2,697 research outputs found

    Transition from Islanded to grid-connected mode of microgrids with voltage-based droop control

    Get PDF
    Microgrids are able to provide a coordinated integration of the increasing share of distributed generation (DG) units in the network. The primary control of the DG units is generally performed by droop-based control algorithms that avoid communication. The voltage-based droop (VBD) control is developed for islanded low-voltage microgrids with a high share of renewable energy sources. With VBD control, both dispatchable and less-dispatchable units will contribute in the power sharing and balancing. The priority for power changes is automatically set dependent on the terminal voltages. In this way, the renewables change their output power in more extreme voltage conditions compared to the dispatchable units, hence, only when necessary for the reliability of the network. This facilitates the integration of renewable units and improves the reliability of the network. This paper focusses on modifying the VBD control strategy to enable a smooth transition between the islanded and the grid-connected mode of the microgrid. The VBD control can operate in both modes. Therefore, for islanding, no specific measures are required. To reconnect the microgrid to the utility network, the modified VBD control synchronizes the voltage of a specified DG unit with the utility voltage. It is shown that this synchronization procedure significantly limits the switching transient and enables a smooth mode transfer

    Control of Transient Power during Unintentional Islanding of Microgrids

    Get PDF
    In inverter-based microgrids, the paralleled inverters need to work in grid-connected mode and stand-alone mode and to transfer seamlessly between the two modes. In grid-connected mode, the inverters control the amount of power injected into the grid. In stand-alone mode, however, the inverters control the island voltage while the output power is dictated by the load. This can be achieved using the droop control. Inverters can have different power set points during grid-connected mode, but in stand-alone mode, they all need their power set points to be adjusted according to their power ratings. However, during sudden unintentional islanding (due to loss of mains), transient power can flow from inverters with high power set points to inverters with low power set points, which can raise the dc-link voltage of the inverters causing them to shut down. This paper investigates the transient circulating power between paralleled inverters during unintentional islanding and proposes a controller to limit it. The controller monitors the dc-link voltage and adjusts the power set point in proportion to the rise in the voltage. A small-signal model of an islanded microgrid is developed and used to design the controller. Simulation and experimental results are presented to validate the design

    Reconfigurable control scheme for a PV microinverter working in both grid connected and island modes

    Full text link
    In this paper, a photovoltaic (PV) microinverter capable of operating in both island mode and grid-connected mode by means of a reconfigurable control scheme is proposed. The main advantage of control reconfiguration is that in grid-connected mode, the microinverter works as a current source in phase with the grid voltage, injecting power to the grid. This is the operation mode of most commercial grid-connected PV microinverters. The idea is to provide those microinverters with the additional functionality of working in island mode without changing their control algorithms for grid-connected mode, which were developed and refined over time. It is proposed that in island mode, the microinverter control is reconfigured to work as a voltage source using droop schemes. These schemes consist in implementing P/Q strategies in the inverters, in order to properly share the power delivered to the loads. The aim of the paper is to show that the proposed control reconfiguration is possible without dangerous transients for the microinverter or the loads. Simulation and experimental results on an 180-W PV microinverter are provided to show the feasibility of the proposed control strategy.This work was supported by the Spanish Ministry of Science and Innovation under Grant ENE2009-13998-C02-02.Trujillo Rodríguez, CL.; Velasco De La Fuente, D.; Garcerá, G.; Figueres Amorós, E.; Guacaneme Moreno, JA. (2012). Reconfigurable control scheme for a PV microinverter working in both grid connected and island modes. IEEE Transactions on Industrial Electronics. 59:101-111. https://doi.org/10.1109/TIE.2011.2177615S1011115

    Microgrid Stability Controller Based on Adaptive Robust Total SMC

    Get PDF
    This paper presents a microgrid stability controller (MSC) in order to provide existing distributed generation units (DGs) the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC) system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances. The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing the DGs’ output power. When the microgrid is operating in islanded mode, it provides voltage and frequency support, while guaranteeing seamless transition between the two operation modes. Simulation and experimental results show the effectiveness of the proposed approach

    Comparative study of energy management strategies in collaborative microgrids of domestic prosumers

    Get PDF
    An optimization model is proposed to manage a residential microgrid including a charging spot with a vehicle-togrid system and renewable energy sources. We consider the microgrid operated in grid-connected mode. The model is executed one-day-ahead and generates a schedule for all components of the microgrid. The microgrids are ubicated in Xermade, Galicia, Spain.Postprint (published version

    Autonomous Control Strategy of DC Microgrid for Islanding mode using Power Line Communication

    Get PDF
    This paper proposes a DC-bus signaling (DBS) method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter???s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed

    Transient Stability Analysis for Grid-Forming Inverters Transitioning from Islanded to Grid-Connected Mode

