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1 Introduction

Predictive control is a popular and well-established control method in the process
industries— see the tutorial of Rawlings (2000) and the book of Maciejowski (2002)
for overviews. In particular, it has the advantage that input, state and output con-
straints are explicitly incorporated. Most of these methods are found in a discrete-
time setting; however, a continuous-time approach has the advantage that it can
make direct use of (possibly nonlinear) physical system models. Unlike process
systems, it is often straightforward to obtain physical models of mechanical sys-
tems and thus continuous-time methods are particularly appropriate to this appli-
cation area. However, unlike applications in the process industry which typically
have long time constants and correspondingly long sample intervals of a few sec-
onds, mechanical systems typically have fast dynamics and sample intervals less
than 10ms. Hence the optimisation involved in continuous-time predictive control
of mechanical systems gives rise to two interrelated implementation issues: making
time for the optimisation without sacrificing controller performance and making the
optimisation algorithm fast and reliable. In this paper, four approaches to achieve
practical predictive control of mechanical systems are combined: the use of basis-
functions to reduce the number of optimisation parameters, intermittent control to
allow time for optimisation, a fast quadratic programming (QP) algorithm and a
hierarchical approach to control system design.

The predictive pole-placement (PPP) algorithm of Gawthrop and Ronco (2002) is
a continuous-time basis-function based approach. As discussed elsewhere, the
number of basis functions is the order of the controlled system leading to a corre-
spondingly small number of optimisation parameters. In Section 2 of this paper
it is explained how this algorithm can be used within an infermittent formulation
— whereby a continuous-time open-loop control signal is readjusted intermittently
(with interval A,;) (Ronco, Arsan, and Gawthrop, 1999) — which lies between the
extremes of discrete-time and continuous-time control approaches. The combina-
tion of intermittent and predictive pole placement is called intermittent predictive
pole-placement (IPPP) control. Section 3 describes a practical way of solving QP.
Practical experience teaches that a hierarchical approach to control is often more
effective than using a single loop approach. For this reason, Section 2.2 discusses
how the predictive controller can be used as the upper layer of an hierarchical con-
trol systems using fast, simple control loops at lower levels.

The aim of this paper is to verify that this approach can be used for the control
of mechanical systems by the experimental state-constrained control of the lab-
oratory inverted pendulum described in Section 4. The results of this study are
presented and discussed in Section 4.5. Theoretical stability results are available
(Gawthrop, Chen, and Wang, 2005) but not discussed further here.

There are three research areas related to this paper which are now briefly discussed:



physiological control systems, the command governor approach and control of lim-
ited bandwidth channels. The intermittent approach has a long history within the
physiological literature dating back to at least 1947. In particular, Craik (1947)
suggests that: “The human operator behaves basically as an intermittent correction
servo.” and further that “The intermittent corrections consist of ‘ballistic’ move-
ments.” Interpreting “ballistic” as “open-loop” this description of the “human op-
erator” also applies to the intermittent algorithm of Section 2. The command gov-
ernor (CG) approach of Bemporad (1998); Casavola, Mosca, and Papini (2004) is
a closely-related approach to handling input and state constraints. Briefly, the CG
approach has two parts: the design of a “primal” controller which provides high-
performance control whilst ignoring constraints and an optimisation-based CG de-
sign which chooses a piecewise-constant setpoint (parametrised by the scalar pa-
rameter (3(t)), to the primal controller such as to avoid constraints whilst remaining
close to the original setpoint. 5(t) is recomputed at each sample interval. This is
similar to the IPPP approach of this paper insofar as it is the setpoint to an inner
loop that is involved in a moving-horizon optimisation to avoid input and state con-
straints; but it differs in a number of respects: the IPPP uses a set of basis function
in place of the constant, a vector parameter U(t) is computed, and the computed
setpoint is applied over a time interval A,; longer than the basic sample interval A.
The effect of the QP processing bottleneck has a similar effect to that of communi-
cating between the controller and plant using a limited-bandwidth communication
channel. It is known (for example as discussed by Nair and Evans (2003)) that the
latter imposes fundamental restrictions on the stabilisation of the closed-loop sys-
tem. It appears that these ideas would also apply to IPPP.

Section 4 describes the experimental equipment, computer hardware and software,
system modelling, controller design and some experiments. Section 5 concludes
the paper.

