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ABSTRACT
The Modeling and Stability Analysis of Humans Balancing an

Inverted Pendulum

Yaohui Ding

The control of an inverted pendulum is a classical problem in dynamics and control theory. Without
active control, the inverted pendulum by itself is inherently unstable, thus serving as an ideal platform
for control algorithms design and testing. This study utilizes an inverted pendulum setup to investigate
the characteristics of human manual control in executing a single-axial compensatory task. An inverted
pendulum with sliding base on a single-axial rail was built for this purpose. Human subjects were asked
to stabilize the pendulum by sliding the base on the rail. To mathematically quantify the characteristics
of human manual control, a quasi-linear lead-lag with time delay model was chosen for the human
operator. The mathematical model for the inverted pendulum was derived using the LaGrange’s method.
Using these two models, a simulation of the closed-loop human-inverted pendulum system was built in
Matlab/Simulink. The stability conditions of the closed-loop system were derived by applying the Routh-
Hurwitz stability criterion to the system. This completes the modeling and simulation of the process of
humans balancing an inverted pendulum. The Matlab simulation serves as a validation tool in this study.
The data of the human subject’s input and the inverted pendulum’s output generated from the
simulation were used to estimate the parameters assumed in the mathematical model for the human
operator. The estimation algorithm employed is a Kalman filter. Results show that the estimations do
converge very quickly to the parameters set in the simulated human controller and can stabilize the
inverted pendulum when fed back into the simulation. This verifies the plausibility of the mathematical
structure for the human operator and the validity of the estimator. Experimentally, the pendulum’s
angle deflections from the vertical position and the human subjects’ hand positions were recorded using
a motion capture system called VICON. Using the same estimator developed for processing the
simulation data, the collected experimental data were processed to estimate the parameters in the
model for the human operator when the human operator actually carries out the task of balancing the
inverted pendulum. The estimated parameters from the experimental data were then fed into the
simulation model. The characteristics of the human operator were analyzed using the estimated
parameters.
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CHAPTER 1 INTRODUCTION

1.1 Background

An inverted pendulum is a pendulum with a pivot point at the bottom of it. The pivot point is often
mounted on a cart that can slide on a single-axial rail (see Figure 1). The pendulum-cart system is
inherently unstable, nonlinear, non-minimum phase and under-actuated, thus must be actively
controlled in order for the pendulum to remain in the upright position. This can be achieved through
many ways, such as by applying a torque at the pivot point, moving the pivot point horizontally using
some feedback mechanisms, or even oscillating the pivot point vertically. The problem of balancing an
inverted pendulum is a classical one in dynamics and control theory and is often used as a benchmark
tool for testing and evaluating control algorithms, such as PID controllers, neural networks, fuzzy control,

genetic algorithms etc.

Figure 1 Schematic of an Inverted Pendulum Setup



1.2 Objectives

The focus of this study is to investigate the characteristics of human manual control when executing a
task of balancing an inverted pendulum on a single-axial rail. Suppose an automatic controller was
designed for this task, the inverted pendulum should be able to stay in the upright position indefinitely
as long as there are not any significant disturbances to the system. However, if the automatic controller
was replaced by a human subject, falling of the inverted pendulum is almost inevitable no matter how
skillful or agile the subject is. What is it then that leads to the falling of the inverted pendulum? Since
the dynamics of the inverted pendulum does not really change in the course of the experiment, the
human subjects must have undergone some changes which result in the falling of the pendulum. How
do we quantify these changes? How might we predict the eventual falling of the inverted pendulum,
maybe a few steps ahead of its occurring? These are the questions this study attempts to investigate
and solve. To quantify the changes the human subjects undergo, a mathematical model of the human
subjects is needed first. The next step is to estimate the values of the parameters in this model. To
accomplish this, data from human subjects carrying out the experiment of balancing a real single-axial
inverted pendulum has to be collected. Thus, an experimental inverted pendulum setup has to be
constructed in the first place. Finally, using the parameters estimated from the experimental data, one
can investigate the stability conditions of the human-inverted pendulum-cart system and hopefully to be
able to predict the falling of the inverted pendulum. In summary, there are four major objectives in this
study as listed below. In addition, the flow chart of the methodology used in the study is shown in the

figure 2.

Objectives:

1. To build a physical inverted pendulum-cart system for human subjects to balance and for

experimental data collection



To model the inverted pendulum and the human operator and build a simulation of the human -
inverted pendulum-cart system in Matlab

To investigate the stability conditions of the human-inverted-pendulum-cart system

To estimate the parameters in the human operator mathematical model and use them to make

predictions

Literature Review

l

Mathematical Model
of the Human
Operator

SolidWorks Design

Physical Inverted Mathematical Model
Pendulum Setup of the Inverted
Pendulum

~

S

pr—

\

Experimental Data Matlab/Simulink
Simulation
\ ‘
Parameters
Estimation
o
4 l ™
Explanation &
Prediction
\ J
' '’
Conclusions
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Figure 2 Flow Chart of the Methodology in the Study



1.3 Organization
The rest of the thesis is organized as follows. Chapter 2 includes a literature review for this study.

Chapter 3 describes the design of the inverted pendulum setup in Solidworks and the construction of
the physical inverted pendulum. It also describes the data acquisition device, the experiments designed
to obtain experimental data and some preliminary analysis of the data. Chapter 4 describes the process
of modeling the inverted pendulum system and the human operator, in order to obtain a closed-loop
mathematical model for the human-inverted pendulum-cart system. Using the mathematical model
obtained, a simulation model is built in Simulink. Chapter 5 presents a stability analysis of the closed-
loop human-inverted pendulum system. Chapter 6 explains the data filtering algorithm used to estimate
the values of the parameters in the mathematical model for the human operator and the estimation
results. Finally, chapter 7 summarizes and concludes this work, with discussions regarding the future

directions of this research topic.



CHAPTER 2 LITERATURE REVIEW

The problem of stabilizing the pendulum in the upright position has attracted attentions from and been
widely studied among control engineers, physicists, mathematicians and neuroscientists over the last
few decades. First of all, the inverted pendulum serves as a benchmark tool for testing control algorithm.
In 1963, Widrow et al. built an original adaptive neural net broom-balancer at Stanford University, to
demonstrate the capability of the ADALINE (Adaptive Linear Neuron) in performing the task of optimal
control of an unstable system[1]. The ADALINE network, a trainable system, observes the cart and the
broom (pendulum) through visual inputs to obtain the relevant state information by dynamic scene
analysis[2]. Simulation results show that, with adequate training sample, this simple adaptive neural
network is capable of extracting the necessary state information from time sequence of crude visual
images and using this information to balance the pendulum[3]. Many others have also taken interest in
using the inverted pendulum-cart system to implement and test a variety of neural network controllers.
Anderson [4] showed that it is possible to balance an inverted pendulum with no a priori knowledge of
the dynamics of the system by implementing a two-layer neural network controller; Wieland [5]
presented a way of using Genetic Algorithm to create recurrent neural networks to solve the pole
balancing problem; Jung et al [6] used a wheel-driven mobile inverted pendulum platform to test the
robustness of a neural network learning algorithm coupled with a PID controller. Besides of being a
great tool in testing neural network control algorithm, the inverted pendulum setup has also been
employed to test other advanced control algorithm such as fuzzy-logic controllers. Magana et al.[7] ,
used an inverted pendulum setup to evaluate the performance of a fuzzy-logic control system they
designed. The fuzzy logic controller was able to keep the inverted pendulum in the upright position
through visual feedback. Wang [8], used the inverted pendulum setup to validate that the adaptive fuzzy
controller they designed could perform successful tracking with using any linguistic information and

after incorporating some linguistic fuzzy rules into the controller, the adaptation speed became faster



and the tracking error smaller. Mohamed et al.[9] , also presented an adaptive fuzzy-logic controller for
controlling the inverted pendulum cart system as an under-actuated one. Swing up control of the
inverted pendulum has also yield many fruitful results in the literature of control algorithm design [10-

13].

