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Abstract 

Remote and regional areas are usually supplied by isolated and self-sufficient electricity 

supply systems. These systems, often referred to as microgrids, rely on renewable energy-based 

non-dispatchable distributed energy resources to reduce the overall cost of electricity 

production. Microgrids can operate in the standalone as well as the interconnected mode. 

Standalone hybrid remote area microgrids, can provide reasonably priced electricity in 

geographically isolated and edge of grid locations, for operators. To achieve a reliable 

operation of microgrids alongside minimal fossil fuel consumption and maximum penetration 

of renewables, the voltage and frequency should be maintained to within acceptable limits.  

Emergencies, such as overloading and excessive generation by renewable sources, can 

lead to significant voltage or frequency deviation in these power systems. As a result, protective 

relays may trip some of the sources or loads, to prevent system instability. These problems can 

be resolved by utilising the optimisation-based technique that is proposed and validated within 

this research. To this end, a suitable optimisation problem is needed.  

In this research an objective function is developed, which focuses on minimizing the 

power loss in the tie-lines amongst microgrids and the dependency of a microgrid to its 

neighbouring microgrids, as well as maximizing the contribution of renewable sources in 

electricity generation while minimizing the fuel consumption and greenhouse gas emissions 

from conventional generators along with frequency and voltage deviations.  

Additionally, this research will propose a new market model that maximises returns for 

the investment of energy providers, microgrid clusters and distributed network operator. The 

formulated objective function is then solved with a Genetic Algorithm, using different 

combinations of operators. The performance of the proposal is evaluated by several numerical 

analyses in Matlab.
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1 

  Introduction 

Traditionally, electric power-based companies have been vertically integrated and one 

company has controlled the generation, transmission and distribution facilities. However, in 

recent years, power companies have gone through a series of restructures which have given 

rise to independent generation, distribution and transmission authorities resulting in the 

emergence of market models. Although these companies are playing their role in maintaining 

the balance between supply and demand, but majority of countries around the world have 

experienced a significant increase in renewable power generation and distributed energy 

resources, which is predicted to rise in the coming future years [1-2]. To cope up with this 

situation, new power supply models have emerged and the role of renewables needs to be 

managed. Customers are now becoming prosumers. Microgrid technology has emerged in the 

last decade, as one of the rapidly growing electricity provision for both remote areas and urban 

distribution, providing significant benefits to customers and distribution network operators. In 

this thesis the optimisation of microgrids and microgrid clusters is carried out for both islanded 

and grid connected modes. 

1.1 Microgrid  

Microgrid, by definition, is a group of interconnected, distributed energy resources and 

loads with definite technical boundaries which act as a single controllable entity, as presented 

in Fig 1.1.  
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Fig 1.1 An overview of generation and demand in a microgrid. 

The concept of microgrids was introduced by Thomson Edison in 1882, when his 

company installed 50 DC-microgrids during four years, but the massive utility grids with large 

centralised power plants faded them away [3]. In recent years this microgrid technology is 

catching attention because of its several benefits. Some advantages are listed in Table 1.1. 

Microgrids are well known for their independent handling of demand management 

problems. Maintaining the supply and demand balance instantaneously, has always been a 

crucial issue, especially in recent years, resulting from the high rate of peak load growth. In the 

traditional way of the demand-supply match, generation conforms to load consumption 

however, this method is not always applicable and cost-effective. 

1.2 Remote Areas 

Electricity systems in remote area locations, usually work in the state of a standalone 

system. The concept of self-sufficient power systems, for remote area towns, arose from the 

fact that the expansion of the utility feeder over long distances, is not economical, considering 

that the load demand is that of only a few megawatts [4]. The difficulty to extend the utility 

grids in remote areas result in the use of independent diesel generators for the supply of  
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Table 1.1. Benefits of microgrid. 

Value Proposition Explanation 

Reliability  

 Off-grid capability for grid outages 

 Ensure load prioritisation with essential and non-essential loads 

 Management of synchronisation and re-synchronisation  

 Monitoring of energy reserves  

 Rapid resolution of issues 

Efficiency  

 Power quality 

 Optimal dispatching and unit commitment 

 Managing of intermittent energy sources 

 Ease of maintenance and operation 

Sustainability  
 Control of system variables like cost, revenue, emissions etc.  

 Possibility to incorporate software models for control purpose 

Security   Resilient to natural disasters and provide rapid restoration 

 

electricity. However, the cost of fuel has a negative impact on the economic development of 

these regions [5]. The natural provision of renewable energy sources in remote locations can 

solve the power supply problems when used alongside diesel generator. The inclusion of 

renewables inclusion result in only the maintainace cost but main problem is to look on the 

cost of fuelling and transporting this fuel for the diesel denerators, creates another problem. 

[6-8]. Therefore, with increased interest in the concept of microgrid technology, for remote 

locations, many problems have arisen and a variety of solutions have been 
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Remote Area Location

Operator

Microgrid

 

Fig 1.2 Schematic diagram for the remote area location with microgrid. 
 

proposed by microgrid developers and researchers [9-11]. In previous research, it has been 

indicated that the main architecture of the proposed microgrid has been hybrid in nature, in that 

the microgrid includes storage systems with renewables, However they are usually intermittent 

by nature. which can often increase load management problems [12]. A schemetic diagram ,of 

a remote area location with a microgrid, is presented in Fig. 1.2. 

1.3 Research Motivation  

Cost management research, has so far focused mainly on microgrids, with less attention 

given to the unpredictable nature of the distributed resources of generation, which leads to 

crucial problems in the area of the transmission and distribution, such as the creation of a 

demand-supply imbalance and a cold load pick up. The main objectives of this research are to 

firstly examine the operation of microgrids, specifically in cases of emergency situations, in 

which overloading and excessive generation, occurs and secondly identify appropriate 

strategies for cost minimisation.  

On the other hand, an innovative stochastic based power system is proposed for microgrid 

applications. Practical photovoltaic and wind generators are designed and simulated in Matlab. 
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Their numerical analysis is then carried out by the Monte Carlo principle. The load pattern is 

randomly generated and included within the planning horizon. The minimal optimum values 

of dispatchable energy sources are identified using a specialised control technique. Thus 

attempts are made to create a realistic scenario for analysis, under the specified time series 

sequence.  