2 Intermittent PPP Control (IPPP)

This section briefly summarises the basic theoretical ideas of PPP followed by more
details on the practical implementation as IPPP.

2.1 Outline of PPP

Following Gawthrop and Ronco (2002), the linear systems considered in this paper

are described by:
{;tm) — Az(t) + Bul(t) 0

y(t) = Cx(t)
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Fig. 1. Intermittent control

and the moving-horizon open-loop controller is given by:
w(t,7) = U (T)U(t) (2)

where ¢ is “real time” as in (1), 7 is the moving-horizon time variable, U*(7) is a
ny row vector of functions of 7. The components of U*(7) can be regarded as a
set of basis functions for the control signal v*(¢, 7) and the components of U(¢) the
corresponding weights the values of which are obtained by QP. In the continuous-
time formulation, the control signal is obtained as: u(t) = u*(¢,0). In this paper,
U*(7) is chosen as the free response of an LTI system with state transition matrix
A, and initial condition U

U (1) = e U 3)

The use of exponential weighting functions had been previously suggested by a
number of authors (Cannon and Kouvaritakis, 2000; Wang, 2001). However, those
papers approximate the optimisation solution using a sum of such functions whereas
in this paper precisely n, functions are used in such a way as to give an exact solu-
tion to the unconstrained problem. In this paper, the use of a small number of basis
functions (and corresponding optimisation variables), speeds up real time appli-
cation. Moreover, following (Gawthrop and Ronco, 2002), the basis functions are
explicitly linked to closed-loop system poles.

Given a time-varying setpoint w(t), the corresponding moving horizon setpoint
w*(t, 7) is assumed to be constant and of the form w*(¢,7) = w(t); more compli-
cated versions appear in (Gawthrop and Ronco, 2002). The vector U(t) is to be



chosen to minimise (at a given time t) the quadratic cost function

=5 [ ) — w0 Q) — wt)dr
+ % /OT u*(t, 7) Ru*(t, 7)dr
+ (2*(t, 7o) — 2w) T P(z*(t, 72) — 7)) 4)

subject to constraints on the system input and state which can be mapped on to
input constraints of the form (Gawthrop et al., 2005):

TU(t) < o (5)

where ) € R™*™_ R € R, P € R"*" are positive definite matrices weighting
the system output, input and terminal state respectively. x,, € R"* is the state
corresponding to the the steady-state solution.

The following aspects of PPP are emphasised:

(1) Following Rawlings and Muske (1993), the terminal weighing matrix P is
chosen to correspond to the infinite horizon steady-state solution of the ap-
propriate Ricatti equation and the corresponding closed-loop eigenvalues are
computed.

(2) As discussed by Gawthrop et al. (2005), the basis function generation matrix
A, of (3) is chosen to have the same eigenvalues as those arising from 1.

These two design choices have the following consequences(Gawthrop et al., 2005;
Gawthrop and Ronco, 2002):

(1) The n, basis functions provide an exact solution to the unconstrained problem
(2) The open and closed loop solutions are identical.

2.2 Implementation issues

This subsection introduces the practical issue of optimisation in real time by mov-
ing the optimisation horizon in an intermittent, as opposed to continuous, fashion.
The concept of intermittent control was explicitly introduced by Craik (1947), and
has been implicitly used by Cannon and Kouvaritakis (2000) in the predictive con-
trol context. More details are given by Ronco et al. (1999). The QP algorithm
takes a finite amount of time. In the continuous-time context, it is necessary to take
account of this using an intermittent feedback approach whereby the open-loop
trajectory u*(¢, 7) is implemented between intermittent closing of the loop by tak-
ing a state-measurement and recomputing the open-loop control. In particular with



reference to Figure 1:
u(t) = u(ty, t —tp) = US(t = tp)U(tk) te <t <t (0)

were the times ?; are an ordered set of time instants. In particular the interval
A = try1 — tr > 0 must be large enough to accommodate the optimisation
time. In this paper, it is assumed that A, = A, a constant. Practically, this is
achieved by adding an appropriate wait after the optimisation code 2|, Under cer-
tain circumstances Gawthrop and Ronco (2002, Lemma 2), the open and closed-
loop trajectories are the same in the continuous-time case. Similarly, in the absence
of constraints the open-loop, intermittent and closed-loop trajectories are identical.