The applications of modeling and the stability study of the inverted pendulum, range from
understanding human posture stability, to biped humanoid walking pattern generation, to modeling
slender structures during earthquake and so forth. Kajita et al. did much of the pioneering research in
employing the inverted pendulum model to solving problems such as, walking pattern generation for
biped robots, walking stabilization for humanoids, biped locomotion on rugged terrain etc.[14-18]. Many
other authors have also used varied versions of the inverted pendulum model to investigate the
problem of biped robot walking. For example, Park [19] proposed a gravity compensated inverted
pendulum model to generate biped locomotion patterns; Kuo [20] showed that the inverted pendulum
model is better than the six determinants of gait model in representing the human walking dynamics.
Based on the inverted pendulum model, Sugihara [21] proposed a zero moment point manipulation
method for real-time humanoid motion generation. Gage [22] demonstrates the validity of using the
inverted pendulum model to represent the kinematic and kinetic postural control in human quiet
standing. Winter [23] reviewed the various versions of the inverted pendulum model used in assessing
the human balance and posture control during standing and walking. Reeves [24] gained some
interesting insights into the control and stabilization of the human spine from a series of stick balancing
experiments on finger tips. Using the inverted pendulum model, Housner [25] did an analogous study of

the rocking motion of tall and slender structures during earthquakes.



CHAPTER 3 EXPERIMENTAL SETUP AND DATA COLLECTION

This chapter describes the design and construction of the inverted pendulum setup used in the
experiment for data collection, the designed experiment, the data collection devices and some primary
analysis of the obtained data.

3.1 Design of the Experimental Inverted Pendulum Setup in Solidworks

Before the physical inverted pendulum setup was constructed, a 3d model of the setup was designed
using Solidworks (see figure 3 & figure 4). The design requirements include constraining the inverted
pendulum’s movement in a single plane, ensuring the pendulum can free rotate around the pivot point.
Based on these requirements, the pendulum is designed to be rigidly attached to a rotating shaft which
is mounted on the sliding basing through a pair of plain bearings. The rotating shaft ensures that the
pendulum can freely rotate around the pivot point. The sliding based is design to be able to slide on a
single axial rail with minimum frictions. A bracket which can be mounted to the sliding block is designed
so that the human subject can use it to slide the base to balance the pendulum. As like the design of

any other mechanisms, the process of designing the inverted pendulum setup was an iterative one.
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Figure 3 Solidworks Design of the Inverted Pendulum Setup

Figure 4 Exploded View of the Inverted Pendulum Setup Design



3.2 The Physical Setup

A picture of the experimental setup is provided in figure 5. The single axil rail is an off-the-shelf product.
It is 1.27 meters long and has a sliding block. The sliding block has the ability to adjust the tightness to
reduce the sliding friction. The single axial rail is mounted on a pair of sawhorse legs. The height of the
sawhosre is 0.711 meters. The pendulum is a piece of carbon fiber tube. Most other componnets are
printed using a 3d printer in the Interactive Robotics Laboratory (IRL) at West Virginia University.
Constraints imposed by the physical world dictate that frictionless contact between the rail and the cart
is impossible to achieve. But the friction is very small that it is reasonable to ignore the frictions

between the sliding base and the rail, the pivoting joint and the contact surface.

| Inferred

Markers

Figure 5 The Physical Experimental Inverted Pendulum Setup



3.3 Method

This section describes the experiment carried out in the study and the data collection devices used in

the experiment, participant information and preliminary analysis of the data collected.

3.3.1 Human Subjects
Four male students, age from 22 to 26, from West Virginia University with normal motor skills

participated in this study. They all gave informed consent prior to their participation.

3.3.2 Task
Subjects were asked to keep the inverted pendulum in the upright position by sliding the base of the

inverted pendulum. In the course of the experiment, the subject sits in an upright position in front of the
inverted pendulum setup (as in figure 6). The starting position of the sliding base is near the center of
the rail. The subjects were also requested to avoid the sliding base making contact with either end of the
rail. The subjects were encouraged to pay their full attention to the task and keep the pendulum from

falling for as long as possible.

10



Figure 6 Demonstration of the Experimental Task

3.3.3 Apparatus
The angular displacement of the pendulum from the vertical position and the human subject’s

movement are the two variables measured in this experiment. IRL is equipped with a motion capture
system called Vicon. The Vicon system consists of 8 Bonita B10 infrared cameras with 1 megapixels
resolution and 250 maximum frame rates, a Tracker software system that can output data to Matlab
with a low latency. The Vicon Tracker can track multiple objects. There are infrared markers attached to

both the pendulum and the sliding base so their movements can be tracked by the Vicon system.

11



3.4 Preliminary Data Analysis
Table 2 summarizes the data collected from four different subjects balancing the inverted pendulum. It

includes the duration of the balance, the maximum and minimum angular displacements while the
pendulum was in balance, the mean and standard deviation of the angular displacement, the maximum
and minimum value of the human subjects’ hand position, and the mean and standard deviation of the
hand position. Figure 7 is the plots of the angular displacement theta and the human subjects’ hand
movement during one trial of experiment. Later in chapter 6, these data will be used to estimate the
parameters in the human subjects” mathematical model. Figure 8 and 9 show the power spectral density
of the data set plotted in figure 7. The power spectrum shows the frequency components of a time
series signal and how they are distributed. For a linear system, the power spectrum densities of the
input and the output should have the same frequency components as a linear system does not generate
new frequency components in the output signal given an input signal. A close examination of the power
spectrum density of the angular displacement theta and the subjects’ hand movements x shows that
they are approximately the same in shapes. This information makes the assumption of linearizing the
human subject’s control behavior reasonable, which will be done in chapter 4 when the model of the
human subject is obtained. Overall, these are just some preliminary analyses of the experimental data.
In chapter 6, an estimator will be developed to process the data in order to estimate the parameters in

the human subject’s mathematical model.

