

and the patterns of overt attention deployed as scenes are studied to be later recalled. On 461 

recognition accuracy, we replicated using an old/new paradigm the effect of SI found by 462 

Konkle et al., (2010b) on a 2AFC, i.e., the higher the SI, the worse the memory performance 463 

is. The use of a different paradigm allowed us to discover that recognition accuracy for 464 

images seen during encoding (i.e., old scenes) was lower than accuracy for novel images; 465 

and most importantly that the detrimental effect of SI on old scenes was significantly 466 

stronger than on new scenes (refer also to the analysis of interference slopes). This result 467 

confirms that old/new paradigms probably tap into different recognition mechanisms than 468 

2AFC (i.e., recollection more than familiarity, Cunningham, Yassa, & Egeth, 2015), and 469 

that interference mostly disrupt existing memory representations. It is important to note 470 

that even if participants could successfully discriminate the signal over the noise, they 471 

became more conservative in their responses as semantic interference increased, i.e., they 472 

required substantial evidence before making an “old” judgment (see Appendix A for 473 

additional analyses of d-prime and criterion). This is in line with prior work showing that 474 

when distractors are highly similar to targets (Benjamin & Bawa, 2004) or scenes are 475 

familiar (Dobbins & Kroll, 2005), as it was the case in our study, a more conservative 476 

criterion is used.   477 



When looking at the intrinsic memorability of images in our task (Bainbridge, 2020), 478 

we find it to hold, even though weaker than originally reported (Isola et al., 2014). We 479 

qualitatively interpret this comparison as indicating that despite scenes may be intrinsically 480 

memorable, the effect of semantic interference in our design reduced their individual 481 

discriminability.  482 

Eye-movement measures demonstrated that four key components of fixation 483 

responses (overall spread, average duration, their correspondence with low-level visual 484 

saliency and with central bias) during encoding of images, systematically related to 485 

memory formation and were impacted by semantic interference. On patterns of global 486 

exploration, measured as entropy of fixations’ spread across the scene, we observed 487 

exploration to become more selective as SI increased. This result parallels the evidence that 488 

being exposed to the same scene induces a reduction in the number of visited regions (Ryan 489 

et al., 2000). As the fidelity of visual memory representations decreases due to SI, overt 490 

attention focuses to local regions of scenes in search for distinctive details that could boost 491 

their individual memorability. However, this switch from global to local processing may 492 

be an indicator of disrupted memory processes (Macrae & Lewis, 2002). Indeed, in our 493 

study, the wider a scene was explored, the more likely it was later successfully recognized 494 

(see Damiano and Walther, 2019, for corroborating findings). Of note, the shrinkage of 495 

fixations to more local regions due to semantic interference was stronger for correctly 496 

recognized scenes (i.e., two-way interaction SI × Accuracy). We argue that as semantic 497 

interference deteriorates memory recognition, it pushes fixation entropy of subsequently 498 

recognized scenes to approximately the same level of scenes that are later forgotten (see 499 

Figure 4A).  500 

The average duration of fixations, an index of cognitive effort to acquire visual 501 

information, was longer for later forgotten scenes, and increased as semantic interference 502 

also increased. This result resembles the finding of increased fixation durations to repeated 503 

exposure of the same stimulus (e.g., Ryan et al., 2007), and conceptually links with the 504 

evidence of increased fixation duration in perceptually degraded images (Loftus et al., 505 