In many cases, the system state is not available. In such cases, a state observer
(Kwakernaak and Sivan, 1972) is used to provide a state estimate Z. In this linear
case, such observers are easy to design. However, the performance of the observer
is crucial as both optimisation and constraints are applied to the estimated, not
actual, state.

Input u(t) Output y(t)

y
|

Physical system Local control

i Trajectory State
Hard real—time generator observer
Soft real—time Model-based
optimiser A
Trajectory weights U(t) Est. state x (t)

Fig. 2. Architecture

Figure 2 outlines the architecture of the controller and controlled system. There are
three layers:

Physical The actual system together local control loops and signal conditioning.
Such local control loops are an important part of the design; two examples appear
in Section 4.2.
Hard real-time Kernel space code running at a fixed sample interval A < A,.
At each sample instant
(1) Check if new U received; if so restart trajectory generation:
(a) set; =0

2 The case of time-varying A}, is of practical importance as it would allow for varying

optimisation times whilst making full use of processor power. The difficulty is that step 2
of the soft real-time part of the algorithm requires the value of Ay at the beginning of the
interval in question.



(b) send current &
(2) Update the state estimate = using the observer equations
Soft real-time User space code running within Octave(Eaton, 2002) at a fixed
sample interval A,
(1) Receive the estimated state (t) from observer.
(2) Predict @(t1) from z(t;) and U.
(3) Using &(tx41), perform the QP to generate Uy 1.
(4) Wait until time ¢t = 11
(5) Send Uy to the trajectory generator.

There are two interfaces:

Physical/hard real-time. Analogue-digital converters, encoders and digital-analogue
converters convert the system output y and control signal u between the two do-
mains every As.

Hard real-time/soft real-time. Two real vectors: the trajectory weights U(t) (2)
and state-estimate z(t) each with n, elements are passed between these layers
every Ays. The communication channel is application dependent; in Section 4
the GNU/Linux pipe mechanism within a single memory space is used.

The trajectory generation and observer code within the hard real-time layer is fast
and deterministic; in contrast, the optimisation code within the soft real-time layer
is slow and non-deterministic. Correspondingly, the interface between the physical
and hard real-time layers is high bandwidth and that between the hard real-time and
soft real-time layers is low bandwidth. This two-time-scale division is the essence
of the intermittent approach.

3 Practical Solution of the QP

Equations (4) and (5) define a Quadratic Program (QP). Numerical solutions to this
type of problems have been studied extensively in the literature (see for example,
Luenberger (1984)). In this practically-oriented paper, it is appropriate to use a
practically-orientated solution this is the subject of this section.

There are four types of numerical methods devised for solving this constrained con-
trol problem. They are primal methods, dual methods, penalty and barrier methods
and Lagrange methods. They, respectively, work in the spaces of dimension ny—n.,
ne, Ny and ny + n. where ny is the number of optimisation variables and n, the
number of constraints. In the literature of model predictive control, the primal meth-
ods have dominated the numerical solutions (see for example, Muske and Rawlings
(1993)) until recent years specially tailored interior-point methods applicable to
MPC have appeared (see, for example (Rao, Wright, and Rawlings, 1998)). These
algorithms solve the constrained control problem by utilising the special structure



of the control system.

For simplicity, we will use the notation .J;7, = QZJ%UU%E%;”@)) (etc) and define

The dual problem to the original quadratic problem Luenberger (1969) is described
as follows. Assuming feasibility (i.e. there is an U (¢) such that 'U (¢) < ), the QP
of (4) and (5) is equivalent to

1

masmin[ U (1) JygU(t) + U (0)F + X (CU (1) ~ )] ®)

The minimisation over U(t) is unconstrained and is attained by
U(t) = —Jyy(F+T7)) 9)

Substituting Equation (9) into (8), the dual problem becomes
L r T |
1}12(3((—5)\ HXN—-MNK — §F JooF) (10)

where H = ['J;;TT and K = + + T'J;,F. Thus the dual is also a quadratic
programming problem. Equation (10) is equivalent to

L T L p
r/{121(1;1(§/\ HX+ A K+§7 E™7) (11)
Note that the dual problem may be much easier to solve than the primal problem be-
cause the constraints are simpler. A simple algorithm, called Hildreth’s Quadratic
Programming Procedure (Luenberger, 1969), was proposed for solving this dual
problem. In this algorithm, the direction vectors were selected to be equal to the
basis vectors ¢; = (0,0,...,1...,00). Then the A vector can be varied one compo-
nent at a time. At a given step in the process, having obtained a vector A > 0, we
fix our attention on a single component \;. The objective function may be regarded
as a quadratic function in this single component. We adjust \; to minimise the ob-
jective function. If that requires A; < 0, we set \; = 0. In any case, the objective
function is decreased. Then we consider the next component \; .