12



Sub | Trail | Tim Angle theta in radians Hand position in
ject | No. e o(6) meters o(x)
max min u max | min u
1 33 | 0.2017 | -0.2790 | -0.0538 | 0.011 | 0.43 - 0.047 | 0.1
A 31 51 | 0.329 0 699
3
2 34 | 0.1524 | -0.2753 | -0.0541 | 0.085 | 0.40 - 0.022 | 0.1
7 18 | 0.365 7 272
4
3 23 | 0.1736 | -0.2971 | -0.0543 | 0.108 | 0.39 - 0.048 | 0.1
8 11 | 0.313 2 478
1
1 25 | 0.1812 | -0.2847 | -0.0561 | 0.106 | 0.48 - 0.060 | 0.1
B 9 31 | 0.285 2 482
6
2 26 | 0.1530 | -0.2361 | -0.0513 | 0.094 | 0.29 - - 0.1
1 87 | 0.399 | 0.012 | 562
3 1
3 30 | 0.0940 | -0.2056 | -0.0555 | 0.060 | 0.41 - 0.087 | 0.1
3 07 | 0.398 9 851
5
1 28 | 0.1165 | -0.2194 | -0.0553 | 0.067 | 0.36 - 0.021 | 0.1
C 5 60 | 0.342 9 394
9
2 38 | 0.0960 | -0.2037 | -0.0538 | 0.041 | 0.46 - 0.035 | 0.1
7 49 | 0.153 4 114
0
3 25 | 0.2239 | -0.2187 - 0.072 | 0.41 - 0.012 | 0.1
0.0483 3 25 | 0.356 5 256
2 4
1 12 | 0.1932 | -0.2436 | -0.0474 | 0.067 | 0.44 - 0.032 | 0.1
D 9 39 | 0.251 7 752
9
2 11 | 0.1619 | -0.1943 | -0.0372 | 0.088 | 0.52 - 0.038 | 0.2
4 89 | 0.356 3 081
7
3 14 | 0.1563 | -0.2004 | -0.0487 | 0.057 | 0.11 - 0.1
6 73 - 0.069 | 188
0.285 7
0

Table 1 Summary of Data from Four Subjects

13




Hand Position & Theta

Plot of One set of Experimental Data
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Figure 7 Plot of One Set of Experimental Data
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CHAPTER 4 MODELING OF THE HUMAN-INVERTED PENDULUM SYSTEM

Recall from chapter 1 that the second objective of this study is to model the human-inverted pendulum-
cart system when human subjects are balancing the inverted pendulum. A good simulation is an
accurate representation of a physical system. To build a good simulation model of any physical system,
acquiring a good mathematical representation of such a system is imperative. In this chapter, the
mathematical model for the inverted pendulum was first derived by applying the LaGrange’s method to
the inverted pendulum cart system. Then a mathematical model for the human operator was found
from literature review. Abundant literature in the neuroscience, pilot modeling and human factors have
tackled the challenge of coming up with a good mathematical model for human operators when they
are undertaking different control tasks.

4.1 Modeling of the Inverted Pendulum

The schematic of the inverted pendulum-cart system is shown in figure 10. The cart can only slide on a
single axis rail. The control force u is applied to the cart by the human subject’s hand. Assume that the
center of gravity of the inverted pendulum is at its geometric center. Applying LaGrange’s method to the
system, the Equations of Motion are found to be equation (1) & (2). A detailed derivation of these two
equations using the LaGrange’s method can be found in appendix one. Table 1 is a summary of the

physical quantities involved in the inverted pendulum setup and their respective values.

=

fcos @

=)
R

uo— M

Figure 10 Schematic of the Inverted Pendulum-Cart System
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Quantity Symbol value
Mass of the rod m 0.108 Kg
Mass of the slide M 0.326 Kg
Length of the inverted 2| 1.143 meters
pendulum
Human subject input u Variable
Angle displacement from the 0 Variable
vertical
Distance from the center of X Variable
the rail
Length of the rail L1 1.168 meters
Earth’s sea-level gravitational g 9.8 m/s?

constant

Table 2 Physical Characteristics of the Inverted Pendulum

mis*x(s) +(ml* +1_)s*0(s) —mglé(s) =0

0(s) _

mX + MX +ml& = u(t)

mls+(ml> +1_)6-mglo =0

(M+ M)s*x(s) +mls*4(s) = u(s)

Rearrange equations (3) and (4), we get the following new transfer functions

u(s) (m+ M)mgl —;m(m +4M)I’s’
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(1)

(2)

After taking the Laplace transform of equations (1) and (2) and assuming zero initial conditions, we get

(3)

(4)

(5)



X(s) mgl —(ml* +1_)s’

u(s) (m+ M)mgls* —;m(m +4M)I%s*

(6)

Where I _1 .., thus the above two transfer functions can be further simplified into
3

o(s) _ 1
u(s) (m+ M)g—;(m+4M)Is2 7
X(s) _ 3g—4ls’

= 8
ucs) 3(m+M)gs’ —(m+4M)ls* )

These two transfer function imply that the human-inverted pendulum is a single input and multiple-
output system. This means that balancing the inverted pendulum is a two-fold task, namely keeping the
pendulum near the vertical place and maintaining the horizontal position of the cart within the range of
the rail. For practical purposes, in this study, only the relationship between the human input and the
pendulum angular output will be considered, i.e. only equation (7) will be investigated.

4.2 Modeling of the Human Controller

Obtaining a good mathematical model of the human operator is of critical importance in building a
closed-loop human-inverted pendulum Matlab simulation and for the analysis of the stability of the
system. In the section above, a mathematical model of the inverted pendulum was derived. The
problem then becomes how to come up with an accurate model of the human subject. The adaptability
of the human operator makes manual control very flexible. The mathematical model of the human
controller thus depends heavily on the control task. In the task of balancing the inverted pendulum, the
human operator can be divided into three modules which can be modeled individually. The three
modules that characterize the human subject are the human visual perception system, the central

nervous system and the neuromuscular system. The visual perception system is very critical in the task
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of human subjects balancing the inverted pendulum. A mathematical model of how humans estimate
the motion of moving objects is thus the first step toward modeling the human operator. Humans and
primates utilize three basic kinds of movements to accomplish the goal of following the movements of
unpredictable targets. These eye movements are saccadic movements (step-like), pursuit movements
(ramp-like), or combinations of the two[26]. Smooth pursuit eye movements allow primates to track
slow moving objects. Two important characteristics of human visual perception system are that, first it is
time-delayed; secondly, it is not perfect, i.e. noisy. Many have tried to quantify the amount of time delay
and study the effects of such delay in reaching movements planning. Lisberger & Westbrook found that
the onset of smooth pursuit eye movements evoked by smooth target motion has latencies of 80 to 130
ms, depending on a number of visual parameters, including the target’s luminance, size, and initial
position in the visual field[27]. More recently, John et al. from UCLA investigated the progression of the
visual signal in the brain while gaze correctly pursues the target (see figure 11) and the effects of this
delay[28]. A model of how humans sense the velocity of moving images is proposed in this paper[29].
The authors constructed a system for processing dynamic visual inputs, which assigns velocities to

components of the inputs.

é-jm‘x """" ﬁ ------- ﬁ Tm
{ Tin-x /
) @ @
Tn X
Brain @ ’
[ <
l Xx=-~100 ms

Figure 11 Schematic of the Progress of the Visual Signal in the Brain [28]
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The second essential module which distinguishes the human operator from an industrial automatic
controller is the human central nervous system (CNS). The CNS is a highly optimal and computationally
efficient system. It takes in the sensory information from the visual system and sends out motor
command to the hand. There are different, although not competing, theories concerning how the CNS
utilizes the sensory information and how it issues motor commands. The feedback mechanism is a well-
established and supported one among them. Some other important ones include feedforward and
internal model. For issuing motor commands, there are theories supporting either a continuous or an
intermittent model. There seems to be some consensus that whichever model may be fitting is context
dependent. Also, all these CNS computation models are highly optimal and efficient. Adult human
subjects with normal motor skills demonstrated very little difficulty in the task, albeit mastering such

task might require a substantial amount of training. However, this is beyond the scope of this project.

