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Abstract

 

There is considerable evidence that ATP acts as a fast transmitter or co-transmitter in autonomic
and sensory nerves mostly through activation of ionotropic P2X receptors but also through metabotro-
pic P2Y receptors. By analogy, the observations that ATP is released from stimulated central nervous
system (CNS) nerve terminals and that responses to exogenously added ATP can be recorded in central
neurons, lead to the proposal that ATP might also be a fast transmitter in the CNS. However, in spite of
the robust expression of P2 receptor mRNA and binding to P2 receptors in the CNS, the demonstra-
tion of central purinergic transmission has mostly remained elusive. We now review evidence to sug-
gest that ATP may also act presynaptically rather than solely postsynaptically in the nervous system.
© 2000 Elsevier Science Inc. All rights reserved.
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Introduction

 

In the central nervous system (CNS), the use of isolated nerve terminals allowed to con-
clude that adenine nucleotides are released upon stimulation of CNS nerve terminals [1]. It
was then shown by White [2,3] and by others [4,5] that ATP is the main adenine nucleotide
released from nerve terminals of different brain areas. Thus, the release of ATP upon electri-
cal stimulation of cortical [6], hippocampal [7,8], habenula [9] or hypothalamic preparations
[10] may be derived from nerve terminals, although other CNS structures such as glial cells
[11,12] and post-synaptic structures [13,14] may also contribute for ATP release. The exist-
ence of different cellular sources of ATP allows to hypothesise several possible roles for ex-
tracellular ATP in the CNS. The more likely role of released ATP may be to act as a neu-
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rotransmitter [15], by analogy with the transmitter role of ATP in the autonomic nervous
system [16]. Other possible roles ascribed to ATP have been proposed in neuron-glia and
glia-glia communication [e.g. 17,18] or as a trophic factor [19].

In this review, we will focus on the presynaptic role of ATP in the nervous system. We will
start by considering the problems found in defining and classifying the presynaptic effects of
ATP. We will then stress the mismatch between the abundant expression of ATP receptors (P2
receptors) and P2 receptor binding in the CNS with the general inability to demonstrate ATP-
mediated transmission in the CNS. Finally, we will review the studies supporting a presynap-
tic role of ATP modulating the release of several neurotransmitters.

 

Problems found in defining and classifying ATP-mediated presynaptic response

 

One of the major problems in defining an ATP-mediated response lays in the difficulty to
clearly exclude the involvement of adenosine in the presynaptic effects of ATP. This is partic-
ularly critical in studies performed in the CNS rather than in peripheral preparations, since
the expression of adenosine A

 

1

 

 receptor mRNA and of adenosine A

 

1

 

 receptors are generally
lower in peripheral tissues and more intense in most CNS regions [e.g. 20]. The activation of
inhibitory A

 

1

 

 receptors causes a profound inhibition of synaptic transmission and evoked
neurotransmitter release through inhibition of calcium influx [21], at least in the CNS [see
22,23]. The conversion of ATP into adenosine is mediated by an ecto-nucleotidase pathway,
which is present in most regions and cell types in the CNS [reviewed by 24]. The catalytic ef-
ficiency of the ecto-nucleotidase pathway is such that activation of adenosine A

 

1

 

 receptors
can occur within milliseconds after iontophoretical application of ATP [25]. Furthermore,
the channelling organisation between ecto-nucleotidases and adenosine A

 

1

 

 receptors, i.e. the
ability of ATP-derived adenosine to activate A

 

1

 

 receptors without equilibrating with the bio-
phase [26–28], makes it mandatory to appropriately exclude the involvement of adenosine A

 

1

 

receptors in any presynaptic inhibitory effect of ATP [reviewed in 29,30]. The existence of
this channelling process probably accounts for the proposed direct action of adenine nucle-
otides on adenosine A

 

1

 

 receptors (27–31). Facilitatory effects of ATP may also be con-
founded by facilitatory effects of adenosine via activation of adenosine A

 

2A

 

 receptors [36,37].
Thus, the feed-forward inhibition of ecto-5

 

9

 