If we consider one complete cycle through the components to be one iteration tak-
ing the vector \™ to A™ !, the method can be expressed explicitly as

AP = max (0, w" ) (12)
m 1 = m - m
w; = —h—[kl + Z hij)\j +1 + Z hij)\j ] (13)
i j=1 Jj=i+1
)\act = _(FactJ[;[l]Fgct)_l(’yact + Factjz}lljF) (14)
U(t) = —Jyu(F + TagAact) (15)



Equations (12) and (13) form the basis for the iterative solution for . Noting that
there is no matrix inversion involved in the iterative solutions, this simple procedure
could be used to deal with conflicting constraints, in which case an approximation is
reached by truncating the iteration to get positive \. Thereafter, the active A is used
in Equation (15) to obtain the sub-optimal solution for U(t). Our experience is that
this approach relaxes one or more constraints numerically when conflict occurs. Of
course, in the cases of no conflict of constraints, the exact solution of positive A
can be found using Equation (14), which leads to optimal solution of U(t) using
Equation (15).

These considerations give rise to the following algorithm

Algorithm 1 (Practical QP) Using the current value of the state and setpoint, use
(7) to compute the current value of F'. Then:

(1) Find the optimal unconstrained solution using
Un(t) = —JyoF (16)

(2) Check if all constraints are satisfied with the unconstrained solution: i.e. if
L'Uy(t) — v < 0. If so, then U(t) = Uy(t), and the optimal solution is found.
Otherwise go to step 3.

(3) Set H =TJ;;TT and K = ~ + UJ;; F and calculate the active constraints
using equations(12) and (13).

(4) find the closed-form solutions with the active constraints and prespecified
equality constraints (if any) based on equations (14) and (15) In practice,
a standard linear equation solver, not matrix inversion is used to solve these
equations.

4 The experimental inverted pendulum system

(a) Cart (b) Cart and inverted pendulum

Fig. 3. Experimental equipment



The experimental equipment is based on the Quanser IP-02 “Self-erecting, Linear
Motion, Inverted pendulum” experiment. Figure 3(a) shows a cart running on a hor-
izontal track driven by a DC motor and the smaller gear wheel; the linear position
y 1s measured by an encoder attached to the larger gear wheel. The pendulum is
pivoted on a frictionless shaft and freely swings in the vertical plane. Figure 3(b)
shows the cart and pendulum with the pendulum controlled in the up position.

4.1 Computer hardware and software

The controller was implemented on a 2.66GHz Pentium P4 based processor on a
AICMBS800 motherboard with 512MB DRAM. The encoder signals and analogue
output were handled by a Quanser MultiQ PCI-based data acquisition card. The
software was built upon the Linux 2.4.20 kernel patched to support the Real-time
Applications Interface (RTAI) version 24.1.11. This provides a hard real-time plat-
form which in term supports the Linux Control and Measurement Device Interface
(COMEDI) version 0.7.66 and the corresponding library (comedilib) version 0.7.20
providing access to the data acquisition card | and the Real Time Laboratory RT-
Lab (Christini and Culianu, 2003) providing a high-level programming interface
together with archiving of experimental data.

With reference to Figure 2, the local control loops, state observer and the trajectory
generator were implemented in C and compiled as a kernel module running in hard
real time at 5S00Hz (A = 2 ms) communicating with the data acquisition card via
RTLab and Comedi and to a user interface module (programmed in C++ using the
QT library and running in user space) via shared memory. The observer code was
automatically generated as discussed in Gawthrop and McGookin (2004); the non-
linear controller code was automatically generated using MTT (2002). The model-
based optimiser of Figure 2 was implemented in Octave(Eaton, 2002) using the QP
algorithm of Section 3. It receives the state estimate = from the kernel module via
the user interface and a GNU/Linux pipe and returns the computed U in a similar
way. This soft real-time process was timed using the Octave us1leep command.