Computational models for motor control fall under the general classification of two theories: Internal
model and intermittent feedback control. “Internal models are neural mechanisms that can mimic the
input/output characteristics, or their inverses, of the motor apparatus[30].” “There are two varieties of
the internal model: forward models, which mimic the causal flow of a process by predicting its next state
given the current state and the motor command; and inverse models, which invert the causal flow by
estimating the motor command that caused a particular state transition.[31]” The third module that’s
involved is the human neuromuscular system, which enables the execution of hand movements. As the
end effector, it receives motor command from the CNS, like the visual system, time delay is also a
defining characteristic of the motor system. The axons of motor neurons stretch from the brain and

spinal cord to muscles or glands of the body.

To find a mathematical model for the human operator from first principles is a very hard problem

considering the complexities of the human visual perception system, the CNS and the neuromuscular
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system. A mathematical model of the human operator from the engineering perspective can be more
readily obtained by examining the input to and the output from the human operator. Because the
human operator is able to adjust their characteristics to meet system requirements, this makes manual
control system very flexible and intelligent. But the adaptability and nonlinearity of the human operator
also make it difficult to describe and model mathematically the characteristics of manual control[32].
The primary reason for including humans in complex control loops is to utilize the adaptability and
optimality of the human operator. This paper reviewed the rapid adaptability of human control in
handling four different kinds of adaptive situations, namely input adaptation, controlled element
adaptation, task adaptation and programed adaptation. “Input adaptation refers to man’s ability to
detect familiar or repeated patterns in the input and track these in a predictive or open loop fashion.
Controlled element adaptation, as its name suggests, is human operator’s ability to adapt different
control strategies appropriate to changing dynamics of the system being controlled. Task adaptation is
the optimization of the manual control loop on the basis of various control objectives. Finally,
programmed adaptation, is used by human to adopt control strategies which he has been taught as
appropriate for the situation”[33]. “A major characteristic of the input to which human adapts is the
bandwidth of the input signal. Human operators respond differently in tracking low frequency inputs
than they do with more difficult high frequency inputs. Specifically, the gain term is notably reduced as

the input frequency cut-off increased, and the amount of lag is also reduced”[32].

McRuer et al. did much of the pioneering study in pilot modeling and quantitatively studied the effect of
input bandwidth on the quasi-linear describing function model of the human operator. The general
describing function for the human operator is called the crossover model, which can be used for a
variety of controlled elements and forcing functions. Mathematically the describing function is

expressed by the following equation[34]:
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—Joz,

. . e
Y, (jo)Y,(jo)=2=—1, (9)
Ja)

“The operator adjusts his or her gains and lead-lag compensation to produce a pilot describing function

Y.(jw) such that, when cascaded with the controlled elementY,( jw), the open loop describing

function has the characteristics of a delay and an integrator in the region of open loop gain equal to

unity. Both the crossover frequency @, and the effective time delay t, show the effect of input

adaptation to varying forcing function bandwidth. To track higher frequency inputs, the crossover
frequency increases, as long as such increase results in lower errors. Limits of maximum crossover
frequency are set by system stability condition. Reduction in the effective time delay with increasing

input bandwidth is also an important aspect of input adaptation in the McRuer’s crossover model” [35].

The crossover model with respect to the specific controlled element in this study, i.e. the inverted

pendulum is given by the following so-called lead-lag model, which is also developed by McRuer[34].

— K (Tl.]a)+1) e—ja)z’e

Y :
" (Ljo+l)

(10)

Where K, is the human operator gain, T; the lead coefficient, T, the lag coefficient, 7, the effective
delay. This is the mathematical model that will be used to represent the human operator’s dynamics in
this study. By now, both the models for the inverted pendulum and the human subject have been
obtained. These two mathematical models together form the mathematical model for the closed-loop
human-inverted pendulum system. In next chapter, the stability of this closed-loop system will be

analyzed.
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CHAPTER 5 STABILITY ANALYSIS OF THE HUMAN-INVERTED PENDULUM
SYSTEM

Perhaps the most important characteristic concerning a control system is the stability condition of such
a system. That is, under what conditions will a system become unstable? If it is unstable, how should we
stabilize the system? Stability is the system’s ability to keep close to the original trajectories when the
dynamical system is under small perturbations. This stability of a system can be defined with respect to
a given equilibrium point in the state space. This is also referred to as the internal stability of a system.
Exterior stability or BIBO (bounded-input, bounded-output) stability also involves external input. A
system is BIBO stable if for zero initial conditions, a bounded input always evokes a bounded output.
BIBO stability is not just an observation that a certain bounded input generates bounded output. All
bounded inputs must generate bounded outputs in order to prove that the system has BIBO stability.
For linear time-invariant (LTI) systems, there are many theories and stability criteria one can employ to
examine the stability of such systems, such as the Nyquist stability criterion and the Routh-Hurwitz
stability criterion. It may also be determined by means of root locus analysis. Relative stability condition

can be gained from examining the gain margin and phase margin from the Bode plots of the system.

For a LTI system, it is stable if and only if all closed-loop poles lie in the left-half s plane. The transfer

functions of most closed-loop systems assume the following form

CG) _bs"+bs™" +---+b, s+b,
R(s) as"+as" +---+a, s+a,

(12)

Where the a’s and b’s are constants and m < n.

Routh-Hurwitz Stability Criterion enables us to determine the number of closed-loop poles that lie in the
right-half s plane without having to factor the denominator polynomial. The stability criterion applies to

polynomials with only a finite number of terms. Information about absolute stability can be obtained
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directly from the coefficients of the characteristics equation. The necessary but not sufficient condition
that all the roots have negative real parts is that all the polynomial coefficients must be nonzero and
have the same sign, either negative or positive. If this condition is satisfied, then compute the Routh-
Hurwitz array. The necessary condition that all roots of the polynomial have negative real parts is that all
the elements of the first column of the array have the same sign. The number of changes of sign equals
the number of roots with positive real parts [41].

5.1 Stability Analysis of the Closed-loop Human-Inverted Pendulum System
Figure 12 is the block diagram of the human-inverted pendulum closed-loop system. Unfortunately, the
system operates in the presence of delay, primary due to the time the human operator takes to acquire
the visual information needed for issue the motor command. It is apparent to see from chapter 2 that
the human operator is inherently time-delayed. There are systematic and measurable delays in the
human visual perception system, the central nervous system and the neuromuscular system. The
stability study of systems with time delay has been a very active and fruitful endeavor. Many tests and

criteria have been established to investigate the stability of time-delay systems.

Simulation

u(s)
IES+1 . 1
€ 2 1 2 Simusted Thets Output
; Is+l ass+b i
Random Gaussian Nogs =
?‘(5) Lead-lag controller Inverted Pendulum Transfer function) Simust=d Thets Output

0(s)

Figure 12 Block diagram of the Closed-loop Human-inverted Pendulum

The time delayed mathematical model assumed for the human subject in this study is the lead-lag

model given by equation (12).
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ues) _ K Ts+1 oS
e(s) T,s+1
The transfer function for the inverted pendulum is given by the following equation.

o(s) _ 1
U  (m+Mg —;(m+4M)Isz

Let’s denote

a= —%(m +4M)l = —-0.2696 and b = (M + M )g = 4.267

The closed loop then becomes

o(s) K(Ts+1)e™
r(s) (as’+b)T,s+1)+K(Ts+1)e™

The polynomial of the denominator is not rational because of the transcendental exponential term. This
makes determining the ranges of K, T1 and T2 more difficult. In order to apply Routh-Hurwitz stability
criterion to the polynomial in the denominator, we need first transfer it into an algebraic function, which
only has rational coefficients. This can be done by applying a first order pade approximation to the
exponential term. A pade approximant is the best approximation of a function by a rational function of

given order. The pade approximant often gives better approximation of the function than truncating its

(12)

(13)

(14)

(15)

Taylor series. The form for the first order pade approximation is given by the following equation.