The above studies are provided in the research literature and correlate with many open 

research topics, which can be resolved. Achieving the successful operation of microgrids, in 

remote area locations. The problems that require resolution include: 

 inaccessibility to energy services and chronic power shortages in remote areas,  

 the need to build a sustainable and robust power transmission and distribution system in 

remote area towns,  

 power systems for remote locations should be reliable, intelligent and environment 

friendly,  

 the cost of fuel for diesel generators and their transportation to long distances,  

 optimal operation of microgrids in remote locations by giving consideration to 

economic factors,  

 successful emergency situation handling, for these off-grid areas, and last but not the 

least,  

 minimise costs of operation without the deviation of the technical factors. 

1.4 Research Objectives 

The primary goal of this research is to develop an optimisation approach for the suitable 

operation of standalone and microgrid clusters. Thereby, the specific research objectives are: 

Objective 1: Developing an optimisation-based controller, for remote area microgrids, to 
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address the emergencies. 

Objective 2: Improving the techniques used to regulate the voltage magnitude and frequency 

in a standalone microgrid at least cost. 

Objective 3: Considering various system features such as the control of resources, the life 

loss value of available storage systems, power contribution from neighbouring 

microgrids, and the power loss in tie lines. 

Objective 4: Evaluating the interplay, between different operators of the optimisation solver, 

used in solving the considered problem. 

Objective 5: Proposing a new market model to enable optimization of clustered microgrids 

connected by distribution networks in conditions of energy balance, and 

emergency situations.  

1.5 Scope of the Thesis 

This research aims to determine the best strategy for the safe and cost-effective operation, 

of the designed microgrid system, working both in the autonomous and grid connected mode, 

with optimum value of its sources. Along with the uncertain nature of solar, wind and load 

demands, to achieve the best possible solution, for the stable operation of the designed 

microgrid. 

1.6 Significance of Research 

Microgrid is considered to be the future of power distribution networks, with the benefit 

of lower cost, self-healing, minimised power losses and maximum savings of energy, higher 

reliability and appreciable power generation ratio, from renewable based energy resources. 

This research focuses on achieving the lowest cost of operation within acceptable limits of 

technical factors, as well as the usage of a battery storage system so as to reduce the uncertainty 
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of the generation of renewable energy. The main contribution of this research, is to address the 

emergency situation which can occur within hybrid power systems used for remote towns. This 

work also aims for a pollution free environment by reducing the emission factors. The 

aforementioned factors are explained in existing literature within limited publications. 

Therefore, an additional aim of this research, is to address the significant gap of available 

research, by addressing particular research issues and then solving them through the use of 

optimisation techniques. 

1.7 Dissertation Structure 

The remainder of this thesis is organised as follows. 

 Chapter 2 describes a brief literature review of the existing, related research, on the 

optimisation of microgrids. This chapter provides an evaluation and insight of the 

microgrids operation methods, with different sources of electricity generation. It also 

explains the different existing methods within the field of microgrid control and 

optimisation that are applicable to the remote location microgrids.  

 Chapter 3 defines the main challenges and research issues which needs to be solved so 

as to achieve the goal of the safe and economic operation of microgrids.  

 Chapter 4 proposes the models which are used to develop the main framework of the 

microgrid, in addition to the analysis methods which are required for the safe operation 

and optimisation solver.  

 In Chapter 5, the optimisation solver, which is used to determine the most suitable 

control variables of an optimisation problem, for a standalone microgrid are discussed, 

while considering the scaling operator and its various functions inside the solver.  
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 Chapter 6 proposes an optimisation based controller, which operates under a 

sequential-based multilayer action scheme, to address the emergencies of overloading 

and excessive generation in clusters of microgrids.  

 Chapter 7 proposes a market model to enable optimization of clustered but sparse 

microgrids, connected by distribution networks in conditions of energy balance, and 

emergency situations such as overloading or over-generation, within the cluster. 

 Chapter 8 briefly explains the completed dissertation work, by highlighting the goals 

achieved and explaining the advantages of the proposed phenomenon. It also identifies 

the key points that can provide pathways for future work in this area.
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  Literature Review 

 Introduction 

A microgrid is usually referred to as a cluster of Distributed Energy Resources (DERs) 

and loads within close proximity and connected with each other through a network [13]. It is 

believed to be a very good and advantageous power system, for electricity supply, especially 

for the edge of grid areas and remote locations. This is because it can operate in the capacity 

of standalone, as well as grid-connected modes [14]. From the perspective of energy generation 

economics hybrid microgrids that are composed of some dispatchable units, like diesel 

generators or gas opertaed synchronous generators, as well as non-dispatchable renewable 

sources, for instance solar and wind, prove to be very beneficial for the microgrid owners[15]. 

Such microgrids usually have energy storage systems, such as batteries, to become self-

adequate during the intermittencies of renewable sources. 

Microgrids are growing in power industry as an essential part. For instance, [16] provides 

an insight to four types of microgrids which can be used in different situations while applying 

the same technology. First is known as costomer microgrids or true microgrids.which are 

operated from a single point of common coupling (PCC) and are self goverened in nature e.g. 

ship microgrids. Second type is Utility or community microgrids which involves a segment of 

the regulated utility grid, whereas virtual microgrids (commonly known as vgrids) is the third 

type in power industry. Vgrids have distributed energy resources (DERs) at multilpe site 

locations but they all are coordinated such that they can be presented as a single control entity 
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to the main grid. Lastly microgrids existing in remote areas are those which are not able to 

operated in a grid-connected mode and are reffered to as isolted power systems. 