4.2 Hierarchical control

Hierarchical control, in the sense that a practical control system is built up out of

a number of nested loops, each designed to achieve a specific local goal, is com-
monplace in control design Skogestad and Postlethwaite (1996). In particular, inner

loops have been used to simplify the design of predictive control Cannon and Kouvaritakis
(2000); Kouvaritakis, Rossiter, and Chang (1992).

3 The driver for this card (multigpci.c) was written by Linh Vu at UNSW and modified by
the first author
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(a) System 1: Using basic cascade control

1| y
%

v — 0 . 9
d + l d + w4 | | u v 4
}—‘ ‘ N }—‘
c3 ~ c2 - ‘ C1 ‘ ‘ Cart l——‘ s }—» Pend. p—>

(b) System 2: Using additional cart velocity controller C3

Fig. 4. Cascade Control Structure. C1 controls the inner-loop (cart velocity v = y), C2
controls the pendulum loop (pendulum angle §) and C3 controls the cart outer-loop (cart
velocity v = ¢). The predictive controller (not shown) controls cart position y to a desired
setpoint (with a constraint on ) using 8, (System 1) or v; (System 2) as control input.

As discussed elsewhere (Gawthrop and Ballance, 2005), the pendulum can be sta-
bilised in the up position using either of the cascade control configurations of Figure
4. In each case, the block labelled C1 is a high-gain proportional controller giving
tight velocity control of the cart position and C2 is a non-linear swing-up-and-hold
controller based on the virtual actuator approach of Gawthrop (2004, 2005). For
the purposes of this paper, the cascade controllers are used merely to stabilise the
controller in the upright position and thus the closed-loop systems corresponding to
Figures 4(a) and 4(b) can be represented by linear state-space equations; the closed
loop system corresponding to 4(a) is referred to as System 1 and that corresponding
to 4(b) is referred to as System 2. The basic cascade controller of Figure 4(a) sta-
bilises the pendulum as a second-order system with prespecified natural frequency
w1 and damping ratio (; whilst leaving the cart effectively open loop giving a dou-
ble integrator effect. The purpose of C3 in Figure 4(b) is to give velocity control of
the cart leading to a single integrator in the corresponding closed loop system.
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4.3  System modelling

System 1: basic cascade control

With reference to Figure 4(a) it can be shown that the transfer function £

04
in Figure 4(a)

s? —wd

s2(s2 + 2Cwy + w?)

(5 + 6.67)(s — 6.67)
s%(s + 13.36)2

Gi(s) =g

= —49.05

In state-space terms:

T = AlfL’ + Blé’d
Y = 0133

T
where Y = (y 9) and

0 26236 00 0 01
—0.68 —26.71 0 0 0.85 T 00
49.05 1541.740 0 —49.05 00

0 0 10 0 10

System 2: cascade control with velocity feedback

- G1 (S)

7)

(18)

(19)

(20)

In Figure 4(b), the outer loop is partially closed using a velocity feedback con-

troller:

9(1 = k’v<Ud — U)

21

where v is the cart velocity as deduced from an observer and v, is the corresponding

desired value. This gives the transfer function - = G5(s)

2 2

925(5% — w) + 5%(s% + 2Cw1 + wi)
(5 + 6.67)(s — 6.67)
s(s+4.54)(s 4+ 3.73 £ j11.43)

Ga(s) = g

= —14.715
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(23)



where g2 = k,g;.

0 26236 0 0 0 01
—0.68 —26.71 —0.25 0 0.25 T 00
Ay = By = C, = (24)
49.05 1541.74 14.72 0 —14.72 00
0 0 1 0 0 10

4.4 IPPP design

A standard observer was designed to be of the form:
&= A7+ By — L(y — 1) (25)

The observer gain was adjusted to give a reasonable trade off between measurement
and state noise as:

T 2.18 —0.04 48.98 9.71 26)
4.64 0.05 42.64 2.18

which gives observer poles at s = —5.13 & j4.03 and s = —15.40 £ j8.24. The
same observer is appropriate to both models when using 6, as the observer input.

