139,496 research outputs found

    Integrin activation takes shape.

    Get PDF
    Integrins are cell surface adhesion receptors that are essential for the development and function of multicellular animals. Here we summarize recent findings on the regulation of integrin affinity for ligand (activation), one mechanism by which cells modulate integrin function. The focus is on the structural basis of integrin activation, the role of the cytoplasmic domain in integrin affinity regulation, and potential mechanisms by which activation signals are propagated from integrin cytoplasmic domains to the extracellular ligand-binding domain

    Skap2 is required for β2 integrin-mediated neutrophil recruitment and functions.

    Get PDF
    Integrin activation is required for neutrophil functions. Impaired integrin activation on neutrophils is the hallmark of leukocyte adhesion deficiency (LAD) syndrome in humans, characterized by impaired leukocyte recruitment and recurrent infections. The Src kinase-associated phosphoprotein 2 (Skap2) is involved in integrin functions in different leukocyte subtypes. However, the role of Skap2 in β2 integrin activation and neutrophil recruitment is unknown. In this study, we demonstrate the crucial role of Skap2 in regulating actin polymerization and binding of talin-1 and kindlin-3 to the β2 integrin cytoplasmic domain, thereby being indispensable for β2 integrin activation and neutrophil recruitment. The direct interaction of Skap2 with the Wiskott-Aldrich syndrome protein via its SH3 domain is critical for integrin activation and neutrophil recruitment in vivo. Furthermore, Skap2 regulates integrin-mediated outside-in signaling events and neutrophil functions. Thus, Skap2 is essential to activate the β2 integrins, and loss of Skap2 function is sufficient to cause a LAD-like phenotype in mice

    The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    Get PDF
    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development

    Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability.

    Get PDF
    Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7β1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability

    A role for Syk-kinase in the control of the binding cycle of the β2 integrins (CD11/CD18) in human polymorphonuclear neutrophils

    Get PDF
    A fine control of β2 integrin (CD11/CD18)-mediated firm adhesion of human neutrophils to the endothelial cell monolayer is required to allow ordered emigration. To elucidate the molecular mechanisms that control this process, intracellular protein tyrosine signaling subsequent to β2 integrin-mediated ligand binding was studied by immunoprecipitation and Western blotting techniques. The 72-kDa Syk-kinase, which was tyrosine-phosphorylated upon adhesion, was found to coprecipitate with CD18, the β-subunit of the β2 integrins. Moreover, inhibition of Syk-kinase by piceatannol enhanced adhesion and spreading but diminished N-formyl-Met-Leu-Phe-induced chemotactic migration. The enhancement of adhesiveness was associated with integrin clustering, which results in increased integrin avidity. In contrast, piceatannol had no effect on the surface expression or on the affinity of β2 integrins. Altogether, this suggests that Syk-kinase controls alternation of β2 integrin-mediated ligand binding with integrin detachment

    Engineered microenvironments for synergistic VEGF - integrin signalling during vascularization

    Get PDF
    We have engineered polymer-based microenvironments that promote vasculogenesis both in vitro and in vivo through synergistic integrin-growth factor receptor signalling. Poly(ethyl acrylate) (PEA) triggers spontaneous organization of fibronectin (FN) into nanonetworks which provide availability of critical binding domains. Importantly, the growth factor binding (FNIII12-14) and integrin binding (FNIII9-10) regions are simultaneously available on FN fibrils assembled on PEA. This material platform promotes synergistic integrin/VEGF signalling which is highly effective for vascularization events in vitro with low concentrations of VEGF. VEGF specifically binds to FN fibrils on PEA compared to control polymers (poly(methyl acrylate), PMA) where FN remains in a globular conformation and integrin/GF binding domains are not simultaneously available. The vasculogenic response of human endothelial cells seeded on these synergistic interfaces (VEGF bound to FN assembled on PEA) was significantly improved compared to soluble administration of VEGF at higher doses. Early onset of VEGF signalling (PLCγ1 phosphorylation) and both integrin and VEGF signalling (ERK1/2 phosphorylation) were increased only when VEGF was bound to FN nanonetworks on PEA, while soluble VEGF did not influence early signalling. Experiments with mutant FN molecules with impaired integrin binding site (FN-RGE) confirmed the role of the integrin binding site of FN on the vasculogenic response via combined integrin/VEGF signalling. In vivo experiments using 3D scaffolds coated with FN and VEGF implanted in the murine fat pad demonstrated pro-vascularization signalling by enhanced formation of new tissue inside scaffold pores. PEA-driven organization of FN promotes efficient presentation of VEGF to promote vascularization in regenerative medicine applications

    Constitutive Association of Tie1 and Tie2 with Endothelial Integrins is Functionally Modulated by Angiopoietin-1 and Fibronectin

    Get PDF
    Functional cross-talk between Tie2 and Integrin signaling pathways is essential to coordinate endothelial cell adhesion and migration in response to the extracellular matrix, yet the mechanisms behind this phenomenon are unclear. Here, we examine the possibility that receptor cross-talk is driven through uncharacterized Tie-integrin interactions on the endothelial surface. Using a live cell FRET-based proximity assay, we monitor Tie-integrin receptor recognition and demonstrate that both Tie1 and Tie2 readily associate with integrins α5ß1 and αVß3 through their respective ectodomains. Although not required, Tie2-integrin association is significantly enhanced in the presence of the extracellular component and integrin ligand fibronectin. In vitro binding assays with purified components reveal that Tie-integrin recognition is direct, and further demonstrate that the receptor binding domain of the Tie2 ligand Ang-1, but not the receptor binding domain of Ang-2, can independently associate with α5ß1 or αVß3. Finally, we reveal that cooperative Tie/integrin interactions selectively stimulate ERK/MAPK signaling in the presence of both Ang-1 and fibronectin, suggesting a molecular mechanism to sensitize Tie2 to extracellular matrix. We provide a mechanistic model highlighting the role of receptor localization and association in regulating distinct signaling cascades and in turn, the angiogenic switch
    corecore