-nucleotidase, the last enzyme of the ecto-
nucleotidase pathway [38,39], allows producing a burst-like formation of adenosine with the
consequent activation of facilitatory A

 

2A

 

 receptors [26,27,30]. Activation of adenosine A

 

2A

 

receptors facilitates calcium influx through voltage-sensitive calcium channels increasing
the evoked release of neurotransmitters [reviewed in 30]. In this respect it is striking that in the
studies reporting ATP-mediated facilitation of neurotransmitter release, the possible involve-
ment of facilitatory adenosine A

 

2A

 

 receptors is never considered. It is important to stress that
the use of P2 receptor antagonists does not allow to distinguish between P2- and adenosine
(P1) receptor-mediated responses, since P2 antagonists (suramin, PPADS, Evans blue, ciba-
cron blue 3GA) are all effective inhibitors of extracellular ATP catabolism [reviewed in 40].

ATP receptors are divided into two major classes: ionotropic P2X receptors (P2X

 

1–7

 

) and
metabotropic P2Y receptors (P2Y

 

1,2,4,6,11

 

) [40,41]. This classification was initially based on
pharmacological criteria [42] and later reinforced by receptor cloning and expression in het-
erologous systems [e.g. 43]. The involvement of P2Y and P2X receptors in ATP responses in
native tissues is only tentative upon analysis of membrane currents and/or disruption of G
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protein-mediated production of second messengers, since there are no selective agonists or
antagonists for the two major P2 receptor classes, although some agonists/antagonists may
be selective for some particular receptor subtype within a given class of receptors [reviewed
in 40]. Furthermore, the observation that P2X receptors are oligomeric structures [44,45], not
only homo-oligomeric structures, but also hetero-oligomeric structures [46,47], makes it
more difficult to relate the physio-pharmacological properties of native P2 receptors with het-
erologously expressed P2X or mixtures of P2X receptor subunits. The former criteria of clas-
sifying P2X-mediated responses by 

 

a

 

,

 

b

 

-methylene ATP induced-desensitisation of the re-
sponse has also proved not to be adequate for all homomeric P2X receptors [40] and even
less for heteromeric P2X receptors, which are still ill characterised. Direct measurement of
presynaptic currents is only possible in exceptionally large nerve terminals [e.g. 48], and
even if possible it is sometimes difficult to distinguish ionotropic responses from metabotro-
pic responses tightly coupled to regulation of ion channels [49,50]. Only very few studies
have provided convincing evidence, through the use of G protein modifiers, for the involve-
ment of P2Y receptors in modulating neurotransmitter release [51–54]. Finally, it should be
mentioned that a third class of purinergic receptors (P3 receptor) has been proposed to mod-
ulate transmitter release [55–57]. The distinctive characteristics of P3 receptors are to be
nearly equally sensitive to ATP and adenosine and to be antagonised by xanthines [55–58]. It
is not clear if this atypical P1/P2 pharmacology is due to a distinct molecular entity [see 59]
or might result from the high activity of ecto-nucleotidases [25] and/or the channelling or-
ganisation of ecto-nucleotidases and A

 

1

 

 receptors [26–28].
These considerations highlight the great care required to critically evaluate the conclu-

sions on the involvement of P2X or P2Y receptors reached in several studies of presynaptic
effects of ATP, and even in the claims of any P2 receptor involvement altogether.

 

ATP as a neurotransmitter in the CNS

 

The proposal of a transmitter role for ATP in the sensory system was first stated by Holton
and Holton [60], but the acceptance of a transmitter role of ATP in the autonomic nervous
system mostly stems from the persistent work of Geoffrey Burnstock since the 60’ [16]. A
co-transmitter role for ATP in sympathetic nerves, in sensory neurons, in some parasympa-
thetic nerves and in non-adrenergic-non-cholinergic nerves is now well documented and has
been the matter of several reviews [e.g. 61,62].

