17,344 research outputs found
Mechanical Competence and Bone Quality Develop During Skeletal Growth.
Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research
Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading
Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading) or lamellar bone (LBF loading). A set of normal (non-loaded) rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR). The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation
Dicynodont (Therapsida) bone histology: phylogenetic and physiological implications
The bone histology of humeri of a number of taxonomically well established and easily definable dicynodont genera is described and compared. The bone of Aulacephalodon, Cistecephalus, Dicynodon, Endothiodon, Lystrosaurus, Kannemeyeria and Oudenodon consists of alternating fibro-lamellar and lamellated bone tissue, while that of Diictodon consists only of fibro-lamellar tissue. The presence of fibro-lamellar bone in all the genera studied, indicates that the bone was deposited rapidly, but the occurrence of lamellated bone tissue suggests that all the genera except Diictodon, also had intermittent periods of slow growth. This is the first time that a comparative study of bone histology of different dicynodont genera has been attempted by using one particular bone element to standardise intergeneric comparisons
3D Raman mapping of the collagen fibril orientation in human osteonal lamellae
AbstractChemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues
Decision Tree Analysis as a Supplementary Tool to Enhance Histomorphological Differentiation when Distinguishing Human from Non-human Cranial Bone in both Burnt and Unburnt States: A feasibility study
This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralised, transverse sections of cranial bone, from all variables and specimen states were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study, strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional, but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions
Mechanical behavior of osteoporotic bone at sub-lamellar length scales
Osteoporosis is a disease known to promote bone fragility but the effect on the mechanical properties of bone material, which is independent of geometric effects, is particularly unclear. To address this problem, micro-beams of osteoporotic bone were prepared using focused ion beam (FIB) microscopy and mechanically tested in compression using an atomic force microscope (AFM) while observing using in situ electron microscopy. This experimental approach was shown to be effective at measuring the subtle changes in the mechanical properties of bone material required to evaluate the effects of osteoporosis. Osteoporotic bone material was found to have lower elastic modulus and increased strain to failure when compared to healthy bone material, while the strength of osteoporotic and healthy bone was similar. A mechanism is suggested based on these results and previous literature that indicates degradation of the organic material in osteoporosis bone is responsible for resultant mechanical properties
Investigations into the Ulnar Response to Mechanical Stimuli Activating Lamellar and Woven Bone Formation
Woven and lamellar bone formation can be stimulated using mechanical loading. Woven bone forms rapidly in response to damaging loading in a disorganized manner with low mineral density. In contrast, lamellar bone formation can be induced in the absence of damage, and is characterized by its slow, organized deposition and high density. In this dissertation, we first examined the molecular response to woven and lamellar bone formation using damaging and non-damaging dynamic loading protocols, respectively. We observed a significant increase in gene expression related to angiogenesis, cell proliferation and osteogenesis prior to woven bone formation, with significantly lower levels of expression associated with lamellar bone formation. To fully characterize the molecular responses of woven and lamellar bone we used a whole genome microarray. The micorarray results brought to light many inflammatory factors not previously investigated in our model, expanded previous findings about angiogenesis, and strengthened our understanding of the role of osteogenic pathways. Our investigations suggested that angiogenesis is required for successful woven bone formation. We used several angiogenic inhibitors, but were unable to prove the dependence of woven bone formation on angiogenesis. Finally, we sought to separate the effects of static and dynamic strains on bone formation. These findings demonstrate that in the absence dynamic strain, bone damage triggers a woven bone response that leads to a functional repair of whole-bone strength. Overall, the work done in this thesis has enhanced our understanding of bone formation. Future studies will expand on the microarray findings and clarify the role of angiogenesis in woven bone formation
Histomorphometric evaluation of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect
Objective: The aim of this study was to test specific stem cells that could enhance bone formation in combination
with specific scaffolds.