1992). In practice, as the conceptual overlap between images grows due to semantic 506 

interference, i.e., they become more and more similar, a greater allocation of overt attention 507 

is required to accrue more information at each fixation that can in turn be used to make 508 

each individual image more distinct. Greater attentional effort, however, also implied lower 509 



recognition accuracy. Literature on object-scene integration shows that objects violating 510 

the contextual fit of the scene (e.g., a toothbrush in a kitchen) require longer fixations as 511 

are harder to be integrated (e.g., Coco et al., 2020 for recent behavioural and neural 512 

evidences). So, if fixation duration indexes more complex processing, it may also point at 513 

encoding difficulties, and hence explain why its increase may be associated with worse 514 

recognition accuracy.     515 

We also examined the reliance of participants to low-level features of images as 516 

evidence of strategic compensation to increasing semantic interference. Here, we found 517 

that indeed overt attention was allocated more frequently to regions of the images that were 518 

rich in low-level features as semantic interference increased. This result is intriguing 519 

because it points at a reduction in top-down control due to the increase in content overlap 520 

of the images, and a shift towards bottom-up stimulus driven control, as usually observed 521 

in free-viewing tasks (Parkhurst et al., 2002). However, attending to low-level features of 522 

the image, in general, was detrimental to its later recognition (see main effect of Accuracy).  523 

A similar negative impact on recognition memory was observed when examining the 524 

tendency of observers to re-orient their gaze towards the centre of the display (e.g., Tatler, 525 

2007). We found that a greater focus of overt attention to the centre of display during scene 526 

encoding indicated a worsen later recognition. This result corroborated our observation 527 

with fixation entropy, whereby a reduced exploration implied worse recognition accuracy 528 

and it confirms that scene exploration is key to the successful encoding and later retrieval 529 

of visual information from memory.  530 

Previous attempts to link the visual saliency of images, or other low-level oculo-531 

motor mechanisms such as the tendency to re-centre gaze, to their memorability had shown 532 

a lack of significant association (e.g., Isola et al., 2014; Lyu et al., 2020). A possible 533 

explanation of this discrepancy may relate to the fact that these studies have explored the 534 

relation between visual saliency, or centre-bias, and memorability without taking directly 535 

into account the associated eye-movement responses. In fact, when replicating the analysis 536 

by Lyu et al., 2020 of centre-bias, which does not include eye-movements, we confirm it 537 

not to be significantly associated with recognition memory. Instead, when we modeled the 538 

correspondence between fixation positions and GBVS maps, with (and without) centre bias 539 

adjustment, we confirmed a highly significant association between low-level visual 540 

saliency and recognition memory (see Supplementary Material S4, for greater details). 541 



Thus, we contribute to these previous findings by showing that the role played by low-level 542 

features on image memorability may be better accounted for when investigated relative to 543 

overt attention. However, as the study by Hayes & Henderson (2020) points out, low-level 544 

visual saliency and centre bias are often confounded, and so more accurate predictions of 545 

overt attention during scene viewing can only be obtained when the latter is used to adjust 546 

the former. We acknowledge that more research is needed to elucidate the patterns of 547 

interaction between different oculo-motor responses in face of semantic interference and in 548 

relation to memory recognition. One potential approach would be to compare the 549 

predictability of memory recognition of different models including a variety of oculo-motor 550 

responses (e.g., centre bias, fixation entropy, etc.) and evaluate the contribution of each 551 

model parameter to prediction performance (see also Coco & Keller, 2014 for an example 552 

application).   553 

Another point of caution in the results of the current study is that recognition accuracy 554 

for old scenes was rather low, even at low-level of interference, which may cast doubts on 555 

how informative eye-movement measures really are about memory processes that were 556 

inherently weak. It is important to note that we only considered eye-movement responses 557 

collected during encoding, and in this phase, the mechanisms of explicit memory 558 

recognition were not yet at work. Moreover, a significant main effect of semantic 559 

interference on eye-movement responses was observed regardless of whether participants 560 

successfully recalled, or not, the scenes. Thus, even though, memory for old images was 561 

surprisingly poor, we doubt that this may have had any important repercussion to the effects 562 

of semantic interference on the oculo-motor responses reported here.     563 

In sibling research, we investigated whether the effect of semantic interference is also 564 

observed in a healthy older population, and especially, whether this mechanism may be 565 

impacted by neuro-degenerative diseases (Coco et al., 2021). Results showed corroborating 566 