 Microgrids in Remote Area Locations 

Due to technical and geographical limitations, it is not always possible to extend the 

existing transmission and distribution lines to very remote and regional areas. Thereby, utilities 

usually build a local power generation and distribution network at such locations. As an 

example, with the exception of the towns on Australia’s East Coast (these are supplied through 

the National Electricity Market (NEM)) and those few towns located in the South West (these 

are supplied through the South-West Interconnected System (SWIS)), most other towns in 

Australia’s regional and remote areas, (in which almost 31% of the Australian population live), 

are supplied by local generators running on diesel or gas [17]. However, in addition to this type 

of generation being expensive, the fuel transportation is sometimes difficult because of roads’ 

seasonal inaccessibility, and it pollutes the environment [18]. In addition to the lower 

reliability, the utilities also experience larger power losses due to long lines in those areas. This 

also results in high expenditure on supply, operation and maintenance, which are usually borne 

by the utilities. To reduce the overall cost of electricity generation, the utilities prefer to utilize 

renewable energy-based DERs and maximize their contribution to electricity generation [19-

20]. These systems are usually designed to operate in isolation and be self-sufficient, they are 

often referred to as isolated microgrids. For example, the techno-economic analysis in [21], 

demonstrates that the local utility, can reduce its electricity supply cost by 70%, when the rural 

town of Laverton in Western Australia, is supplied by a group of renewable sources, along with 

smaller sized diesel generators. Likewise, [22] shows that the levelised cost of electricity 

generation, can be reduced by almost 50%, when a group of renewable energy resources are 

used to supply the electricity demand of Rottnest Island (18 km west of Australia’s west coast) 
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which thereby increases the contribution of renewable energies by up to 75%. 

 Distributed Energy Resources (DERs) 

New green energy policies are adopted in order to reduce global warming. This concept 

leads to the application of renewable energy sources which meet the increasing demand for 

electricity. This step also helps in lowering the greenhouse gas emissions. Amongst other 

existing renewable energy sources, Wind and Solar are easily available and naturally renewable 

sources of energy. The most beneficial feature of using Wind and Solar energies is the minimal 

costs required for their maintenance. Due to the above reasons Wind and Solar are considered 

to be the main building components of smart distribution networks, like microgrids. The levels 

of ambient temperature and solar irradiance, on top of the photovoltaic (PV) cells internal 

characteristics, are the main factors. These key points also affect the PV module’s level of 

generated power output. Additionally, the clouds passing in the sky, which also pass over the 

solar cells, intermittently produce a shading effect. This will result in frequent intermittent 

increases and/or decreases, in the instantaneously generated output of power, which is 

produced by the PV/solar cells. Alternatively, wind based sources, are mainly effected by the 

speed of wind, the height of installation and the area location. Therefore ,intermittent renewable 

generation from Solar and Wind energies, can cause large voltage and frequency deviations, 

due to their unpredictable fluctuations in power output [23]. If renewable-based Non-

Dispatchable DERs (NDERs) are coupled with appropriate power smoothing Battery Storage 

Systems (BSS), they will act as Dispatchable DERs (DDERs), such as Diesel Generators 

(DGs), which can effectively operate in a grid forming mode. For instance, they would be 

responsible for the control of voltage and frequency control in instances of modifications on 

consumer demand, using various techniques such as droop control [24-25].  
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 Droop regulated control strategy 

It is proposed that some modified droop control techniques (such as intelligent, adaptive, 

cost-based techniques) or optimisation-based controls, could improve the microgrid 

performance and stability, as well as improve the power-sharing amongst the DDERs [26-29].If 

the proper sharing of active and reactive power from DDERs is determined properly, it can 

minimise the overall microgrid operation costs.(e.g. Using an event-based demand response 

management technique [30], including smart loads in the microgrid [31], and using an optimal 

selection of droop parameters [32]). The abovementioned methods are applied for a microgrid 

which is operating under a decentralised control (i.e., without a microgrid secondary 

controller), and thereby, the microgrid frequency, is the only way for a DDER to get 

information about the status of the microgrid. On the other hand, [33-35] highlights the design 

and performance of the microgrid secondary controller, while [36], and describes the 

combination of the primary controllers of DDERs, with microgrid secondary controllers, to 

solve the optimal power-sharing problem amongst DDERs. In [37], a microgrid secondary 

controller-based technique, has been proposed so as to optimize the DDERs set-points and to 

minimise the power losses and fuel costs of the microgrid. On the other hand, instead of 

modifying the output power of DDERs, other alternatives have been suggested separately in 

[38-41], such as load-shedding, renewable curtailment, and charging/discharging control of the 

BSS. 

 Standalone Microgrids in Remote Areas 

Microgrids are commonly known as standalone remote area power systems with a hybrid 

nature. They are famous for providing electricity at affordable prices in remote area locations. 

To achieve economical and reliable operation of the hybrid systems, several considerations are 
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desirable: the burning of minimum fossil fuel, the maximum penetration of renewable sources, 

minimum power losses, along with effective management and control of the voltage and 

frequency required to achieve a maximum balance of power. Considering the required criteria, 

which includes the reduced cost of energy generation, increased penetration level of 

renewables, and the enhanced active control of the system, it is apparent that central or 

distributed, optimising-based control mechanisms, are required to guarantee a better 

performance from standalone microgrids [42]. An optimal standalone microgrid is the one 

which has the minimum of imbalance between generation and demand (e.g., the frequency and 

voltage of microgrids are kept under permissible, predefined limits) while operating at the least 

cost for the owner. 

 Provisionally Coupled Microgrids in Remote Areas 

Due to the incentives that the governments are currently providing to attract private 

investors who are willing to build and operate renewable energy sources [43], it is highly 

probable that a large remote area, can accommodate multiple isolated microgrids, each with 

it’s own individual operator (owner) [43]. In such situations, to improve the reliability, 

resiliency and self-healing of isolated microgrids existing in remote areas, it is suggested in 

[44-46], that the microgrids have some sort of physical connection to each other, so as to 

support each other during emergencies. Therefore, [47] suggests that during emergency 

situations, these adjacent, individually operating isolated microgrids, are temporarily coupled. 

These emergency situations can be power shortfalls, excessive generation and short-circuit 

faults. The management of the microgrid restoration process, after experiencing faults, is 

explained in [48] while [49-50] identifies those microgrid clusters with self-healing 

capabilities. The main aim of this research is the enhancement of the microgrids resilience 

against extensive overloading or events of excessive generation. The idea of coupled  
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Fig 2.1 Two neighbouring microgrids, that can form a coupled microgrid, through a tie-line 
and ISS. 