TS
6™ ~ 2S
1+2

2

Let’s denoteTZ—s= 7.5 and substitute equation (16) into equation (15), the transfer function then

becomes
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o(s) K(Ts+1D)(1-1z,)
r(s) B (as® + b)Y(T,s+1D(1+7,5)+K(Ts+1)(1-1,9)

(17)

Expand the denominator, we get.

o(s) K(T,s+1)(1-1z,5)
r(s) aT,zs*+a(T,+17)s’ +(@+bT,r,—KT,r,)s’ +(bT, +br, + KT, - Kz)s+b + K

(18)

The Routh array of the polynomial in the denominator is

s” aT,;; (a+bT,7;,—KTz,) (b+K)
s’ a(T,+r,) (bT,+br, +KT, -Kz)
, aT,+ar, —2KTT,7, - KT,z + KT,z? (b+K)
(T, +7) (19)
 (aT, +ar, —2KTT,7, - KTz, + KT,z,))(bT, + br, + KT, = Kz,) —a(T, + 7,)* (b+ K)
aT, +ar, —2KT Tz, - KT,z + KT,z,°

s’ (b+K)

Apply the Routh stability criterion to the coefficients of the polynomial in the denominator and the first

column of the Routh array we get the following seven inequalities.
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at,z, >0, (1)

(a+bT,z, -KT,7,) >0, (2)
a(T,+7,)>0, (3)

(bT, + bz, + KT, —Kz,) >0, (4)
(b+K)>0, (5)

afT, +ar, —2KT,T,z, — KTITIZ + KTzz'l2

(T, +7)

(@T, +ar, —2KT Tz, - KT,7,> + KT,z,*)(bT, + br, + KT, = Kz,) —a(T, + 7,)*(b+ K)

>0, (6)

aT, +ar, - 2KT,T,7, - KT,z;” + KT,z?

This is a set of multivariate polynomial inequalities. It is very hard to solve this set of multivariate
polynomial inequalities, in order to obtain the ranges of K, T1 and T2. However, we can check the

necessary condition for the system to be stable first. For this, we only have to solve the inequalities (1)

>0,(7)

to (5). Solving the first five inequalities gives us the following conditions of K, T1 and T2.

This upon further simplification becomes

T, <—1,
K>-b
K-b a
0> (21)
K Kz,
(K-b)r>—a
A S -7,
2br,
T,<-7, ()
K<2+b, 2)
T
1 (22)

K<2_b, (3)
7

K >—b, (4)
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. . . . . a .
Notice, however, inequality (3) and (4) contradicts with each other because —-— b is always less than
(3

—b, since a is always less than zero. Thus inequality (3) and (4) cannot both be satisfied. This yields no

solution for K, thus no solution for T1, T2 either.

On the surface, it seems that it’s impossible to obtain absolute stability for the closed-loop system when
the time delay is added. However, assuming the coefficients of the polynomial in the denominator are

all negative, we have the following five inequalities.

al,r, <0

(a+bT,7;, -KT,7,) <0

a(T,+7,)<0 (23)
(bT, +br, + KT, -K7,) <0

(b+K)<0

Solving these five inequalities, we get the following conditions for K, T1 and T2.

K<-b

T,>-1,nT,>0

K—_brl <T, < 2 (24)
K Kr,

(K-b)r”-a

>T,
2br,

Upon further simplification, they become.

j%+b<K<—b

(2
(K-b)r’-a
0<T,<x———— 25
2 2br, 29)
P—<—_Erl<'l'l<—a—
Kz,
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Let’s check again to see if they yield solutions for K, T1 and T2. In order to obtain a range for K, we need

a
—tb<b (26)
Tl

This yields

-2a

2
T, <— 27
ST (27)

Or 1,<0.177 , after we substitute @ =—0.2696 and b =4.267 into the above equation.

Equation (27) gives us a few interesting insights as how the human controller adapt to the control task.

Notice, 7, is solely determined by a and b , which are the characteristics of the inverted pendulum.

Equation (27) shows that for a given inverted pendulum setup, there is a maximum delay that is allowed
in the human controller if the mathematical model for the human controller is a lead-lag plus delay
model. Once the delay in the human controller exceeds the maximum delay allowed for whatever
reasons, e.g. fatigue, loss of attention etc., the human subject won’t be able to stabilize the pendulum
no matter how he or she adjust the other parameters in the model, namely gain K, lead T1 and lag T2.
The maximum allowable delay in the inverted pendulum setup in this study is about 0.354 s. The
amount of delay in the human controller is hard to quantify when the subject is balancing the
pendulum. For practical reason, it’s hard to check the ranges of T1 and T2, when both the time delay 7
and gain K are varied. Three different and representative values for the time delay are chosen and
then investigated to see how they affect the ranges of K, T1 and T2. The values of 7 chosen in this study
are 0.16 s, 0.24 s and 0.32 s respectively. Figure 13 shows the plots of K, T1 and T2 when 7 assumes
different values. As the plot shows when the human controller exhibits little or no delay, the permissible

range of K is very large. As it can be seen from the plots, when the delay increases the ranges of K, T1

and T2 are all effectively reduced by a considerable amount. Further, a set of parameters for 7 , K , T1
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and T, are chosen from the first case, which is when 7 =0.16 s, where, K=-4.5, T, =0.45 and

T, =0.1. Substitute them into the closed-loop transfer function, we get

o) _

—0.1625* +1.6655 +4.5

r(s) 0.002157s* +0.0485s’ +0.073465° +0.8969s + 0.233

(28)

The roots of the characteristic equation are —21.8022,—0.2167 + 4.3227i,—0.2645 . They all have

negative real parts. As can be seen from the bode plot and the Nyquist plot of the open loop system in

figure 14 , the values assumed for the parameters in the human controller can indeed stabilize the

inverted pendulum.
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Figure 13 Stability conditions of K, T1 & T2 with different time delays
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Pole-zero plot of the closed-loop system Bode plot of the human controller, tao=0.16, K=-4.5, T1=0.45, T2=0.1
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Figure 14 Plots of the stable closed-loop human inverted pendulum system

5.2 The Simulation in Matlab & Simulink
Based on the stability analysis in the previous section, a simulation of the system was built in

Matlab/Simulink (figure 15). A picture of the inverted pendulum animation is provided in figure 16. Later
in chapter 6, the simulation will be used to verify the estimator developed and to study the stability of

the system and display the results graphically.
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Figure 15 Matlab/Simulink Mode of the Human-Inverted Pendulum System

Figure 16 An animation of the Inverted Pendulum
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CHAPTER 6 PARAMETERS ESTIMATION OF THE HUMAN SUBJECTS

Estimation of the parameters in the human operator model is very valuable for the quantification of the
different characteristics of manual control. The hypothesis in our study is that the changes the human
subjects undergo when balancing the inverted pendulum are the reasons that the inverted pendulum

eventually falls. The mathematical model assumed in this study is given by the following equation.

us) _ K Ts+1 o
e(s) T,s+1

(29)

There are four parameters in this model. To quantify the changes the human subjects undergo thus
obtain the transition of the stability of the human-inverted pendulum system, it is necessary to use
estimation algorithms to estimate the values of these parameters.