The acceptance of a transmitter role of ATP in the autonomic nervous system lead to the
search of ATP-mediated responses in central neurons. It was first observed by Phillis’ group
[63] that ATP transiently facilitates cortical excitability, an effect not mimicked by other pu-
rines, but this action was attributed to the ability of ATP to chelate extracellular calcium. It
was only nearly 10 years later that the first well documented depolarising effects of ATP in
the CNS were reported in a subpopulation of dorsal horn neurons [64] and in caudal trigeminal
nucleus [65]. Effects of exogenously added ATP were detected on other central neurons and
have been tentatively classified as P2Y receptor-mediated, triggering intracellular calcium accu-
mulation or modulating K

 

1

 

 channels or P2X receptor-mediated depolarising currents [reviewed
in 40]. Not only neurons, but also astrocytes and microglial cells respond to ATP [see 40].

These ATP-mediated modifications of neuronal metabolism and excitability prompted the
search for P2 receptors in the CNS. 

 

In situ

 

 hybridisation and northern blot studies indicate
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the expression in the CNS of P2X

 

1

 

 [66,67], P2X

 

2

 

 [67], and P2X

 

4

 

 and P2X

 

6

 

 receptor mRNA
[67–71], which are the most abundantly expressed P2 receptor subunit mRNAs [67,68]. The
expression of P2X

 

3

 

 receptor mRNA is restricted to dorsal root ganglia [72] and not detectable
in other brain regions [67], whereas the P2X

 

5

 

 mRNA expression was only found in mesen-
cephalic nucleus of the trigeminal nerve [67]. The expression of P2Y

 

1

 

 [73], P2Y

 

2

 

 [74,75] and
the R5 transcript of P2Y

 

4

 

 [76], but not of P2Y

 

6

 

 receptor mRNA [77,78], has also been de-
tected in the CNS.

Comparatively fewer studies have investigated the location of P2 receptor proteins. Immuno-
cytochemical studies show a widespread distribution of P2X

 

4

 

 [79] and P2X

 

2

 

 receptors in the
brain [80,81], located both pre- and post-synaptically [82]. P2X

 

1

 

 receptors have a more re-
stricted location, being present in the perikarya of a distinct subpopulation of rat brainstem
neurons [83] and in the cerebellum [84], and P2X

 

3

 

 receptors appear only in central terminals
of sensory neurons [85] and in the nucleus tractus solitarius [86]. Autoradiographic and
membrane binding studies with [

 

3

 

H]

 

a

 

,

 

b

 

-methylene ATP, which mostly labels P2X

 

1

 

 and P2X

 

3

 

receptors, reveal abundant high affinity labelling in different CNS areas [87–89]. Similar
studies with thio-labelled ATP analogues ([

 

35

 

S]deoxyATP

 

a

 

S, [

 

35

 

S]ATP

 

a

 

S and [

 

35

 

S]ATP

 

g

 

S)
have claimed to label metabotropic P2Y receptors in the CNS [76,88,90,91].

The observation of evoked ATP release from CNS nerve terminals, the possibility of re-
cording fast responses to exogenously added ATP, the molecular evidences for the strong ex-
pression of P2 receptor mRNA in CNS neurons and the robust labelling compatible with P2
receptor binding in the CNS lead to the acceptance of ATP as a fast neurotransmitter in the
CNS [15] by analogy with the transmitter role of ATP in the autonomic system. However, it
has been difficult to demonstrate the existence of ATP-mediated transmission in the CNS.
With the exception of the medial habenula where a small proportion of the synapses use ATP
as a fast neurotransmitter [92] and the suggestions for a transmitter role of ATP in the dorsal
horn [93,94], in the locus coeruleus [95] and in the hippocampal CA1 area [96], most at-
tempts to demonstrate ATP transmission in CNS synapses were unfruitful. Thus, there is cur-
rently a marked mismatch between the robust ATP release, mRNA expression and P2 recep-
tor density in the CNS with the lack of attributable neuroactive roles for extracellular ATP in
the CNS.