 

microgrids, has been introduced, with the above objectives in mind. Under this concept, two 

or more remote area neighbouring microgrids, can provisionally interconnect with each other, 

with the main aim being to provide support during sudden emergency situations [51]. For 

example the network in Fig. 2.1, presents two neighbouring microgrids within a remote area, 

connected through a tie-line and an Interconnecting Static Switch (ISS). In this scenario, the 

microgrid experiencing the emergency is referred to as the problem microgrid and can be 

provisionally supported by an available and healthy microgrid.  

 Energy Management in Microgrid Clusters using the Distribution 

Network Operator (DNO) 

The structure of a modern power system may consist of multiple microgrids and 

Distribution Network Operators (DNOs). At this point, it is worth mentioning, that each 

microgrid and distribution network operator, will act as autonomous entities within the 

distribution system. Ref. [52-53], highlights the challenges of operating the power system, 

which are due to the variable NDERs generation coordination, amongst different microgrids 
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and between the DNO and the microgrid, as well as difficulty in optimal energy management 

of both entities.  

The coordinated control for energy management in microgrids and DNOs, can be 

described as a three level, hierarchical system. The system starts with the primary local area 

droop based control of DERs in microgrids [54-55], followed by the secondary control of the 

remote area multi-microgrid [56-58] and finally, the tertiary control for optimal power flow, 

management [59-60]. In this hierarchical system, the third level, is important from the 

economic perspective of microgrid operation, which is the main focus of this research. For this 

purpose, a communication system is essential to ensure the transfer of data from microgrids to 

the DNO, from the DNO to the market and the DNO to the tertiary controller for the required 

action. Ref. [61-62], highlights the communication system required for the modern existing 

implementation of controls in microgrids system. By utilizing the communication protocols, it 

is possible to develop a microgrid system which involves the participation of DNOs and market 

participants respectively. For example, [63] proposed a multi-agent based, optimal energy 

management of clustered microgrids with the integration of different market entities. The 

coordinated operation of DNOs and clustered microgrids, is achieved by using a hierarchal, 

deterministic, optimization algorithm without the involvement of the market [64]. In [65], a 

decentralized Markov Decision Process, is used to solve the optimal control problem of 

clustered microgrids. The main aim was to minimize the cost of the operation of clustered 

microgrids, while [66-67], allows for the impact of customer participation upon the demand 

response of clustered microgrids. In this particular situation, optimization was achieved by 

MAS-based power management control. Similarly, [68] reveals that another way to control 

clustered microgrid operation costs is by using the cooperative power dispatching algorithm. 

To this end, the above references have highlighted the optimal control of clustered microgrids, 

by not using all features at one time. Therefore, the above studies indicate that optimal power 
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flow can be achieved by using either the DNO, the market, or employing the power sharing 

mechanism of neighbouring Microgrids.  

 Emergency Situations Handling 

The coupling of the nearby microgrids is done by using a transformative architecture and 

is explained in [69]. The key focus here, is to upgrade the resiliency of the considered system, 

during fault conditions. In [70], a decision-making-based approach, is proposed, with the aim 

of identifying an overloaded problem microgrid, which can be coupled with the most suitable 

and healthy microgrid(s), that is available within the network. Within the coupling process, 

certain criteria, such as electricity cost, available surplus power, distance between the 

neighbouring microgrids and reliability, along with voltage/frequency deviation in the coupled 

microgrid, are especially taken into consideration. Ref. [71], demonstrates the technique which 

can be used to identify the overloading conditions experienced by a problem microgrid. Ref. 

[71], also provides the techniques used to identify the neighbouring healthy microgrid present, 

that has the availability of excess power. Interactive control to guarantee adequate load sharing 

in coupled microgrids is described in [72]. Ref. [73], highlights the effective operation of 

coupled microgrids by using DERs whereas [74], examines the powerful security management 

for the dynamic working of the coupled microgrids. The useful coordination of the DERs of 

the microgrids that is present in coupling mode, is also investigated in [75]. Ref. [76], examines 

the reliability factor of a coupled microgrid and indicates that their core aspects are their small 

signal stability, along with the controllability of the current and voltage [77-79]. Ref. [80-81] 

present a technique to coordinate the operation of BSS in microgrids, along with their 

provisional coupling. Moreover, back-to-back converters [82] or ISSs [35], can also be helpful 

in accomplishing the coupling of the adjacent microgrids. The key focus is to overcome the 

emergency situations by interconnecting a microgrid to any existing microgrid (not necessarily 
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an adjacent microgrid). However in doing this, it is necessary that a general physical link is 

available, which can act as a power exchange highway. Ref. [83-84] presents an optimisation-

based technique to coordinate the microgrids whilst [85-86], discusses the calculation of 

achieving the least operation costs through utilising different optimisation techniques for 

coupled microgrids. In [87-88], it is shown that coupled microgrids can work in a cooperative 

mode, whilst. Providing robust distributed control, in cases where there is a high penetration 

of the NDERs in the network. 

 Optimisation Techniques for microgrids 

A detailed literature review reveals that many heuristic optimisation techniques are 

described in the literature to solve the constrained problems, which are nonlinear. These 

techniques particularly focus on microgrids and also define the operational settings of the 