Table 1
Closed-loop system poles

System R Poles

1 1 —2.07 £ 52.23,—-13.33 £ j1.15
2 0.25 —1.75, —4.44, —3.94 + 511.56

The IPPP controller was designed for each system choosing output weight () = 1
and control weight R (4) to give similar response in each case. Table 1 shows
the weight R and corresponding closed-loop poles in each case. As discussed
in Section 2, P (4) and A, (3) were chosen using the relevant algebraic Riccati
equation. In particular, and for each system, A, was a 4 x 4 matrix with eigenvalues
given by Table 1 and thus there were 4 basis functions in each case.

The pendulum angle 6 was constrained such that:

|0(t)] < 5° = 0.087rad 27)
This constraint was approximated by imposing upper and lower constraints at the
five time points ¢, = 0.1,0.2,...,0.5 giving ten constraint equations on the state
xr1 = 0.

13



Hence there were 4 weights U(t) (2) to be computed on-line (using the QP algo-
rithm of Section 3) minimising the quadratic cost function (4) subject to the state
constraints (27).

4.5 Experimental Results

Table 2
Summary of Experiments

Y 0 System A, sec

5@ 50b) 1 0.2
5(c) 5d) 1 0.5
56) 50 1 1.0
6(a) 6(b) 2 0.2
6(c) 6(d) 2 0.5
6e) 6(H) 2 1.0

As summarised in Table 2, experiments were conducted corresponding to each of
the cascade configurations of Figures 4(a) and 4(b) for three values of the open-
loop sample interval A,. Following Casavola et al. (2004), a setpoint of increas-
ing amplitude is applied to give on and off constraint behaviour in a single run.
The amplitude increased in steps of 0.05m. Figures 5 and 6 each show show six
graphs plotted against time for a period of 25s. The left-hand graphs show the sys-
tem output ym (cart position) obtained from both experiment and simulation; the
right-hand graphs shows the corresponding constrained state frad (pendulum an-
gle) together with the upper and lower limits of § = +5° = +0.087rad implied by
27).

The results of the six experiments of Table 2 have the following features:

(1) The RHP zero at s = 6.67 leads to the typical reverse response appearing at
the setpoint changes.

(2) The control signal first responds to the setpoint change at t = A;.

(3) The intermittent approach performs badly on system 1; however, the approach
works well for system 2.

(4) For t > 10, the increasing setpoint amplitude leads to the constraints on the
state § being active around setpoint changes; these constraints are approxi-
mately enforced.

The effect noted in item 3 can be explained as follows. System 1 (17) contains a
double integrator (2 poles at s = 0). This makes the open-loop trajectory sensitive
to disturbances and unmodelled dynamics and the effect gets worse increasing A,
from 0.2 (Figure 5(a)) though 0.5 (Figure 5(c)) to 1.0 (Figure 5(e)). On the other

14



hand, the single integrator (pole at s = 0) in System 2 (22) has much reduced sensi-
tivity and the corresponding controller performs well for all three sample intervals
of Figures 6(a)—6(e).

The effect noted in item 4 arises from two sources: the approximate nature of Hil-
dreth’s algorithm (Section 3 ) with a finite number of iterations and the pointwise
nature of the constraints. On the other hand, the approximation allows the compu-
tations to proceed at these values of A, even though the QP algorithm is imple-
mented in an interpretive language.

5 Conclusions

An implementation of intermittent linear-quadratic predictive pole-placement con-
trol is experimentally shown to achieve good performance when controlling a presta-
bilised inverted pendulum. Sample rates commensurate with the control of a me-
chanical system are achieved using a standard PC architecture, real-time Linux and
a simple interpretive implementation of the QP algorithm. Clearly, even faster sam-
pling could be achieved using special purpose hardware and a compiled version of
the QP algorithm.

As noted in Section 4.2, there would be practical advantages in using a time-varying
open-loop interval Ay; this would require significant changes to the algorithm of
Section 4.2 and would be an interesting topic for further research.

The intermittent open-loop nature leads to poor performance when controlling an
unstable system (system 1 containing a double integrator); however it works well on
the system containing a single integrator. The paper emphasises the utility of simple
inner control loops to enhance the performance of the outer, more sophisticated,
control loop. Future work will consider the joint design of inner-loop controller,
basis function generator and the predictive control parameters.

Although in practice it will be impossible to completely avoid constraint violation,
we believe that the effect can be ameliorated by appropriate choice of basis func-
tions and time points ¢.; this will be the subject of future work.

The Introduction mentions interesting links to other research areas: physiological
control systems and control over finite-bandwidth channels; these topics will be the
subject of future research.
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