The widespread use of molecular genetics out of a well-defined physiological context has
previously lead to situations in which our knowledge on the likely physiological role of a
given neuroactive substance lags well behind our knowledge on the molecular characteristics
of the receptors where this neuroactive substance acts. In the ionotropic receptor arena, it was
wisely considered that, since ionotropic receptors are designed to mediate fast signals, they
should be involved in fast transmission and there were no reasons to seek other possible
roles. Thus, the knowledge of the molecular characteristics of ionotropic receptors and the
study of their location would be enough to predict where and when a given ionotropic recep-
tor would be active. But this strategy has previously failed in the case of two ionotropic
receptor systems, the nicotinic acetylcholine receptor and the kainate subtype of glutamate re-
ceptors. In these two systems, like for the ATP/P2 receptor, there is a clear paradox between
the abundant expression of receptor subunit mRNA and robust binding by selective ligands in
the CNS and the inability to clearly identify transmission mediated by these receptors
[97,98]. This lead to the proposal that, instead of being involved in fast neurotransmission,
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kainate and nicotinic receptors would mainly behave as neuromodulatory systems [97,99].
Thus, a presynaptic locus of action of kainate and nicotinic receptors as modulators of neu-
rotransmitter release [99,100] would reconcile a heavy expression and receptor density with
their scarce involvement in fast transmission. We will now review the evidences supporting a
role for P2 receptors in the modulation of neurotransmitter release, a role which would con-
tribute to explain the contradiction between the great expression and P2 receptor density and
the difficulty of ascribing a clear role for ATP as a fast transmitter in the CNS [15].

 

Modulation of neurotransmitter release by ATP in the periphery

Acetylcholine at the neuromuscular junction

 

The observations that cholinergic vesicles store ATP together with acetylcholine [4,101]
and that ATP is released with acetylcholine at neuromuscular synapses [23,102,103] make
ATP a likely transmitter or modulator in these cholinergic synapses. Initial studies in adult
animals showed that ATP presynaptically inhibits the quantal content of evoked endplate po-
tentials recorded from adult frog [104] and rat skeletal muscle fibres [105]. However, differ-
ent groups concluded that these effects of ATP appear to be mediated by activation of inhibi-
tory adenosine receptors upon extracellular catabolism of ATP into adenosine [23,106–109],
with the exception of two reports, one suggesting a possible involvement of presynaptic P2
receptors [109] and the other describing unexpected results to justify a presynaptic inhibition
mediated by ATP as such [110]. Changing the experimental conditions from low (0.2 Hz) fre-
quency stimulation (to detect transmitter release via endplate potential recordings) into
higher (

 

$

 

 5 Hz) frequency stimulation (to allow quantification of released acetylcholine as
tritiated choline), adenine nucleotides also revealed to possess facilitatory effects on acetyl-
choline release [111–113] (Table 1). This ATP-mediated facilitation of acetylcholine release
is readily observed at developing neuromuscular junctions [111,112]. At mature neuromus-
cular junctions, 

 

b

 

,

 

g

 

-imido ATP, the ATP analogue less prone to extracellular catabolism facil-
itated acetylcholine release through P2 receptor activation but a tonic role of P2 receptor acti-
vation could not be revealed [113]. Instead, endogenous ATP, released in higher amounts at
higher frequencies of stimulation (

 

$

 

 5 Hz) is hydrolysed by ecto-nucleotidases leading to the
preferential activation of facilitatory adenosine A

 

2A

 

 receptors [27,114]. Thus, it appears that
the main inhibitory and facilitatory effects of released ATP at the neuromuscular junction are
mediated by adenosine A

 

1

 

 and A

 

2A

 

 receptors, according to the frequency of nerve stimula-
tion. Presynaptic facilitatory and inhibitory effects of ATP have also been reported but their
relative importance and physiological significance is not yet understood.