DDERs and NDERs. Ref. [89] has formulated the optimisation problem, based on the 

modifications in consumer demand and NDERs. This reference then uses an imperialist 

competitive algorithm to calculate the cost function. Ref. [90-91] has included the sizing and 

operational analysis of a standalone hybrid microgrid, in the formulated objective (fitness) 

function, which is then resolved by an ant colony, and a multi-objective algorithm. Ref. [92] 

overcomes the stability problem of a hybrid microgrid, with the harmony search-based hybrid 

firefly solver. Ref. [93-94] have employed a particle swarm-based solver to search for the 

setting of microgrid’s control parameters. In these research works, overall power generation 

costs for the microgrid owner, fuel consumption by DGs, BSS life cycle characteristics and 

power losses, are the major factors in their formulated fitness functions [95-96]. In [97], a 

genetic algorithm is applied simultaneously, with the mixed integer linear programming to 

solve a two-stage optimisation problem, for a multi-microgrid network considering utility’s 

profits and consumer satisfaction. On the other hand, [98] uses non-dominant sorting genetic 
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algorithm-II, which is a fast and elitist type of genetic algorithm, used to solve a multi-objective 

optimisation problem of microgrids, by controlling the load imbalance in the microgrid. In a 

similar way, various types of genetic algorithm, such as the real coded genetic algorithm, 

hybrid-Fuzzy genetic algorithm, and floating point genetic algorithm are used in [99-101] to 

solve the optimisation problem for standalone microgrids and power systems. In contrary to 

most genetic algorithm-based techniques that consider binary numbers in their genes and 

chromosomes, a floating-point number is used in each gene and chromosome of a floating point 

genetic algorithm [102]. Thus, floating point genetic algorithms have more advantages than 

binary genetic algorithms. The main reasons are more efficiency, less memory utilisation, and 

increased precision. Moreover, different operators can be utilised for greater flexibility [103]. 

The operation of a genetic algorithm -based solver, can be improved by considering the 

scaling operator, in addition to the traditionally used crossover and mutation operators [104]. 

The scaling operator can be applied in the form of a different function. Using an appropriate 

scaling function, can reduce the problem complexity and speed up the identification of a 

solution [105]. 

 Optimisation Problem Formulation  

Alternatively, some studies have aimed to coordinate the power exchange amongst 

microgrids, load curtailment and control of the power of conventional generators. As an 

example, [106] has considered DGs fuel consumption and emission cost, along with the power 

exchange with the utility grid, in the formulated objective function. Ref. [107] discusses the 

impact of load curtailment in microgrids, by considering the sensitivities in nodal power 

injection and the probabilistic uncertainties of loads and renewable sources. To this end, the 

cost of load curtailment, as well as the expense/revenue of exchanging power between the 

microgrid and a utility feeder, is considered. In these studies, the main objectives are to 
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maximize the footprint of renewable energies in supplying the demand and minimizing the 

contribution of conventional generators. However, the curtailment of renewable energy 

resources, is not considered, which is essential in the case of over generation. 

The voltage rise problem within microgrids due to renewable energy-based DERs, is 

solved in [108], by curtailing their output power, using droop control. On the other hand, [109] 

employs an optimisation technique to maximize the lifetime characteristics of BSSs within 

microgrids, when compensating the variabilities of loads and renewable sources, while 

 

Table 2.1. Comparison of the main features of the considered cost minimisation techniques, 

Identified in the literature and this research. 

Ref. Solver Considered criteria in OF formulation 

DG 

Fuel 

DG 

Emission 

Voltage 

deviation 

Frequency 

deviation 

BSS 

life 

loss 

Power 

loss 

Transaction 

with 

microgrids 

NDERs 

curtailment 

Load-

shedding 

Spinning 

reserve 

Renewable 

penetration 

[106] 1TLBO            

[107] 2SWT-

PSO 

           

[108] 3GFC            

[109] 4NSGA-

II 

           

[110] 5NBT            

[111] 6SCPDA            

[112] 7OPFA            

[113] 8PL & 

ED 

           

This 

work 

Genetic  

algorithm 

           

1Teaching-learning based optimisation, 2Stochastic weight trade-off particle swarm optimisation, 3Grid 

forming control, 4Non-dominated sorting Genetic Algorithm-II, 5Nash bargaining theory, 6 Statistical 

cooperative power dispatching Algorithm, 7Optimal power flow algorithm, 8Priority list and economic dispatch. 
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minimizing the power generation cost of DGs. Alternatively, a bargaining technique is used in 

[110] ,to facilitate a proactive energy trading and fair benefit sharing, amongst remote area, 

interconnected microgrids, in which the main considered criterion, is the minimisation of the 

total operational cost. In a similar way, [111] applies demand management, in remote area 

microgrids, using a cooperative power dispatching algorithm, for the minimisation of a 

microgrid’s operational cost, whilst satisfying the load demand. Ref. [112-113] has formulated 

an economic dispatch problem, which aims at minimizing the power loss in addition to the 

costs of fuel consumption, external power sharing and BSSs. A comparison of the 

abovementioned studies are summarised in Table 1.1. Also, the existing industrial processors 

by Intel® [114], National InstrumentsTM [115] and Analog DevicesTM [116] can be effectively 

used, when implementing the proposed optimisation control, as they satisfy the required speed.  

 Research Aims in Coordination of Conducted Literature Review  

In previous sections of this chapter, an in-depth literature survey related to microgrid 

operations has been conducted. DERs modelling and controlling, optimisation techniques, have 

been utilised in previous research, to develop the reliability and consistency of remote area 

microgrid networks. Following the survey, some technical challenges are identified, which still 

need significant attention. It should be noted that the technical challenges for the design of 

microgrids and the implementation of the optimisation technique, is not discussed in the 

following chapters. However, the review of the available research, which has been discussed 

previously, has given rise to the identification of a number of problems. These problems will 

be addressed, with the aim of: 

 Defining and characterizing the technical parameters for modelling DERs,  

 Setting up a suitable power flow study of the microgrids, so that droop control of 

DDERs, can be attained along with the intermittent nature of NDERs,  
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 Ensuring the charging and discharging of BSS, under certain operational conditions of 

microgrids,  

 Reducing the cost of fuel of DGs, to make the system more economical,  

 Maintaining the optimisation problem formulations consistency, within the required 

technical restrictions,  

 Effectively determining the emergency situation of overloading and/or excessive 

generation in problem and troubled microgrids,  

 Including certain technical impacts like frequency and voltage deviation, that affect the 

performance of microgrids, and 

 Overcoming the emergency situation of overloading and excessive generation, in remote 

area clustered microgrids,  

 Choosing the renewable curtailment for NDERs and non-essential load shedding, in 

emergency situations in problem microgrids,  

 Developing an effective and efficient optimisation problem solver, for reaching the 

ultimate goal, of cost minimisation,  

 Ensuring the interplay of the optimisation solver operators, for optimal solutions,  

 Developing an effective supervisor control system, which can react instantly for the 

emergency situation handling, of remote area microgrids, and  

 Proposing a new market model for optimised operation of trouble microgrids by 

inclusion of distribution network operator. 

