11,913 research outputs found

    Robust Control Theory Based Performance Investigation of an Inverted Pendulum System using Simulink

    Get PDF
    In this paper, the performance of inverted pendulum have been Investigated using robust control theory. The robust controllers used in this paper are H∞ Loop Shaping Design Using Glover McFarlane Method and mixed H∞ Loop Shaping Controllers. The mathematical model of Inverted Pendulum, a DC motor, Cart and Cart driving mechanism have been done successfully. Comparison of an inverted pendulum with H∞ Loop Shaping Design Using Glover McFarlane Method and H∞ Loop Shaping Controllers for a control target deviation of an angle from vertical of the inverted pendulum using two input signals (step and impulse). The simulation result shows that the inverted pendulum with mixed H∞ Loop Shaping Controller to have a small rise time, settling time and percentage overshoot in the step response and having a good response in the impulse response too. Finally the inverted pendulum with mixed H∞ Loop Shaping Controller shows the best performance in the overall simulation result

    Application Of Inverted Pendulum in Laplace Transformation of Mathematics Physics

    Get PDF
    The Laplace transform is a technique used to convert differential equations into algebra, it is often used for the analysis of dynamic systems and inverted pendulum systems. An inverted pendulum is a mechanism that moves objects from one place to another and shows the function of its activity while walking. This system is widely used in various fields, for example in the fields of robotics, industry, technology and organics. In an inverted pendulum there is an inverted pendulum dynamic system with a reading and driving force. The type of research used is pure research with quantitative methods, the aim is to develop science that aims to find new theories and develop existing theories in natural science. The results of the study show that using the Laplace transform can make it easier to find solutions regarding the inverted pendulum system for a variety of conditions, both in the initial conditions and when given an additional force or load, so it is concluded the application of the Laplace transform is useful for understanding how an inverted pendulum system will react to various forces, loads and initial conditions, which can be used to predict how the system will operate in the real world.The Laplace transform is a technique used to convert differential equations into algebra, it is often used for the analysis of dynamic systems and inverted pendulum systems. An inverted pendulum is a mechanism that moves objects from one place to another and shows the function of its activity while walking. This system is widely used in various fields, for example in the fields of robotics, industry, technology and organics. In an inverted pendulum there is an inverted pendulum dynamic system with a reading and driving force. The results of the study show that using the Laplace transform can make it easier to find solutions regarding the inverted pendulum system for a variety of conditions, both in the initial conditions and when given an additional force or load. The application of the Laplace transform is useful for understanding how an inverted pendulum system will react to various forces, loads and initial conditions, which can be used to predict how the system will operate in the real worl

    Intermittent predictive control of an inverted pendulum

    Get PDF
    Intermittent predictive pole-placement control is successfully applied to the constrained-state control of a prestabilised experimental inverted pendulum

    Using real interpolation method for adaptive identification of nonlinear inverted pendulum system

    Get PDF
    In this paper, we investigate the inverted pendulum system by using real interpolation method (RIM) algorithm. In the first stage, the mathematical model of the inverted pendulum system and the RIM algorithm are presented. After that, the identification of the inverted pendulum system by using the RIM algorithm is proposed. Finally, the comparison of the linear analytical model, RIM model, and nonlinear model is carried out. From the results, it is found that the inverted pendulum system by using RIM algorithm has simplicity, low computer source requirement, high accuracy and adaptiveness in the advantages

    The Modeling and Stability Analysis of Humans Balancing an Inverted Pendulum

    Get PDF
    The control of an inverted pendulum is a classical problem in dynamics and control theory. Without active control, the inverted pendulum by itself is inherently unstable, thus serving as an ideal platform for control algorithms design and testing. This study utilizes an inverted pendulum setup to investigate the characteristics of manual control in executing a single-axial compensatory task. An inverted pendulum with sliding base on a single-axial rail was built for this purpose. Human subjects were asked to stabilize the pendulum by sliding the base on the rail. To mathematically quantify the characteristics of human manual control, a quasi-linear lead-lag with time delay model was chosen for the human operator. The mathematical model for the inverted pendulum was derived using the LaGrange\u27s method. Using these two models, a simulation of the closed-loop human-inverted pendulum system was built in Matlab/Simulink. The stability conditions of the closed-loop system were derived by applying the Routh-Hurwitz stability criterion to the system. This completes the modeling and simulation of the process of humans balancing an inverted pendulum. The Matlab simulation serves as a validation tool in this study. The data of the human subject\u27s input and the inverted pendulum\u27s output generated from the simulation were used to estimate the parameters assumed in the mathematical model for the human operator. The estimation algorithm employed is a Kalman filter. Results show that the estimations do converge very quickly to the parameters set in the simulated human controller and can stabilize the inverted pendulum when fed back into the simulation. This verifies the plausibility of the mathematical structure for the human operator and the validity of the estimator. Experimentally, the pendulum\u27s angle deflections from the vertical position and the human subjects\u27 hand positions were recorded using a motion capture system called VICON. Using the same estimator developed for processing the simulation data, the collected experimental data were processed to estimate the parameters in the model for the human operator when the human operator actually carries out the task of balancing the inverted pendulum. The estimated parameters from the experimental data were then fed into the simulation model. The characteristics of the human operator were analyzed using the estimated parameters

    Analyzing and Designing Control System for an Inverted Pendulum on a Cart

    Get PDF
    It is a collection of MATLAB functions and scripts, and SIMULINK models, useful for analyzing Inverted Pendulum System and designing Control System for it. Automatic control is a growing field of study in the field of Mechanical Engineering. This covers the proportional, integral and derivative (PID). The principal reason for its popularity is its nonlinear and unstable control. The reports begin with an outline of research into inverted pendulum design system and along with mathematical model formation. This will present introduction and review of the system. Here one dimensional inverted pendulum is analyzed for simulating in MATLAB environment. Control of Inverted Pendulum is a Control Engineering project based on the flight simulation of rocket or missile during the initial stages of flight. The aim of this study is to stabilize the Inverted Pendulum such that the position of the carriage on the track is controlled quickly and accurately so that the pendulum is always erected in its inverted position during such movements
    • …
    corecore