 

Acetylcholine at autonomic nerves

 

The release of ATP has been reported to occur at different cholinergic autonomic nerve
terminals [115], the contracting smooth muscle also contributing for extracellular ATP accu-
mulation [116]. Several studies (Table 1) showed that ATP on its own inhibited acetylcholine
release [117–120]. The type of receptor(s) involved in ATP-induced inhibition of acetylcho-
line release has not been defined, with claims of atypical adenosine A

 

1

 

 receptors [117–118],
P3 receptors [120] or not-defined P2 receptors [119]. ATP can also facilitate evoked acetyl-
choline release from autonomic nerve endings [121]. This ATP-mediated facilitation of ace-
tylcholine release was proposed to be mediated by P2X-like receptors [121], which is sup-
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ported by the observation that P2X receptor activation triggers an inward current in
cholinergic nerve terminals of chicken ciliary ganglia [48]. In conclusion, ATP appears to be
able to induce both inhibition and facilitation of acetylcholine release from smooth muscle
nerve terminals, although only one of the first papers on ATP modulation of acetylcholine re-
lease has reported biphasic effects of an ATP analogue on the modulation of acetylcholine
release from autonomic nerve endings [118].

 

Noradrenaline

 

Since a co-transmitter role for ATP was first recognised in the sympathetic system and
there is a strong 

 

a

 

2

 

 receptor-mediated automodulatory system, it was reasoned that P2 recep-
tors might also fulfil an automodulatory role in noradrenergic nerve terminals [123]. Initial

 

Table 1

Preparation Measured effect ATP effect
Proposed 
receptor Reference

 

Acetylcholine

 

frog NMJ epp inhibition P1 104,105,106
frog NMJ epp inhibition P2 110
rat NMJ epp inhibition P1 104,105
rat NMJ NT quantification facilitation P2 113
mouse NMJ epp/mepp inhibition P2 109
xenopus NMJ sepp/mepp facilitation P2 111,112
frog ganglion epsc inhibition P2 atypical 119
chicken ganglion presynaptic current facilitation P2X 48
guinea pig ileum NT quantification inhibition P2 117,118
guinea pig ileum NT quantification facilitation P2X 121

 

Noradrenaline

 

rat vas deferens NT quantification inhibition P3 57
mouse vas deferens NT quantification inhibition P2Y 125
mouse vas deferens Ca transients inhibition P2Y 135
rat/mouse vas deferens NT quantification inhibition P2Y 125,128
rat tail artery NT quantification inhibition P2Y 129
rat tail artery NT quantification inhibition P3 55,56
rabbit ear artery epj facilitation P2 136,137
rabbit saphenous artery NT quantification facilitation P3 131
guinea pig saphenous epj inhibition P2 138
rat atria NT quantification inhibition P2 54
rat kidney NT quantification inhibition P2 139
rat pancreas NT quantification inhibition P2 140
guinea pig ileum NT quantification facilitation P2X 121
rat iris NT quantification inhibition P2Y 127
bovine chromaffin cells NT quantification inhibition P2 141

membrane capacitance inhibition P2Y 53
chick glanglia neurons NT quantification facilitation P2Y 132,133
rat ganglia neurons NT quantification facilitation/inhibition P2X/P2Y 52

Presynaptic effects of ATP on neurotransmitter release in the peripheral nervous system. epj, excitatory junc-
tion potential; epp, endplate potential; epsc, excitatory postsynaptic current; mepp, mini epp; NMJ, neuromuscu-
lar junction; sepp, spontaneous epp; NT, neurotransmitter.
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studies showed that ATP [124] and ATP analogues inhibit the evoked release of noradrena-
line, but it was not clear if this action involves the activation of either P2Y-like receptors
[125–129], adenosine A

 

1

 

 receptors [130] or a proposed mixed ATP/adenosine receptor,
named P3 receptor [55–57,131]. Other studies (Table 1) showed that activation of P2-like re-
ceptors facilitates evoked release of noradrenaline, and this action was proposed to involve
either ‘atypical’ P2Y-like receptors [132,133] or P2X receptors [121]. The proposal of P2Y
receptor involvement was mostly based on the observation that the effects were mimicked by
2-methyl-thio-ATP, which was considered a selective P2Y receptor agonist [42], before the
realisation that its catabolism by ecto-nucleotidases limits its potency as a P2X receptor ago-
nist [reviewed in 134]. Also, the proposal of the involvement of P2X receptors relied on the
effect of 

 

a

 

,

 

b

 

-methylene ATP, the only tool thought to be selective for P2X receptors [42]. A
recent study in the rat cervical ganglia showed, using G protein modifiers and direct measure-
ment of intracellular free calcium concentration, that the presynaptic effect of ATP may be
biphasic, acting via inhibitory P2Y-like receptors and via facilitatory P2X-like receptors [52],
thus reconciling the different conclusions reached in previous studies in other sympathetic
preparations (Table 1).

