20,956 research outputs found

    GABA\u3csub\u3eB\u3c/sub\u3e Receptor Attenuation of GABA\u3csub\u3eA\u3c/sub\u3e Currents in Neurons of the Mammalian Central Nervous System

    Get PDF
    Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron\u27s plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABAA receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABAA receptors had properties of α‐subunit containing receptors, with ~5% having ρ‐subunit properties. Only GABAA receptors with α‐subunit‐like properties were regulated by GABAB receptors. In mouse retinal ganglion cells, where only α‐subunit‐containing GABAA receptors are expressed, GABAB receptors suppressed GABAA receptor currents. This suppression was blocked by GABAB receptor antagonists, G‐protein inhibitors, and GABAB receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition

    Identification of male- and female-specific olfaction genes in antennae of the oriental fruit fly (Bactrocera dorsalis)

    Get PDF
    The oriental fruit fly (Bactrocera dorsalis) is a species of tephritid fruit fly, endemic to Southeast Asia but also introduced to many regions of the US, and it is one of the major pest species with a broad host range of cultivated and wild fruits. Although males of B. dorsalis respond strongly to methyl eugenol and this is used for monitoring and estimating populations, the molecular mechanism of the oriental fruit fly olfaction has not been elucidated yet. Therefore, in this project, using next generation sequencing technologies, we sequenced the transcriptome of the antennae of male and female adults of B. dorsalis. We identified a total of 20 candidate odorant binding proteins (OBPs), 5 candidate chemosensory proteins (CSPs), 35 candidate odorant receptors (ORs), 12 candidate ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins (SNMPs). The sex-specific expression of these genes was determined and a subset of 9 OR genes was further characterized by qPCR with male and female antenna, head, thorax, abdomen, leg and wing samples. In the male antennae, 595 genes showed a higher expression, while 128 genes demonstrated a higher expression in the female antennae. Interestingly, 2 ORs (BdorOR13 and BdorOR14) were highly and specifically expressed in the antennae of males, and 4 ORs (BdorOR13, BdorOR16, BdorOR18 and BdorOR35) clustered with DmOR677, suggesting pheromone reception. We believe this study with these antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs can play an important role in the detection of pheromones and general odorants, and so in turn our data improve our current understanding of insect olfaction at the molecular level and provide important information for disrupting the behavior of the oriental fruit fly using chemical communication methods

    GABA_{B} Receptors Regulate Chick Retinal Calcium Waves

    Get PDF
    Correlated spiking activity and associated Ca²⁺ waves in the developing retina are important in determining the connectivity of the visual system. Here, we show that GABA, via GABA_{B} receptors, regulates the temporal characteristics of Ca²⁺ waves occurring before synapse formation in the embryonic chick retina. Blocking ionotropic GABA receptors did no affect these Ca²⁺ transients. However, when these receptors were blocked, GABA abolished the transients, as did the GABA_{B} agonist baclofen. The action of baclofen was prevented by the GABA_{B} antagonistp-3-aminopropyl-p-diethoxymethyl phosphoric acid (CGP35348). CGP35348 alone increased the duration of the transients, showing that GABA_{B} receptors are tonically activated by endogenous GABA. Blocking the GABA transporter GAT-1 with 1-(4,4-diphenyl-3-butenyl)-3-piperidine carboxylic acid (SKF89976A) reduced the frequency of the transients. This reduction was prevented by CGP35348 and thus resulted from activation of GABA_{B} receptors by an increase in external [GABA]. The effect of GABA_{B} receptor activation persisted in the presence of activators and blockers of the cAMP–PKA pathway. Immunocytochemistry showed GABA_{B} receptors and GAT-1 transporters on ganglion and amacrine cells from the earliest times when Ca²⁺ waves occur (embryonic day 8). Patch-clamp recordings showed that K⁺ channels on ganglion cell layer neurons are not modulated by GABA_{B} receptors, whereas Ca²⁺ channels are; however, Ca²⁺ channel blockade with ω-conotoxin-GVIA or nimodipine did not prevent Ca²⁺ waves. Thus, the regulation of Ca²⁺ waves by GABA_{B} receptors occurs independently of N- and L-type Ca²⁺ channels and does not involve K⁺ channels of the ganglion cell layer. GABA_{B} receptors are likely to be of key importance in regulating retinal development

    Phosphocholine – an agonist of metabotropic but not of ionotropic functions of alpha9-containing nicotinic acetylcholine receptors