 Summary 

In this chapter, a state-of-the-art review, has been carried out, for the operation of 

microgrids in remote areas, wheather in they are in a standalone or coupled condition. This 

chapter has also discussed the literature available in the field of DERs modelling ,and other 
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aspects which include the optimisation problem formulation and the cost analysis, to manage 

an economical distribution system within emergency situations. The existing work particularly 

intimates that a vast amount of literature is available on the modelling of DERs and then 

controlling the DDERs using the droop regulated strategies. Some progress has been made in 

identifying the emergency situations which impact the performance of microgrids, however, 

comprehensive discussion about many of key research issues related to this concept, have not 

been fully addressed by the existing research and thus requires further improvement. Based on 

the presented literature review, the next coming chapters will explicitly address and outline the 

above research issues.  
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 The Proposed Technique 

  Introduction 

A microgrid can function as a single controllable system, within the grid-connected or 

the standalone operation modes. The transition from the grid-connected mode to the standalone 

mode, can result in a microgrids’ excessive generation or demand, which must be spilled or 

curtailed. To achieve the normal operation of the standalone microgrids, several challenges 

have been identified, which can be addressed by outlining the specific issues arising and 

identifying appropriate solutions. To address these issues, an optimisation-based control, has 

been chosen for the purpose of optimising the microgrid operations, accounting for DERs 

(stochastic generation and time-varying demand), as well as determining the microgrids 

operation constrains. The objective is to minimise the operational costs, taking into 

consideration, the classical generation capacities and the power exchange capacity with the 

neighbours, as well the operational constraints.  

 Challenges of this Research 

Formal definition of the main challenges and core concepts are explained in this segment 

of chapter. The definitions and concepts will be used to explain, elaborate and characterize the 

key research issues in this dissertation which will be addressed. Table 3.1 precisely represents, 

the key challenges which will appear whilst dealing with the proposed methodology. 
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Table 3.1 Identified challenges within this research 
Challenges Brief description 

Cost Management of price volatility, by decreasing the cost of energy 

Power Quality Increasing power quality and reliability 

Resiliency and 

security 

Improving the power delivery, system’s security and resiliency, by 

enhancing the availability of power resources 

Environment 

protection 

Managing the unpredictable nature of renewable energy sources and 

enhancing the integration, of environmentally friendly and efficient 

technologies 

Service quality 

levels 

Organizing the different service quality for the customers, which are 

present at various price points, within the network 

Difference in 

Sources Nature 

In configuration both types of NDERs and DDERs are involved with 

different nature in terms of their control.  

Dynamic 

Response of 

sources 

The DERs response can be inertial (i.e. slower) or non-inertial (i.e. 

faster). 

Islanded 

microgrids 

If the proposed topology, is detached from the utility, then the demand 

side of management, becomes a critical issue. 

Operational 

control 

During island mode the generated power of each DG unit, must be 

carefully controlled, to ensure reliable power distribution and modular 

operation. 

Voltage control Maximum and minimum voltage magnitude, of all of the buses 

involved in the structure of the microgrid 
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Frequency 

control 

Frequency should not exceed/drop past a certain limit 

Effective 

Response 

Effective and instantaneous response of DERs, to the sudden change, 

on the demand side 

Environmental 

Factors 

The efficient performance of renewable sources, majorly depends upon 

natural resources like clouds, solar irradiance, and the average wind 

speed and rain etc. 

Power loss 

estimation 

For determination of proposed model efficiency, power loss estimation, 

is necessary 

Consumer 

Satisfaction 

Consumers on the users end, should be satisfied with both the cost and 

service quality 

Optimisation An act, process, or methodology of making the modelled network (in 

terms of low cost) as fully perfect, functional, or effective as possible; 

specifically: the mathematical procedures (such as finding the 

minimum of a cost function), involved in the problem formulation. 

Objective 

Function 

The formulated cost function for the microgrid network that is required 

to be minimised. 

Constraints The limitations or boundaries applied for the operation of the microgrid 

and they should be satisfied for the microgrid network along with 

feasible solution.  

Power Flow 

Analysis 

Numerical analysis of the modelled microgrid, to establish the flow of 

power in the lines, using the single line diagram and per unit quantities. 
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To address all of these challenges, it is necessary to outline the main issues, which can be 

addressed in appropriate stages, so as to reach the desired outcomes. 

 Research Issues  

Applying the above knowledge and addressing these challenges has led to the 

identification of four problems. For all four problems, it is important to characterize the currently 

available technical problems and the existing methods, inherent in these solutions. These 

specialised methods would help to frame the premise of the proposed research problems, e.g. 

how they can be addressed and what will be the initial required in order to find a new solution? 

This section places emphasis on the research issues that should be elaborated upon, to attain any 

innovative outcomes. After the issues have been identified the target will be to seek solutions. 

This will be done in Chapter 4 onwards, where the focus will be on the research issues identified 

and also to address the research objectives described earlier in Chapter 1.  

  Research Issue 1 

This section will explore how to identify the key parameters for the modelling of DERs 

and then how to implement them within the microgrid, using a strategy which is cost-effective 

for operation purposes? 

Based on the survey of the current approaches available in the literature, about the 

modelling of the DERs, that has been discussed in Chapter 2, along with their characterisation  
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Fig 3.1 Key concept and information flow required for addressing Research Issue 1. 
 

of the most vital parameters for designing NDERs and DDERs, but achieving the cost-effective 

operation of microgrid need critical inner view about the power flow analysis for the modelled 

load demand. Furthermore, the existing literature provides evidence for the power flow 

analysis, but very limited information is available on the calculation of the technical impacts 

such as the voltage and frequency of the microgrid network. Hence, the following questions 

are need addressing. 
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Research Question 1: What are the key factors involved in designing and determining the 

operational set points for DERs? 

Research Question 2: What are the aspects related to reach through the safe and cost-

effective operation of the microgrid? 