 

ATP as a presynaptic modulator in the CNS

Acetylcholine

 

The first study that distinguished between ATP- and adenosine-mediated inhibition of
evoked acetylcholine release in the CNS was performed in rat cerebral cortical synaptosomes
[142] (Table 2), confirming a previous suggestion that ATP might inhibit acetylcholine re-
lease from cortical slices [143]. An adequate presynaptic model was used (i.e. synaptosomes)
[see 144], ATP analogues inhibited evoked acetylcholine release more potently than adeno-
sine itself, and the effect of ATP was not prevented either upon blocking the extracellular for-
mation of ATP-derived adenosine or upon removal of extracellular adenosine [142]. The
same study showed (Table 2) that, in contrast to what occurs in cholinergic cortical nerve ter-
minals, the ATP-mediated inhibition of acetylcholine release from rat hippocampal nerve
terminals is mediated by adenosine [142]. However, the type of receptor(s) involved in the
effect of ATP on acetylcholine release from rat cerebral cortical synaptosomes remains to be
defined [142].

 

Noradrenaline

 

As observed for the modulation of noradrenaline release from peripheral preparations,
ATP might also modulate in a biphasic manner the release of noradrenaline in the CNS
(Table 2). Thus, it has been reported that P2Y-like receptor activation inhibits noradrenaline
release from rat cerebral cortical [126] and hippocampal slices [145], and there is a hint that
P2X receptor activation may facilitate noradrenaline release in the rabbit cerebral cortex [130].

 

Dopamine

 

The P2 receptor-control of dopamine release has been investigated in the striatum (Table
2). Using a microdialysis approach, it was concluded that ATP induces dopamine release
[146,147] but it was not determined if this effect of ATP is on the nerve terminals. An oppo-
site effect of ATP was observed in rat neostriatal slices where P2 receptor activation inhibits
dopamine release [148].
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Serotonin

 

It was reported that activation of P2 receptors inhibits serotonin release from rat brain
cortical slices [149]. As for the control of the release of other neurotransmitters, the effect of
ATP may be biphasic (Table 2), since a likely presynaptic P2X receptor-mediated facilita-
tion of serotonin release was observed in the rat hippocampus [150]. However, these studies
in CNS preparations rely on a pharmacological rather than biochemical characterisation
which, given the unavailability of selective tools to distinguish between P2Y and P2X
receptors [40], only allow tentative conclusions. Also, the use of slices makes it difficult
to distinguish between direct presynaptic P2 receptor modulation 

 

versus

 

 indirect effects, a

 

Table 2

Brain preparation Measured effect ATP effect
Proposed
receptor Reference

 

Acetylcholine

 

Rat cortex NT quantification inhibition P2 142
Rat hippocampus NT quantification inhibition P1 142

 

Noradrenaline

 

Rabbit cortex NT quantification inhibition P1 130
Rat cortex NT quantification inhibition P2Y 126
Rat hippocampus NT quantification inhibition P2 145

 

Dopamine

 

Rat striatum NT quantification facilitation P2 146,147
Rat striatum NT quantification inhibition P2 148

 

Serotonin

 

Rat cortex NT quantification inhibition P2 149
Rat hippocampus NT quantification facilitation P2X 150

 

Peptidergic

 

Rat hypophysis Ca/peptide quantification facilitation P2X

 

2

 

152
Rat hypophysis peptide quantification inhibition P2 153

 

Glutamate

 

Rat hippocampus epsp inhibition P1 27,28,156
Rat hippocampus epsp inhibition P2Y/P3 157
Rat hippocampus epsp facilitation ecto-protein kinase 158
Rat hippocampus Ca/NT quantification inhibition P2Y 163
Rat hippocampus epsc inhibition P2 162
Rat cortical slices NT quantification inhibition P2 164
Rat spinal cord epsc/mepsc facilitation P2X 159,160
Brain stem mepsc/NT quantification facilitation P2X 161