    Get PDF
    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1beta from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1beta is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1beta release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing alpha9 and alpha10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of alpha9 subunits or heteromeric receptors containing alpha9 and alpha10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions

    Diabetes changes the levels of ionotropic glutamate receptors in the rat retina

    Get PDF
    Purpose: Diabetic retinopathy (DR) is a leading cause of vision loss and blindness among adults between the age 20 to 74. Changes in ionotropic glutamate receptor subunit composition can affect retinal glutamatergic neurotransmission and, therefore, contribute to visual impairment. The purpose of this study was to investigate whether diabetes leads to changes in ionotropic glutamate receptor subunit expression at the protein and mRNA level in the rat retina. Methods: Changes in the expression of ionotropic glutamate receptor subunits were investigated at the mRNA and protein levels in retinas of streptozotocin (STZ)-induced diabetic and age-matched control rats. Animals were euthanized one, four and 12 weeks after the onset of diabetes. Retinal protein extracts were prepared, and the receptor subunit levels were assessed by western blotting. Transcript levels were assessed by real-time quantitative PCR. Results: Transcript levels of most ionotropic glutamate receptor subunits were not significantly changed in the retinas of diabetic rats, as compared to age-matched controls but protein levels of α-amino-3-hydroxyl-5-methyl-4-isoxazole- propionate (AMPA), kainate, and N-methyl-D-aspartic acid receptors (NMDA) receptors were found to be altered. Conclusions: The results provide evidence that diabetes affects the retinal content of ionotropic glutamate receptor subunits at the protein level. The possible implications of these changes on retinal physiology and visual impairment in DR are discusse

    Neuropharmacological targets for drug action in vestibular sensory pathways

    Get PDF
    The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransmitter and neuromodulator receptors in the vestibular sensory pathways. Identifying these receptor targets provides a strategic basis to use specific pharmacological tools to modify receptor function in the treatment and management of debilitating balance disorders. A review of the literature reveals that most investigations of the neuropharmacology of peripheral vestibular function have been performed using in vitro or ex vivo animal preparations rather than studying drug action on the normal intact vestibular system in situ. Such noninvasive approaches could aid the development of more accurate and effective intervention strategies for the treatment of dizziness and vertigo. The current review explores the major neuropharmacological targets for drug action in the vestibular system

    The stoichiometry of P2X2/6 receptor heteromers depends on relative subunit expression levels

    Get PDF
    Fast synaptic transmission involves the operation of ionotropic receptors, which are often composed of at least two types of subunit. We have developed a method, based on atomic force microscopy imaging to determine the stoichiometry and subunit arrangement within ionotropic receptors. We showed recently that the P2X(2) receptor for ATP is expressed as a trimer but that the P2X(6) subunit is unable to oligomerize. In this study we addressed the subunit stoichiometry of heteromers containing both P2X(2) and P2X(6) subunits. We transfected tsA 201 cells with both P2X(2) and P2X(6) subunits, bearing different epitope tags. We manipulated the transfection conditions so that either P2X(2) or P2X(6) was the predominant subunit expressed. By atomic force microscopy imaging of isolated receptors decorated with antiepitope antibodies, we demonstrate that when expression of the P2X(2) subunit predominates, the receptors contain primarily 2 x P2X(2) subunits and 1 x P2X(6) subunit. In contrast, when the P2X(6) subunit predominates, the subunit stoichiometry of the receptors is reversed. Our results show that the composition of P2X receptor heteromers is plastic and dependent on the relative subunit expression levels. We suggest that this property of receptor assembly might introduce an additional layer of subtlety into P2X receptor signaling

    The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade.

    Get PDF
    Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839-1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7-9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a "cocktail" of the GluR antagonists MK-801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15-min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P < 0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH-conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats

    ATP as a presynaptic modulator

    Get PDF
    © 2000 Elsevier Science Inc.There is considerable evidence that ATP acts as a fast transmitter or co-transmitter in autonomic and sensory nerves mostly through activation of ionotropic P2X receptors but also through metabotropic P2Y receptors. By analogy, the observations that ATP is released from stimulated central nervous system (CNS) nerve terminals and that responses to exogenously added ATP can be recorded in central neurons, lead to the proposal that ATP might also be a fast transmitter in the CNS. However, in spite of the robust expression of P2 receptor mRNA and binding to P2 receptors in the CNS, the demonstration of central purinergic transmission has mostly remained elusive. We now review evidence to suggest that ATP may also act presynaptically rather than solely postsynaptically in the nervous system.Fundação Ciência e Tecnologia and European nio
    corecore