6.1 Estimation Algorithm Selection and Verification

There are many advanced data filtering and parameters estimation algorithms available. They can be
broadly divided into two categories, the time domain methods and the frequency domain methods[40].
Among the time domain estimation techniques, Extend Kalman Filter and Unscented Kalman filter are
two every powerful and applicable ones. They have proven to be especially useful when the processes
relating the state and the output of the system are nonlinear in nature. In this study, the Kalman filter
algorithm is chosen as the estimator. The parameters of the transfer function assumed for the human
subject can be estimated by applying the extended Kalman filter to the corresponding differential-
difference equations in the time domain. The Kalman filter is a set of mathematical equations, when
executed recursively, provides an optimal estimate of the state of a process, in a way that minimizes the

mean squared error of the state[36]. In 1960, R.E. Kalman published a seminal paper and provided a
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recursive solution to the discrete linear filtering problem[37]. Many variations of the original Kalman

filter were developed for tackling problems involving nonlinearity[38, 39].

6.1.1 The Framework of the Kalman Filter
The Kalman filter includes two main steps, prediction and update. In the prediction step, the state and

the covariance associated with the state prediction are propagated through the state transition matrix.
In the update steps, the state is updated by using the innovation or residual and the posterior

covariance associated with the posterior state is also calculated.

The discrete-time linear Kalman filter can be applied to a system with the following form.

X = Ak—lxk—l + Bk—luk—l +W,

(30)
Y =HX, + v,

Where w and v are the process and measurement noise processes, which are assumed to be white,

uncorrelated, and zero-mean with known covariance matrices Q and R respectively

w, ~(0,Q,), E [WKWE ] =Q,
v, ~(0,R,), E[vvaj]: R, J (31)
E [vkwﬂ =0
Where § is the Kronecker delta function
1 k=j
3 :{ (32)

0 k=#j

The initial conditions for the filter are given by

(33)
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The first step in executing a Kalman filter is to obtain the predictions of the current state and covariance

matrix based on information from the previous step. This is called the prediction step.

Kiko1 = Ak—lxk—l + B|<71u|<71

) (34)
Pk|k—1 = Ak—lpk—lAk—l + Qk—l
Then, the Kalman gain matrix, K, is calculated
T T -1
Ky :Pk\k—lHk (HkPk\k—lHk +Rk) (35)

Finally, the Kalman gain matrix is used to update the predicted state and covariance matrix using the
residual from the measurement
X =Xy + Ky (Zk - Hka|k—1)

- (36)
P :(I - Kka)Pk|k—1 :(Pk_|k1—1 +HIR;1H|<) 1

Where z is the measurement of the output, y, and | is an identity matrix [36].

6.1.2 The Kalman Filter Formulation of Our Problem
Recall from chapter 4 that the mathematical model for the human operator in our study is given by the

following equation.

ues) _ K Ts+1 RS
e(s) T,s+1

(37)

Where, U(S) is the output of the human subject, €(s) is the error input, K is the time varying gain, T, is

the time-varying lead parameter, T, is the time-varying lag parameter and 7 is the overall time delay
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constant which can be determined from the input and output data. Take the inverse Laplace transform

of the above transfer function, we get

TU(t) +u(t) = KT&(t) + Ke(t) (38)

The process model is assumed to be, because a precise of model of how K, T; and T, varies is not

known.
K| [0
X=|T, |=]0]|+w() (39)
T,| |0
Where w(t) is a random Gaussian noise.
Our process noise covariance matrix is assumed to be
0.01 O 0
Q= 0 001 O (40)
0 0 0.01
The state transition matrix is
1 00
F=/0 1 0 (41)
0 0 1
The measurement model is given by
y =u(t) = KT () + Ke(t) - T,u(t) + v(t) (42)
The measurement noise variance is assumed to be.
R =0.245 (43)
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The measurement matrix is

H=[T,4t)+6(t) Ké(t)

The flow chart of executing the algorithm is given by figure 17.

e = +
Initiglization: ;" = %

S
—L_PD

|.(_ -

—u(t)]

Integrate state and covariance from
tp_y to t; (predictor)
T = fES)vwlk—1)

Py =FFL BT+ Qis

‘.’

Gather new measurement at time
Epi Vs Ri(

Compute measurement sensitivity matrix

_ 8hlx;)
KT Ay, eE

H

Iteration:

A

Compute the optimal Kalman gain

K =R B (HAHET+R)™

Update state

HT=E +KOx —h(F )

Update covariance using the loseph form

R = -EHIR (U-KH) +
KRR

Figure 17 Flow Chart of the Extended Kalman Filter Algorithm
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6.1.3 Filter Verification
Before the Kalman filter developed in the section above is used to process the experimental data, it has

to be verified using the simulation data. The way this is done is to preset the values of the parameters in
the human controller model and then use the Kalman filter to estimate those parameters from the
simulation data. If the values of the estimated parameters converge to the preset parameters, it
indicates that the Kalman filter can theoretically estimate the parametric human controller model.
Figure 18 provides the schematic of the Simulink simulation, which is used to generate the simulation

data and to perform estimation.

Matlab Simulation Kalman Filter Simulation Using the
Estimated Model

Figure 18 Matlab Scheme for Verifying the EKF
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Figure 19 Block Diagram of the closed-loop system

Figure 19 is the block diagram of the human controller model. From the diagram, it can be seen that
there are several factors that could affect the performance of the Kalman filter. The first factor is the
noise present in the human controller. The second factor is the delay present in the model. The Third
factor is the time varying nature of the model. In this section, six different cases of how individual factor
affects the performance of the filter are discussed and the results from each case are presented. The
values of K, T;, and T, for all six cases are -4.5, 0.45 and 0.1 respectively, which are preset in the human

controller model.

Case 1

Assuming there is no delay and remnant noise in the human controller, this is the simplest scenario. The
estimation results from the simulation data is plotted in figure 20 and tabulated in table 3. From figure
20 and table 3, it can be seen that the estimation results are far away from the parameters set in the

controller, no matter how the measurement variance R is tuned.
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Estimation of K as R varies

-20 | | L L | | |
0 0.5 1 15 2 2.5 3 3.5 4
Estimation of T2 as R varies x10
2 T T T
1r i

ﬁ Q] e AT b T T

-2 | | | | | | |

i 4
Time steps %10

Figure 20 Plots of K, T1 & T2 as R varies, without noise compensated

AK pu 3.499 3590 2.602 -1.438
g || 5245 | 2,593 1.729 || 1.052
AT1 p -0.392 -0.341 -0.312 -0.167
o 3522 1.8965 1.2065 0.216
AT2 p -0.105 -0.105 -0.105 -0.104
o 0049 0.033 0.020 o0.011

Table 3 Mean and standard deviation of delta k, delta T1, delta T2 for case 1
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Case 2

Assuming the visual perception noise is known perfectly, thus the theta input to estimator can be
compensated beforehand. As it turns out, if the visual perception noise is perfect known and
compensated for the theta angle, the estimation results (figure 21) converge very quickly to the

parameters set in the human controller model.