The key factors involved in addressing this issue with defining and characterizing the most 

vital design and operational parameters, first a microgrid is designed with its DERs and loads, 

then the operational analysis will be based on the monitoring of the voltage and frequency 

which will finally lead to the formulation and implementation of the heuristic optimisation 

technique. This step by step procedure, is extensively elaborated in Chapter 4, while an 

overview of the issue is illustrated in Fig 3.1.  

 Research Issue 2 

This section of the research will concentrate on how to develop an optimisation solver, 

which can be used to determine the most suitable control variables of an optimisation problem 

that is designed for the load balancing, of a standalone microgrid, whilst taking into account 

the influence of operators and their various functions within the solver? It is to be noted that 

this issue does not aim to compare the developed optimisation solver, e.g. the floating point 

genetic algorithm compared to other types of optimisation techniques that are available in the 

literature. The main objective is to conduct a detailed comparison of different scaling 

techniques when used for problem formulation and to illustrate their impact upon the 

optimisation outcome. To do so, the following research questions need to be considered: 

Research Question 1: How to develop a technique to regulate the frequency in a 

standalone microgrid, using the formulated fitness function at the least cost in cases where 

there are sudden changes in loads? 
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Research Question 2: How to evaluate the interplay between different scaling techniques 

on an floating point genetic algorithm that are used in solving the considered fitness function? 

The above research questions need to be addressed in an effective way. The methods 

adopted to answer the above questions will be presented in detail in Chapter 5. For addressing 

the above highlighted research issue, let us consider the network of Fig. 3.2, which shows a 

standalone remote area microgrid, composed of DGs, NDERs, BSSs and loads, operating under 

a microgrid secondary controller-based, centralised control. As the microgrid cannot be 

supported by any external entities (e.g., a utility feeder or a neighbouring microgrid), in the 

case of a sudden increase or decrease in demand, the microgrid’s situation has to be handled 

by proper assessments taken of its control variables (e.g.., droop set-points of DDERs, power 

charge/discharge of BSSs, load-shedding, renewable curtailment of NDERs), using a suitable 

fitness function. A genetic algorithm-based solver, is developed to solve the formulated fitness 

function, as will be discussed in Chapter 5. 

The NDERs are assumed to be renewable energy sources, with an intermittent nature. 

Due to their unpredictable output power, BSSs are used for power balancing in the microgrid, 

in the case of intermittencies. In comparison, DDERs are droop control based. The output 

power of NDERs is assumed to be controllable, based on the signal received from the microgrid 

secondary controller, to enable renewable curtailment. Similarly, the BSSs charging or 

discharging is controlled locally by a signal received from the microgrid secondary controller. 

The non-essential loads of the microgrid are assumed to be capable of being shedded, based on 

the command signal, from the microgrid secondary controller. To this end, a wireless 

communication system, based on IEEE 802.11n, is assumed to be available to transfer the 

optimal control variables from the microgrid secondary controller to the local controllers 

deployed at DDERs, NDERs, and non-essential loads [117-118] (see Fig. 3.2). 

 



Chapter 3 – The Proposed Technique 
 

29 

Load

PVWind

DG
BSS

Standalone microgrid
Microgrid 
secondary 
controller

 

Fig 3.2 Typical illustration of a microgrid with the required communication links between the 

microgrid secondary controller and the local controllers. 

 

As the microgrid is working in the standalone mode, monitoring its frequency and voltage 

is a critical issue, because any significant deviation in either of them, can lead to system 

instability. Therefore, the microgrid is desired to operate, with frequency and voltage, under 

permissible limits of ௡݂௢௠ േ ௫݂ and ௡ܸ௢௠ േ ௫ܸ. As far as the microgrid stays in the normal 

operating mode, no change is required. Whenever the microgrid observes a violation of either 

or both parameters, the microgrid secondary controller, immediately takes action to maintain 

them, within the desired limits. The main aim of the microgrid optimal control is to find out 

the most cost-effective solution, for the microgrid in cases where there may be sudden 

variations in demand or of the output of its NDERs. 

Once the microgrid secondary controller identifies a significant voltage or frequency 

deviation, it determines the most suitable control variables required to maintain the demand 

supply balance, within the permissible limits of voltage and frequency. To this end, it uses the 

operational flowchart in Fig. 3.3. Identifying the most suitable options (which has the least, 
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overall fitness function), is achieved through an optimisation problem and solved by utilising 

the floating point-genetic algorithm approach, which will be discussed in Chapter 5. 
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Fig 3.3 Flowchart for the proposed Research Issue 2, for load-balancing in the standalone 

microgrid. 

 Research Issue 3 

Research Issue 3, is the question of how to develop a controller for provisionally coupled 

remote area microgrids, to coordinate the various options so as to yield the most suitable 

outcome at least cost, in situations where there sudden emergencies arise.  

To achieve a centralised control, for multiple remote area microgrids, a supervisory 

technique is proposed. It is to be noted that the proposed supervisory emergency controller, 

considers the impact of voltage and/or frequency deviations on the power consumed by loads. 

A low-bandwidth communication is assumed to be available for the transmission of the 

required data, from the sensors and the microgrid secondary controller, to the supervisory 

emergency controller, as well as the decision variables from the supervisory emergency 

controller, to the microgrid secondary controller and relevant local controllers. In summary, 

the key advantages of using the proposed supervisory emergency controller, for these presented 
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research issues are:  

 achieving an acceptable voltage and frequency deviation, in every microgrid of 

the remote area, after an emergency, 

 achieving the operation of the microgrid operation for the least cost whilst also 

satisfying the technical constraints, and 

 Minimising the rate of load-shedding and curtailment of the NDERs within the 

problem microgrids. 

To address this problem of organising efficient working goals to cope with emergencies 

within the problem microgrids, the following research questions need to be considered: 

Research Question 1: How to develop an optimisation-based supervisory, emergency 

controller for remote area problem microgrids, to address the emergencies? and, 

Research Question 2: How to formulate the optimisation problem, whilst considering various 

system features such as control of DDERs and the curtailment of non-essential loads and 

NDERs, the life loss value of BSSs, spinning reserve, dependency of a microgrid to external 

microgrids, contribution of renewable sources and the power loss in tie lines? and,  

Research Question 3: How to validate the effective operation of the proposed technique,  

using numerical analyses? 