    Get PDF
    This paper addresses the transient stability of grid-forming (GFM) inverters when transitioning from the islanded to grid-connected mode. It is revealed that the reconnection of the GFM inverters to the main grid can be equivalent to a step change of the active power reference, whose impact is closely related with the local load, active power reference of GFM inverter, and short-circuit ratio (SCR) of the grid. Such equivalent disturbance may cause GFM inverters lose the synchronism with the grid. To avoid loss of synchronization, the existence of equilibria of GFM inverter after reconnecting it with the grid is examined, considering the varying SCR. Then, the parametric effects of power controllers on the transient stability are characterized by using phase portraits, which shed clear insights into the controller design for reliably reconnecting GFM inverters with grid. Lastly, all the theoretical findings are confirmed by experimental tests

    Performance Optimisation of Standalone and Grid Connected Microgrid Clusters

    Get PDF
    Remote areas usually supplied by isolated electricity systems known as microgrids which can operate in standalone and grid-connected mode. This research focus on reliable operation of microgrids with minimal fuel consumption and maximal renewables penetration, ensuring least voltage and frequency deviations. These problems can be solved by an optimisation-based technique. The objective function is formulated and solved with a Genetic Algorithm approach and performance of the proposal is evaluated by exhaustive numerical analyses in Matlab

    Interactive Multi-level planning for energy management in clustered microgrids considering flexible demands

    Get PDF
    This paper presents a novel interactive multi-level planning strategy for the energy management of distribution networks with clustered microgrids (CMGs). CMGs are a group of microgrids with multiple renewable energy resources that comprise various technologies, such as photovoltaic systems, wind turbines, micro turbines and electric vehicles. This study develops an innovative multi-level optimization framework for the energy management coordination between microgrids and CMGs in the lower level, between clusters and distribution systems, and finally between distribution systems and upstream networks in the upper level. Accordingly, an hourly optimal energy management (HOEM) system is applied to minimize the multi-objective objective function for each level. The lower level may be operated in islanded or grid-connected mode in some hours. This is decided by changing switches between MGs, clusters, and grids, while the upper level is only operated in the grid-connected mode. Moreover, a demand response program that has a great effect on the hourly planning of switches is modeled in the upper level. The proposed model is tested on CMGs and actual distribution systems. The results show the significance of this planning strategy in the techno-economic aspects and optimal power transaction in the distribution system operation.© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode

    Full text link
    [EN] The results concerning the integration of a set of power management strategies and serial communications for the efficient coordination of the power converters composing an experimental DC microgrid is presented. The DC microgrid operates in grid connected mode by means of an interlinking converter. The overall control is carried out by means of a centralized microgrid controller implemented on a Texas Instruments TMS320F28335 DSP. The main objectives of the applied control strategies are to ensure the extract/inject power limits established by the grid operator as well as the renewable generation limits if it is required; to devise a realistic charging procedure of the energy storage batteries as a function of the microgrid status; to manage sudden changes of the available power from the photovoltaic energy sources, of the load power demand and of the power references established by the central controller; and to implement a load shedding functionality. The experimental results demonstrate that the proposed power management methodology allows the control of the power dispatch inside the DC microgrid properly.This work has been cofinanced by the Spanish Ministry of Economy and Competitiveness (MINECO) and by the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2.Salas-Puente, RA.; Marzal-Romeu, S.; González-Medina, R.; Figueres Amorós, E.; Garcerá, G. (2017). Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode. Energies. 10(10):1-25. https://doi.org/10.3390/en10101627S1251010Baek, J., Choi, W., & Chae, S. (2017). Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid. Energies, 10(3), 373. doi:10.3390/en10030373Patrao, I., Figueres, E., Garcerá, G., & González-Medina, R. (2015). Microgrid architectures for low voltage distributed generation. Renewable and Sustainable Energy Reviews, 43, 415-424. doi:10.1016/j.rser.2014.11.054Ma, T., Yahoui, H., Vu, H., Siauve, N., & Morel, H. (2017). A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network. Buildings, 7(4), 42. doi:10.3390/buildings7020042Lin, P., Wang, P., Xiao, J., Wang, J., Jin, C., & Tang, Y. (2018). An Integral Droop for Transient Power Allocation and Output Impedance Shaping of Hybrid Energy Storage System in DC Microgrid. IEEE Transactions on Power Electronics, 33(7), 6262-6277. doi:10.1109/tpel.2017.2741262Kakigano, H., Miura, Y., & Ise, T. (2010). Low-Voltage Bipolar-Type DC Microgrid for Super High Quality Distribution. IEEE Transactions on Power Electronics, 25(12), 3066-3075. doi:10.1109/tpel.2010.2077682Salomonsson, D., Soder, L., & Sannino, A. (2008). An Adaptive Control System for a DC Microgrid for Data Centers. IEEE Transactions on Industry Applications, 44(6), 1910-1917. doi:10.1109/tia.2008.2006398Xu, L., & Chen, D. (2011). Control and Operation of a DC Microgrid With Variable Generation and Energy Storage. IEEE Transactions on Power Delivery, 26(4), 2513-2522. doi:10.1109/tpwrd.2011.2158456Nejabatkhah, F., & Li, Y. W. (2015). Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Transactions on Power Electronics, 30(12), 7072-7089. doi:10.1109/tpel.2014.2384999Lu, X., Guerrero, J. M., Sun, K., & Vasquez, J. C. (2014). An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication With DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy. IEEE Transactions on Power Electronics, 29(4), 1800-1812. doi:10.1109/tpel.2013.2266419Chen, D., & Xu, L. (2012). Autonomous DC Voltage Control of a DC Microgrid With Multiple Slack Terminals. IEEE Transactions on Power Systems, 27(4), 1897-1905. doi:10.1109/tpwrs.2012.2189441Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G., & Castilla, M. (2011). Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Transactions on Industrial Electronics, 58(1), 158-172. doi:10.1109/tie.2010.2066534Vasquez, J., Guerrero, J., Miret, J., Castilla, M., & Garcia de Vicuna, L. (2010). Hierarchical Control of Intelligent Microgrids. IEEE Industrial Electronics Magazine, 4(4), 23-29. doi:10.1109/mie.2010.938720Unamuno, E., & Barrena, J. A. (2015). Hybrid ac/dc microgrids—Part II: Review and classification of control strategies. Renewable and Sustainable Energy Reviews, 52, 1123-1134. doi:10.1016/j.rser.2015.07.186Feng, X., Shekhar, A., Yang, F., E. Hebner, R., & Bauer, P. (2017). Comparison of Hierarchical Control and Distributed Control for Microgrid. Electric Power Components and Systems, 45(10), 1043-1056. doi:10.1080/15325008.2017.1318982Kaur, A., Kaushal, J., & Basak, P. (2016). A review on microgrid central controller. Renewable and Sustainable Energy Reviews, 55, 338-345. doi:10.1016/j.rser.2015.10.141Wu, D., Tang, F., Dragicevic, T., Guerrero, J. M., & Vasquez, J. C. (2015). Coordinated Control Based on Bus-Signaling and Virtual Inertia for Islanded DC Microgrids. IEEE Transactions on Smart Grid, 6(6), 2627-2638. doi:10.1109/tsg.2014.2387357Shi, D., Chen, X., Wang, Z., Zhang, X., Yu, Z., Wang, X., & Bian, D. (2018). A Distributed Cooperative Control Framework for Synchronized Reconnection of a Multi-Bus Microgrid. IEEE Transactions on Smart Grid, 9(6), 6646-6655. doi:10.1109/tsg.2017.2717806Dou, C., Zhang, Z., Yue, D., & Zheng, Y. (2017). MAS-Based Hierarchical Distributed Coordinate Control Strategy of Virtual Power Source Voltage in Low-Voltage Microgrid. IEEE Access, 5, 11381-11390. doi:10.1109/access.2017.2717493Bracale, A., Caramia, P., Carpinelli, G., Mancini, E., & Mottola, F. (2015). Optimal control strategy of a DC micro grid. International Journal of Electrical Power & Energy Systems, 67, 25-38. doi:10.1016/j.ijepes.2014.11.003Yue, J., Hu, Z., Li, C., Vasquez, J. C., & Guerrero, J. M. (2017). Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System. Energies, 10(7), 916. doi:10.3390/en10070916Gao, L., Liu, Y., Ren, H., & Guerrero, J. (2017). A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing. Energies, 10(8), 1116. doi:10.3390/en10081116Operating Instructions Valve Regulated Stationary Lead-Acid Batterieshttp://www.hoppecke-us.com/tl_files/hoppecke/Documents/HO-US/Operating_Instructions_sealed_stationary_lead_acid_batteries_en1111.pdfTAB Batterieshttp://www.tabspain.com/wp-content/uploads/informacion-tecnica/renovables/curvas-y-tablas/din-41773-y-din-41774-para-baterias-pzs.pdfZhao, J., & Dörfler, F. (2015). Distributed control and optimization in DC microgrids. Automatica, 61, 18-26. doi:10.1016/j.automatica.2015.07.015Eghtedarpour, N., & Farjah, E. (2014). Power Control and Management in a Hybrid AC/DC Microgrid. IEEE Transactions on Smart Grid, 5(3), 1494-1505. doi:10.1109/tsg.2013.2294275Installation, Commissioning and Operation Handbook for Gel-Vrla-Batterieshttp://www.sonnenschein.org/PDF%20files/GelHandbookPart2.pdfAlLee, G., & Tschudi, W. (2012). Edison Redux: 380 Vdc Brings Reliability and Efficiency to Sustainable Data Centers. IEEE Power and Energy Magazine, 10(6), 50-59. doi:10.1109/mpe.2012.2212607Aryani, D., & Song, H. (2016). Coordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode. Energies, 9(6), 469. doi:10.3390/en9060469Dragicevic, T., Guerrero, J. M., Vasquez, J. C., & Skrlec, D. (2014). Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability. IEEE Transactions on Power Electronics, 29(2), 695-706. doi:10.1109/tpel.2013.2257857Tian, Y., Li, D., Tian, J., & Xia, B. (2017). State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer. Electrochimica Acta, 225, 225-234. doi:10.1016/j.electacta.2016.12.119Standard for Interconnecting Distributed Resources with Electric Power Systemshttp://fglongatt.org/OLD/Archivos/Archivos/SistGD/IEEE1547.pd
    corecore