Estimation of K as R varies

| | |
K Truth
R=0.1
R=1
R=10
| | | | | R=100
1 1.5 2 2.5 3 3.5 4
4
1
Estimation of T1 as R varies x10
0.6 T T T
0.45 = e A e T A = R
2 0.2 B
0r _
0.2 | L | L | L |
0 0.5 1 15 2 2.5 3 3.5 4
4
Estimation of T2 as R varies x10
0.3 T T T
0.2+ B
N 0.1L“WW‘
0r _
0.1 | L | L | L |
0 0.5 1 15 2 2.5 3 3.5 4
i 4
Time steps % 10

Figure 21 Estimation of K, T1 & T2 as R varies, with noise compensated
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AK p -0.166 -0.161 -0.154 -0.147
o 0091 0.075 0.062 0.050
AT1 p -0.009 -0.009 -0.008 -0.007
o 0.011 0.009 0.007 0.006
AT2 p -0.006 -0.006 -0.006 -0.006

o 9.5657 7.5452 5.4490 3.7603
e-04 e-04 e-04 e-04

Table 4 Statistics of delta K, delta T1 and delta T2 for case 2
Case 3
Assuming there are visual perception noise and the neuromuscular noise in the human controller model,
we want to know if the Kalman filter can handle the neuromuscular noise. The estimation results are
plot in figure 22 and tabulate in table 5. From table 5 and figure 22, it can be seen that the estimation
results also converge to the parameters preset in the human controller very quickly. This indicates that

the Kalman filter can handle the neuromuscular noise without a priori knowledge about it.

“Tros ot R0 w00

AK pu 0.3616 0.3553 0.3383 0.3178
o 0.2093 0.1706 0.1397 0.1189
AT1 p 0.0149 0.0137 0.0108 0.0076
o 0.0315 0.0252 0.0201 0.0167
AT2 p -0.008 -0.008 -0.008 -0.008

o 0.0025 0.0019 0.0013 9.3372
e-04

Table 5 Statistics of delta K, delta T1 & delta T2 for case 3
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Estimation of K as R varies, with remanent

0 T T T T =
-5F / = =
x -10F )‘ K Truth
-15+- g R=0.1
220 ! ! ! ! ! ! R=1
0 0.5 1 15 2 25 3 R=10 }
Time steps R=100
X IU
Estimation of T1 as R varies, with remanent
1 T T T
0.5 | by lw__m ! snals, e cuiss  n s i, i sk — R Y
a W
0 B
.05 | | | | | | |
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|
& o u
.05 | | | | | | |
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i 4
Time steps X 10

Figure 22 Estimations of K, T1 & T2 as R varies, with remnant noise

Case 4

So far, the delay present in the human controller model has not yet been addressed. In this case,
different values of time delay are chosen and set in the model, assuming the delay is known perfectly,
the data to the Kalman filter are shifted according to the delay value beforehand. The estimation results,
as can be seen from figure 23 and table 6, indicates that the Kalman filter can estimate K, T;,and T,

reasonably well.
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K Truth

Estimation of K as tao increases, with remanent and delay Tao=0
-35 T T T T T Tao=0.16
Tao=0.24
4 f\ M/\ Tao=0.32
o s r/\ foa N\NMMM{\M S WA
: ~7 S s A L S B o W
f
5L i
55 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
X 104
Estimation of T1 as tao increases, with remanent and delay
0.7 T T T T T

Tl

0.2
0

1 1.5

x 10

0.14

0.12 -

T2

0.08

0.06 -

01—

0.04

0.5

Time steps

Figure 23 Estimations of K, T1 & T2 as tao increases, with remnant and delay

AT1

AT2

0.0816
o 0.1423
u 0.0216
o 0.0213
u  -0.005
o 0.0017

0.0211
0.1050

0.0069
0.0184

-0.006
0.0022
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-0.059

2.8e-
13

-0.019

4. 2e-
13

-0.010

4 8e-
13

-0.052

3.2e-
13

-0.017

3.6e-
13

-0.011

3.8e-
13

I 8 O R

Table 6 Statistics of delta K, delta T1 & delta T2 for case 4
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Case 5

What if the delay is not perfectly known? In this case, the data can still be shifted by some values of time
delay but with uncertainty. The estimation results are plotted in figure 25. As can be seen from figure 25,
the estimation results do not converge to the parameters set in the model even if the data were only

mismatch by a single simulation time step, which is 0.01 s.

K Truth

delta tao=0
delta tao =0.01 Estimation of K as delta tao increases
delta tao=0.05
delta tao =0.10
delta tao =0.16

X

-10 | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4

4
N . x 10
Estimation of T1 as delta tao increases

1 T T T

0.5 |y L

T

H
‘ " uw . H‘ | \\ i W I “r il M ‘mu \M‘L‘ i w “H ‘ il “M uy M‘ ul l‘

T1
o

1 | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4

4
Estimation of T2 as delta tao increases x10

0.2 T T T

0.1 ‘

T2
o

02 | | | | | | |
0 . .

i 4
Time steps %10

Figure 24 Estimations of K, T1 & T2 as delta tao increases, with remnant and delay
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At AT = NAT = IFAT=UIRAT =
=0 | 0.01| 0.05 | 0.10 | 0.16
AK p -010 -1.59 4.388 4.248 4.190

o 0.018 0.518 0.272 0.549 0.789

ATL il e - - - -
0.009 0.467 0.456 0.450 0.474

o 0.005 0.013 0.140 0.142 0.143

A2 | e - : - -
0.007 0.103 0.104 0.104 0.104

o 0.001 0.078 0.015 0.014 0.014

Table 7 Statistics of delta K, delta T1 & delta T2 for case 5

Case 6

Finally, the parameters in the human controller model namely K, T;, and T, are assumed to be time-
varying. Also, sensory noises and delay are also assumed to be present in this case. This is the most
realistic scenario of all cases that have been discussed in this section. The estimation results are plotted
in figure 24 and tabulated in table 7. From them, it can be seen that the filter can estimate K, Ty, and T,

quite well.

_ TAO=0 TAO=0.16

AK u 0.1020 0.1141
o 0.2760 0.1914
AT1 u 0.0139 0.0175
o 0.0496 0.0321
AT?2 u -0.0073 -0.0066
o 0.0062 0.0041

Table 8 Statistics of delta K, delta T1 & delta T2 for case 6
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Figure 25 Estimations of K, T1 & T2 when they vary with time

In conclusion, the Kalman filter developed in this section can do a reasonably good job in estimating the
parameters in the human controller model with only two assumptions. The first one is that, the visual
perception noise that the theta angle is subject to has to be known with high certainty. Secondly, the
amount of delay in the human controller model has to be known so the data can be shifted accordingly

before it is used to do the estimation.
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6.2 Estimation Results from Experimental Data
This section presents the estimation results from the experimental data using the Kalman filter

developed and verified in the section 6.1. Figure 26 is the block diagram of the Matlab scheme used for

collecting and processing the experimental data. Figure 27, 28, 29 & 30 present the estimation results

from four different subjects using the Kalman filter aforementioned. To assess the performance of the

estimation, the estimated K, Ty, and T, were used to stabilize the inverted pendulum simulation in

Simulink because we don’t have the a priori truth of K,T;,and T, . Unfortunately, the estimated

K,T;,and T, cannot always stabilize the inverted pendulum even when the experimental data shows

the pendulum is, in fact, in balance. This implies that the estimation results from the experimental data

need further interpretation.