 

GABA

 

Rat hippocampus ipsc facilitation P2 162
Rat hippocampus NT quantification no effect — 165
Rat spinal cord mipsc facilitation P2X

 

2

 

166

 

Glycine
Rat spinal cord mipsc facilitation P2X2 166,167

Presynaptic effects of ATP on neurotransmitter release in the CNS. epsc, excitatory postsynaptic current; epsp,
excitatory postsynaptic potentials; ipsc, inhibitory postsynaptic current; mepsc, mini epsc; mipsc, mini ipsc.
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problem solved when using an isolated presynaptic model, i.e. synaptosomes [144] or neu-
rite preparations [53,151].

Vasopressin
In the rat neurohypophysial terminals, the ATP-mediated modulation of the release of va-

sopressin was also studied by two different groups with opposite conclusions being reached
(Table 2): in one of the studies a P2X-like-mediated facilitation was reported [152], whereas
in the other a P2 receptor-mediated inhibition was observed [153].

Glutamate
The study of the effects of ATP on glutamatergic synaptic transmission has been hampered

by the rapid metabolisation of ATP into adenosine [25,27,28], since adenosine causes an in-
tense inhibition of excitatory synaptic transmission in different CNS areas [reviewed in 154].
This lead to the conclusion that if ATP has any effect on glutamatergic synaptic transmission,
it is mediated by adenosine and should not involve P2 receptor activation [27,28,155,156; but
see 157]. The analysis of the effects of ATP were further complicated by the proposal that the
effects of ATP as such on plasticity-like phenomena in glutamatergic transmission were due
to ATP-driven ecto-protein kinase activity [158]. However, more recent studies have convinc-
ingly demonstrated a P2X-like-mediated increase of glutamate release (Table 2), measured as
an increase in frequency of mini excitatory postsynaptic currents in primary sensory afferents
in the spinal cord [159,160] and in the brain stem [161]. Other electrophysiological studies in
cultured rat hippocampal neurons have suggested that ATP may presynaptically inhibit
glutamate release [162], a conclusion reinforced by the ability of ATP to inhibit the evoked
release of glutamate in rat hippocampal neurons [163] and in cortical slices [164]. As was
noted for modulation of noradrenaline and acetylcholine release from peripheral preparations,
it appears that ATP may also biphasically modulate glutamate release in the CNS (Table 2).

GABA
The different effects of ATP reported in neurochemical or electrophysiological studies per-

formed in slices or neuronal cultures could be due to opposite or compensating effects of
ATP on glutamatergic and GABAergic systems. In rat cultured hippocampal neurons, ATP
and ATP analogues enhance GABAergic transmission (Table 2), but not the effects of ionto-
phoretically applied GABA, in a PPADS-sensitive manner [162]. However, the observation
that ATP and ATP analogues failed to modify GABA release from superfused hippocampal
synaptosomes [165], raises the question of whether the ATP-induced increase in GABAergic
transmission reported in hippocampal neurons might be secondary to a decrease in ATP-evoked
glutamate release [162]. In a neuronal culture from the spinal cord, the release of GABA, as-
sessed by mini inhibitory postsynaptic currents or evoked inhibitory postsynaptic currents, is
facilitated by ATP in 22% of the synapses, an effect proposed to be mediated by P2X2 receptors
[166]. The same study also reports that in 9% of glycinergic synapses in this spinal cord prepa-
ration were also under P2 receptor-mediated facilitatory influence [166] (Table 2).

Intracellular calcium
Since glutamatergic and GABAergic terminals account for nearly 90% of CNS nerve ter-

minals, the monitorization of the effects of ATP on calcium influx in CNS nerve terminals
should mainly reflect effects of ATP on GABAergic and/or glutamatergic nerve terminals.
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Several studies have reported that ATP increases intracellular free calcium concentration
[152,168]. This effect strictly depends on extracellular calcium and, thus, was proposed to be
mediated by a P2X-like receptor.