effects of semantic interference on recognition accuracy in the healthy older group, which 567 

are, however, significantly reduced in people with Mild Cognitive Impairment. We also 568 

replicated similar patterns of eye-movement responses, such as the decrease of fixation 569 

entropy and the greater reliance on low-level visual saliency for increasing semantic 570 

interference at encoding, while also showing subtle oculo-motor compensatory strategies 571 

in the MCI group.   572 



An outstanding question that germinates from this study regards the interplay 573 

between low-level and high-level features of scenes. In fact, even though two images of a 574 

kitchen may belong to the same semantic category, they may be very different in terms of 575 

their perceptual features or configurational statistics of the objects they are made of. So, 576 

future research should aim at developing computational measures, and novel paradigms, 577 

that can better disentangle the contribution of these two components in memory 578 

interference. 579 

In sum, our findings of systematic links between overt attention and memory 580 

mechanisms during high-level cognitive processing support the centrality of the oculo-581 

motor system on memory formation (e.g., Chun & Turk-Browne, 2007; Ryan et al., 2020), 582 

calling for more integrative research between attention and memory.  583 
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---------------------------------------- 794 

Insert Figure 1A and Table 1A Here 795 

--------------------------------------- 796 

Appendix A 797 

D-prime and Criterion. 798 

In this analysis, we tested whether participants were able to discriminate the signal from 799 

the noise using d-prime, while using criterion to determine the direction of participants’ 800 

choices in case of uncertainty. We also examined whether the effect of semantic 801 

interference was confirmed by these two measures. We found a d-prime significantly 802 

above 0, which indicates that participants’ performance was not at random. The 803 

criterion showed that participants were conservative (i.e., greater tendency to respond 804 

“no” rather than “yes”) explaining the higher rate of correct rejections (i.e., accurate 805 

responses for the novel scene) than hits (i.e., accurate responses for old scenes). On 806 

both measures, we found a significant effect of semantic interference whereby the 807 

higher the SI, the smaller the d-prime and the higher the criterion (see Figure 1A and 808 

Table 1A for a visualisation and model coefficients).  809 
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---------------------------------------- 826 

Insert Figure 1B 827 

--------------------------------------- 828 

Appendix B 829 

Visualization of the miniatures of all scenes used in this study organized by semantic 830 

category. 831 

We refer the reader to Supplementary Material S1 for another version of this 832 

visualization with scenes displayed at a higher resolution. 833 
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Figure 1: 858 

 859 

Figure 1: Visualisation of the experimental design, procedure and example images used in this study.  860 
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Figure 2: 882 

 883 
Figure 2. Examples of attention maps with a high and low fixation entropy (left column, right column) when images 884 
were encoded at a high or a low level of semantic interference (top-row, bottom row). On each panel, we present the 885 
attention map as an heatmap (left) and as a 3D landscape to better visualize how Gaussians were fit to fixation position 886 
and their height scaled by fixation duration. In bracket, we report the fixation entropy obtained from each attention map.  887 
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Figure 3: 917 

 918 
 919 
Figure 3: Recognition accuracy. (A) Percentage recognition accuracy (y-axis) as a function of Semantic Interference (a continuous 920 
variable ranging from 2 to 120, z-scored) grouped by the Image Novelty (new scenes, green circles; old scenes, yellow triangles). 921 
Each individual point represents the average across participants and trials for that level of interference. Lines indicate the estimates of 922 
a linear model fit to the data and the shaded bands represent the 95% confidence intervals. We mark 50% recognition accuracy in the 923 
plot using a dotted line. (B) Percentage recognition accuracy (y-axis) as a function of the Interference Slope (x-axis), calculated by 924 
fitting a general linear model of recognition accuracy (binomial link) as a function of Semantic Interference at testing (z-scored) 925 
independently for each participant. Each point in the plot represents an individual participant for the two levels of Image Novelty 926 
(new scenes, green circles; old scene, yellow triangles). We mark with dotted lines the 50% recognition accuracy and when 927 
interference slope is 0, i.e., semantic interference has no effects on recognition accuracy.    928 
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Figure 4: 958 
 959 