Methods: Dental Pulp Stem Cells (DPSCs) were seeded with Granular Deproteinized Bovine Bone (GDPB) or Beta-Tricalcium Phosphate (ß-TCP) in a rat model of calvarial "critical size" defect. DPSCs were isolated from permanent human teeth, obtained and characterized using specific stem cells markers (Nanog and Oct-4) by real time-PCR and immunofluorescence. Cells were differentiated for 10-15 days towards the osteoblastic phenotype with 100μM L-ascorbic acid, added every day in culture medium and 20 vol. percentage of FBS in α-MEM medium. Osteogenic commitment was evaluated with real time-PCR by measuring the expression of specific markers (osteonectin and runx2). When a sufficient cell number was obtained, DPSCs were trypsinized, washed in culture medium and seeded onto the GDPB and ß-TCP scaffold sat a density of 0.5-1×106 cells/scaffold. Two bilateral critical-size circular defects (5 mm diameter; 1 mm thickness) were created from the parietal bone of the 8 athymic T-cell deficient nude rats. One cranial defect for each rat was filled with the scaffold alone and the other defect with the scaffold seeded with stem cells. After 12 weeks post-surgery animals were euthanized and histomorphometric analysis was performed. Differences between groups were analyzed by one-way analysis of variance (ANOVA) followed by Fisher's Protected Least Significant Difference (PLSD) post-hoc test. A p-value <0.05 was considered statistically significant.
Results: GDPB group presented higher percentage of lamellar bone than that of GDPB/DPSC, Ăź-TCP alone had lower levels as compared to Ăź-TCP/DPSC. The addition of stem cells significantly increased woven bone formation in both scaffold-based implants, although still higher in GDPB based implants.
Conclusion: Our findings indicate that GDPB and Ăź-TCP used as scaffold to induce bone regeneration may benefit from adding DPSC to tissue-engineered constructs
Synthesis and characterization of novel scaffold for bone tissue engineering based on Whartons´s jelly
A composite is a material made of more than one component, and the bond between the components is on a scale larger than the atomic scale. The objective of the present study was to synthesize and perform the structural characterization and biological evaluation of a new biocomposite (BCO) based on a novel combination of an organic and an inorganic phase, for bone tissue engineering applications. The organic phase consisted of Wharton´s Jelly (WJ), which was obtained from embryonic tissue following a protocol developed by our laboratory. The inorganic phase consisted of bioceramic particles (BC), produced by sintering hydroxyapatite (HA) with β- tricalcium phosphate (β-TCP), and bioactive glass particles (BG). Each phase of the BCO was fully characterized by SEM, EDS, XRD and FTIR. Biocompatibility was evaluated in vivo in the tibiae of Wistar rats (n=40). Histological evaluation was performed at 0, 1, 7, 14, 30 and 60 days. XRD showed the phases corresponding to HA and β-TCP, whereas diffractogram of BG showed it to have an amorphous structure. EDS showed mainly Si and Na, Ca, P in BG, and Ca and P in HA and β-TCP. FTIR identified bonds between the organic and inorganic phases. From a mechanical viewpoint, the composite showed high flexural strength of 40.3±0.8MPa. The synthesized BCO exhibited adequate biocompatibility as shown by formation of lamellar type bone linked by BG and BC particles. The biomaterial presented here showed excellent mechanical and biocompatibility properties for its potential clinical use.Fil: Martinez, Cristian. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de IngenierĂa BiomĂ©dica; Argentina. Universidad de Buenos Aires. Facultad de OdontologĂa. Cátedra de AnatomĂa PatolĂłgica; Argentina. Universidad Nacional de Cuyo. Facultad de Odontologia; ArgentinaFil: Fernández, Carlos. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de IngenierĂa BiomĂ©dica; ArgentinaFil: Prado, Miguel Oscar. ComisiĂłn Nacional de EnergĂa AtĂłmica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Ozols, Andres. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de IngenierĂa BiomĂ©dica; ArgentinaFil: Olmedo, Daniel Gustavo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de OdontologĂa. Cátedra de AnatomĂa PatolĂłgica; Argentin
- …