Concluding remarks

It is now possible to set-up a general working hypothesis in which ATP may have biphasic
presynaptic neuromodulatory effects: an inhibitory effect through activation of P2Y receptors
and a facilitatory effect via activation of P2X receptors (Figure 1). This idea of ATP exerting
a main role as a presynaptic neuromodulator still requires further evidences in the CNS. This
demands the use of appropriate models to study presynaptic function, like the synaptosomes
[144], although modulation through action potential propagation cannot be recorded, or neu-
rite preparations [52,151], which cannot ascribe an effect to nerve terminals. It will also be
necessary to exclude adenosine (A1, A2A and the still ill-defined A3) receptor involvement
[29], and to use biochemical analysis to support a presynaptic localisation of P2 receptors
using radioligands [e.g. 88] and immunological approaches [79–86], mainly using electron
microscopy immunocytochemistry [82,84,86]. It will also be important to test whether the
presynaptic role of ATP is indeed mediated by P2-receptor activation, or whether ATP is
mostly acting as a phosphate donor for ecto-protein kinase modification of presynaptic pro-
teins involved in the control of neurotransmitter release [see 158] (Figure 1).

The existence of an ATP-mediated auto-modulatory system allows ATP to join the signal-
ling pattern of most neurotransmitters, such as glutamate, GABA, acetylcholine, noradrenaline
or serotonin. These neurotransmitters possess both post-synaptic and pre-synaptic receptors
[reviewed in 169]. It is interesting that purines display a double presynaptic neuromodulatory
system: one mediated by ATP and another by adenosine. ATP is stored in vesicles and can be
released by exocytosis, whereas adenosine is neither stored in vesicles nor released as a clas-
sical neurotransmitter, i.e. via exocytosis. So adenosine is mainly a neuromodulator whereas

Fig. 1. Purinergic (ATP and adenosine) presynaptic modulation of neurotransmitter release.



R.A. Cunha, J.A. Ribeiro / Life Sciences 68 (2000) 119–137 129

ATP can also behave as a neurotransmitter, in conformity with the initial idea of Burnstock
[16]. One may consider that these two different purinergic systems work in different time
scales and are eventually not functionally interconnected. Thus, the high catalytic efficiency
of extracellular ATP catabolism [24], would rapidly shut down ATP signalling, generating,
upon further time-delayed catabolism, another signalling molecule, adenosine. An alternative
hypothesis is that the activity of the two purinergic systems may be highly inter-dependent,
and the ecto-nucleotidase cascade would assume a key role in balancing the action of these
two neuromodulatory systems. This possibility has previously been addressed [26,30] and is
further supported by the marked extracellular gradient of adenosine concentration at the syn-
aptic level [37] and by the intense control of presynaptic ATP receptors by adenosine recep-
tor activation (Diaz-Hernandez, Pereira, Pintor, Cunha and Miras-Portugal, unpublished ob-
servations). The critical role of ecto-nucleotidases in determining the relative importance of
the two purinergic neuromodulatory systems is emphasised by the observation that different
enzymatic activities are found in different preparations, with conversions of ATP into adeno-
sine ranging from milliseconds to minutes [cf. 25, 170] and that ecto-nucleotidases are re-
leased upon stimulation of preparations, such as vas deferens [171,172] or vascular endothe-
lial cells [173]. However, we were unable to detect the release of ecto-nucleotidase activities
either from hippocampal slices or synaptosomes [28,174] and to date no molecular identified
ecto-ATPase activity expressed in cell systems has been reported to be released (Zimmer-
mann, personal communication). Another possible reason for the existence of two different
purinergic neuromodulatory systems may reside in their different role, ATP being an auto-
modulatory system (i.e. acting on the nerve terminal from where it is released), whereas
adenosine would mostly fulfil an hetero-modulatory role (i.e. acting also in neighbouring
neurons from where it is generated). It is hoped that as awareness may growth on the presyn-
aptic role of ATP and on the strict need to distinguish ATP from adenosine-mediated presyn-
aptic effects, it will be possible to start unrevealing the relative roles and relation of these two
presynaptic purinergic neuromodulatory systems.
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