 960 

Figure 4. Eye-movement measures during the encoding of images as a function of Semantic Interference (a continuous 961 
variable ranging from 1 to 60, z-scored). (A) Entropy of the distribution of fixations across the image, (B) Average 962 
fixation duration in milliseconds, (C) Normalized Scan-Path Saliency score and (D) Normalized Scan-Path for central 963 
bias. Each individual point represents the average of each dependent measure across participants for that level of 964 
interference, and distinguishing images that were later correctly recognised (blue circle, solid line) or not (red triangle, 965 
dashed line). The lines indicate the fit of linear regression models with 95% confidence interval represented as shaded 966 
bands. 967 
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Figure 1A: 982 
 983 

 984 
Figure 1A: D-prime (left-panel) and criterion (right-panel) as a function of semantic interference at testing (a continuous variable 985 
from 1 to 120). Each individual point is the average across participants for that level of interference. Lines indicate the estimates 986 
from a linear model fit to the data and the shaded bands represent the 95% confidence intervals 987 
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Figure 1B: 1010 

 1011 

Figure 1B. Miniatures of all scenes used in this study organised by semantic category.  1012 
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Table 1: 1015 

 1016 

  Response Accuracy 

Predictors Estimates SE z-value 

(Intercept) 1.47 0.11  13.97*** 

SI -0.08 0.03 -2.96** 

Image Novelty -1.51 0.04 -42.14*** 

SI × Image Novelty -0.09 0.04 -2.68** 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 1017 
Table 1. Generalised linear-mixed model of recognition accuracy (a binomial variable; 0 = Incorrect, 1 = Correct) as a 1018 
function: Semantic Interference (a continuous variable, 1-120, z-scored) and Image Novelty (Old, Novel; with Novel as 1019 
the reference level). Random intercepts included in the model are Participant (25) and the Scenes (1,488), which are 1020 
nested into their respective Categories (12). 1021 
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Table 2: 1058 

  Fixation Entropy Fixation Duration (ms) NSS (fixation/saliency) NSS (fixation/centre bias) 

Predictors Estimates SE t-value Estimates SE t-value Estimates SE t-value Estimates SE t-value 

(Intercept) 10.43 0.03 356.59*** 313.32 4.12 76.09*** 0.93 0.05 18.77*** 0.95 0.05 28.93*** 

SI -0.03 0.004 -6.49*** 2.43 0.7 3.54*** 0.01 0.007 2.08*  0.01 0.005 1.52 

Accuracy  0.04 0.004 10.73*** -3.86 0.73 -5.29*** -0.03 0.006   -5.05*** -0.05 0.005 -10.38*** 

SI:Accuracy -0.01 0.004    -2.11* -0.06 0.7    -0.08 0.008 0.006     1.4  0.01 0.005 0.94 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 1059 
Table 2. Linear-mixed model outputs for fixation entropy, average fixation duration, normalized scan-path saliency and 1060 
normalized scan-path for centre bias as a function: Semantic Interference (a continuous variable, 1-60, z-scored) and 1061 
recognition Accuracy scaled to reduce collinearity (Incorrect = -1, Correct = 1). Random intercepts included in the model 1062 
are Participant (23), and the Scenes (1,488), which are nested into their respective Categories (12).  1063 
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Table 1A: 1099 

  D-prime Criterion 

Predictors Estimates SE t-value Estimates SE t-value 

(Intercept) 1.4 0.11     12.44*** 1.01 0.14  7.05*** 

SI -0.21 0.04  -4.99*** 0.17 0.02 7.48*** 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 1100 

Table 1A: Linear-mixed model for the d-prime (left column) and criterion (right-column) as a function Semantic 1101 
Interference (a continuous variable, 1-120, z-scored). The random intercept included in the model is Participant (25). 1102 
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