Inverted Data Collection/P: link Model
| - :- B L~ 4
Eﬁ Bl [ e S
»,.Eu - = A2 Penpeen =
)
-
_;_|_~Q = Kalman Filter
- -8 =
c T = '
——8 g 1
= 8 g =
Data Collection Block o

Figure 26 Matlab Simulation Model
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Figure 27 Estimations of K, T1 & T2 from experimental data, subject 1
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Figure 28 Estimations of K, T1 & T2 from experimental data, subject 2
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Estimation of K from experimental data, subject 3
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Figure 29 Estimations of K, T1 & T2 from experimental data, subject 3
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Figure 30 Estimations of K, T1 & T2 from experimental data, subject 4
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CHAPTER 7 CONCLUSIONS

This study attempted to quantitatively study the characteristics of human manual control under a single-
axil compensatory task, e.g. balancing an inverted pendulum or controlling the pitch angle of an airplane.
To that end, a single-axial inverted pendulum setup was built. A mathematical model of the closed-loop
human inverted pendulum system was obtained. Subjects were asked to balance the inverted pendulum
by sliding a base upon which the inverted pendulum was mounted. Stability analysis of closed-loop
human inverted pendulum was performed. The stability conditions for the human controller are greatly
influenced by the delay present in the human subject. A Kalman filter was developed for estimating the
parameters in the human controller. Simulation results show that the estimator can accurately estimate
the parameters set in human controller’'s model. When the estimator is used to estimate the
parameters using the experimental data, the estimated parameters do not always stabilize the
pendulum. This could have resulted from three possible causes. The measured angle deflection of the
inverted pendulum is corrupted by an unknown noise; this noise cannot be handled by the filter, but has
to be compensated before the data is fed to the estimator. Secondly, it turns out that the delay in the
closed-loop does not only greatly affect the stability of the system but also greatly affects the estimation
results. From, the simulation, it is shown that if the delay is perfectly offset in the data, the estimation
results converge very well to the parameters set in the model. But as long as there is a slight mismatch
between the data, i.e., the delay is not perfectly known, the estimation results become very different
from the parameters set in the model. In real life scenario, the delay present in the human controller is
hard to obtain and likely time-varying. Thirdly, the parameters in human controller model are likely time
varying as well. These possible factors that could affect the performance of the estimator were
thoroughly discussed and tested using the simulation developed. The findings from the study are

summarized below.

51



1.18 < —Tza’ the maximum delay allowable in the controller is determined by the pendulum’s length

and weight.

2. The estimator can handle the neuromuscular noise but not the noise in the visual perception system,

this is likely due to formulation of the Kalman filter.

3. The Kalman filter can estimate the parameters in the human controller model even when the

parameters are time-varying.

4. The Kalman filter can estimate the parameters in the human controller model when there is time-

varying delay present in the system.

As can be seen from chapter six, the estimation results from the experimental data need further
interpretation. Time varying and subject dependent nature of the amount of delay or the unknown
visual perception noise in the human controller are likely the reasons the estimated parameters from
the experimental data cannot stabilize the pendulum. Thus, future directions of the study include
finding ways to handle the unknown visual perception noise present in the human controller and to
estimate the amount of delay present in the human controller. Additionally, different models of the
human controller, such as a dynamic inversion model of the human controller, can be tried out to make

sense of the estimation from the experimental data.
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Appendix one Derivation of the EOM’s of the Inverted Pendulum Setup

The schematic of the inverted pendulum-cart system is shown in figure 3. The cart can only slide on a
single axis rail. The control force u is applied to the cart by the human subject’s hand. Assume that the
center of gravity of the inverted pendulum is at its geometric center. In this appendix, the Equations of
Motion are derived using the LaGrange’s method. The EOM’s is then linearized by using the small angle
approximation. Finally, the transfer functions are obtained by taking the Laplace transform of the

linearized EOM’s.

fcos @
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Figure 31 Schematic of the Inverted Pendulum-Cart System

1.1 Generalized Coordinate System

In order to apply the LaGrange’s method to the system, we need to first choose the generalized
coordinates. Using the generalized coordinates, we then can determine the equations for the
generalized forces, kinetic and potential energies etc. The inverted pendulum system has two degrees of
freedom and therefore can be fully represented by two generalized coordinates. The generalized
coordinates q; are chosen as the horizontal displacement of the sliding cart x and the angular

displacement of the inverted pendulum 6.



q;:X%0,j=1,2 (45)

The positive direction of x is to the right, measured from the left end of the rail and the positive

direction of 6 is clockwise, measured from the upright position.

1.2 Generalized Coordinate Forces

The generalized forces ¢ can be derived from the non-conservative work. The non-conservative force
in our case is the input force u(t), if we choose to ignore the frictions between the sliding base and the

rail, and the frictions of the pivoting joint. The generalized force is given by

Q. = u(t) (46)
1.3 Kinetic and Potential Energy Functions
The kinetic energy of the inverted pendulum cart system is given by

Tzéva,, +%mv;+%lm92 (47)

Where, I,,, is the moment of inertial of the inverted pendulum around the pivoting point, and v, is the
velocity of the sliding base, v, is the velocity of the pendulum’s center of mass. The velocities can be

related to the generalized coordinates specified above by the following two equations.

vy =X (48)
v =X+0lcosd (49)

Substituting equations (48) and (49) into equations (47) yields



T :%sz +%m[>‘<2 +2(10cos 0)X + 126 cos> e]+% |6 (50)
This, upon simplification, becomes
1 ) - 1 2,2 2 1 2
TZEUW+MD(+mk9um9+5m|9(ms0+5hﬂ (51)

The potential energy of the system is determined by the height of the center of mass of the inverted

pendulum, given by
U =mglcosd (52)
1.4 Lagrangian
The Lagrange’s equation is given by
L=T-U (53)

Using equations (51) and (52), the Lagrangian can be written as
1 ) . 1 2.2 2 1 )2
L= E(m +M)X" + meHcos@+5mI 0° cos H+E 1,0 —mglcos® (54)

1.5 Lagrange’s Equation

Lagrange’s equation of the generalized coordinate is given by the following formula

4 —i=Q (55)
dt\og, ) oq,

Forq = x, the equation becomes



d (aLj oL
o Bl BRI
dt\ ox OX

The partial derivative of L with respect to x is

L _ g+ Mi+m(1dcos 0)
oX

The derivative of % with respect to time t is

9Ly g+ Mg+ m(1dcos &~ 167 sin 6)
dt “ox

The derivative of L with respect to x is zero.

Substituting (58) and (59) into (56), we get
MX + MX +ml& cos @ —ml &> sin & = u(t)

For g = 6, the lagrange’s equation is

ey,
dt\og) 06
The partial derivative of L with respect to 6 is

%: mlxcos @ +ml*dcos’ 0+ 1_6

The derivative of partial T with respect to time is

(56)

(57)

(58)

(59)

(60)

(61)

(62)



%(%) = mlX cos @ — mIx@sin & + mI*d cos” 6 — ml*6* sin 20 + Imé (63)

The derivative of L with respect to 8 is given by

S—;:—ml)'(ésin¢9+mglsin¢9 (64)

Substituting (63) and (64) into (61), we get
mi% cos @ + ml?@ cos® @ —ml*&? sin 26 + Imé —mglsind=0 (65)

Together, equations (16) and (21) comprise the EOM’s of the inverted pendulum system.
1.6 Linearization and Transfer Function Generation

The nonlinear EOM’s (60) and (65) of the system are very hard to deal with. Fortunately, the behavior of
the inverted pendulum when it’s balanced near the upright position can be well modeled by the
linearized EOM'’s. By the coordinates we chose and the origin of the coordinate system, 6 is very small
when the pendulum is near the upright position. Thus we can apply the small angle approximation

where,

sind ~ 6 (66)
cosd ~1 (67)
0~0 (68)

To the EOM’S we just derived and equations (60) and (65) can be simplified as

mX + MX +ml& = u(t) (69)



mi% +(ml* +1_)8-mgld =0 (70)
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