In exploration of this research issue, a multi-level supervisory emergency controller, that 

determines the answers to elaborates the above research questions, is proposed, and then 

comprehensively illustrated in Chapter 6. Therefore, to explain this research issue, a large 

remote area has been taken into consideration. So, for this purpose, let us consider Fig. 3.4 

which illustrates two neighbouring microgrids that have physical links between each other, 

which can facilitate their temporary interconnection, during emergency conditions. A 

supervisory emergency controller, is considered to have the following responsibilities: 

 identifying a problem microgrid, 
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 solving an optimisation problem, to select a suitable neighbouring healthy microgrid, 

to exchange power with and define the level of power transaction (import/export), and 

 Transmitting the decision variables, to the microgrid secondary controller of each 

microgrid, of a coupled microgrid. 

 receiving information, from the secondary controllers, of each microgrid, 

Thus, the required communication links are illustrated schematically in Fig. 3.4.  
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Fig 3.4 Two neighbouring microgrids, that can form a coupled microgrid,through a tie-line 

and the ISS, with the help of the developed supervisory emergency controller. 
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Fig 3.5 A healthy microgrid and a problem microgrid with successful and unsuccessful 

operations of secondary and supervisory emergency controller controllers (The operational 

state is denoted by ) 
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To this end, a point-to-multi point, wireless communication technique, is required 

[119].Now, let us define both the healthy microgrid and the problem microgrid, depending 

upon their mode of operations (e.g. corresponding to operational VF limits) as illustrated in 

Fig. 3.5, where the X represents the VF. A healthy microgrid is the microgrid in which the 

frequency as well as all the bus voltages, lie in the safe mode of operation of Fig. 3.5a. 

However, the microgrid will be considered to be a problem microgrid if the frequency and/or 

the bus voltage jump into the alarm, or unsafe modes of operation (see Fig. 3.5b). In this 

situation, the proposed supervisory emergency controller, will take action to retain the VF 

limits in the safe mode (see Fig. 3.5c). The proposed supervisory emergency controller, is a 

multi-stage process, in which successive layers of necessary actions, are carried out to 

overcome the emergency, in the problem microgrid. These actions are: 

 Soft actions: Adjustment of droop parameters (i.e. droop coefficients and VF set points) 

for droop regulated systems and power exchange with BSSs. 

 Intermedial actions: Determining the required power transaction with healthy 

microgrid(s), and 

 Hard actions: Defining the NDERs curtailment and/or load-shedding. 

as portrayed schematically in Fig. 3.6a.  

The proposed supervisory emergency controller, first tries to maintain the VF of the 

problem microgrid into safe mode, by applying soft actions, i.e., finding the most suitable droop 

set-points for the droop regulated systems. The operation of the droop regulated system is 

explained in the next chapter) and required power exchange with existing BSSs. To this end, it 

solves a non-linear optimisation problem for the considered microgrid, which is described in 

the next section. If successful, it will transmit the settings to the relevant local controllers of 

droop regulated systems and BSSs. However, if it is not successful in resolving the emergency 

in the problem microgrid, the Intermedial actions will be applied in addition to the soft actions. 
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Within the Intermedial action, the supervisory emergency controller, checks the availability of 

a neighbouring healthy microgrid. If a healthy microgrid is found available to support the 

problem microgrid, the supervisory emergency controller, will solve an optimisation problem 

so as to determine the suitable power transaction in the tie-lines, within the desired coupled 

microgrid in addition to the relevant control variables of the soft actions. If a healthy microgrid 

is not available or no feasible solution is found, through solving the optimisation problem, the 

supervisory emergency controller, will apply all actions, including the curtailing of either of 

the consumption of its non-essential loads, or the generation output of its NDERs, as a last 

resort. This sequential process, will guarantee that the supervisory emergency controller, will 

eliminate any emergency by utilising actions which are cheaper for the microgrid operator 

(such as adjustment of droop parameters and power exchange with BSSs or neighbouring 

microgrids), rather than use the hard action of load-shedding or NDER curtailment (which are 

very expensive for the operators). Fig. 3.6b, schematically depicts this described time 

sequenced operation of the supervisory emergency controller, following an event which causes 

a healthy microgrid, to become a problem microgrid, until it recovers. Fig. 3.6c illustrates this 

operational flowchart. The microgrids which are participating in the coupled microgrid, can be 

coupled with each other, with the help of the ISS. The principle of operation and configuration 

of ISS, is beyond the scope of this work and is discussed in [120]. Each ISS has its own local 

controller for synchronisation, before closing and coupling two neighbouring microgrids. 

 Research Issue 4 

Research issue 4 will explore how to analyse the synergies between microgrids and the 

distribution network operator, so as to resolve emergency situations for remote area microgrids, 

in the grid connected mode. 
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Fig 3.6 (a) Proposed multi-stage actions, for the developed supervisory, emergency 

controller, (b) Time-sequence of actions, from an event causing emergency, until the problem 

microgrid becomes a healthy microgrid, (c) Operational flowchart of the supervisory 

emergency controller. 
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To address this research issue, let us consider a large scale, multi-microgrid area, 

consisting of ܰ	microgrids (see Fig. 3.7). It is assumed that each microgrid has its own local 

primary controller. Every microgrid is composed of ܰ DERs (including both DDERs and 

NDERs), ܰ BSSs and ܰ loads, that are connected through	ܰ buses and ܰ lines, where ′ܰ′ is a 

variable number for each distributed entity. The NDERs are renewable based energy sources 

with an intermittent nature (e.g. PV, wind) unless they are accompanied by the power 

smoothening, BSS. Their output power is assumed to be curtailed, depending upon the 

command signal from microgrid’s local controller. They will harvest and inject maximum 

possible power in market-unavailability mode. On the other hand, DDERs are assumed to be 

droop controlled and grid-forming when the multi-microgrid area is detached from the market. 

The market is assumed to be composed of a market operator which performs as the internet of 

energy provider, which will take consent from other microgrid clusters, to support multi-

microgrid areas, in emergency situations. The communication between multi-microgrid areas 

and the market, will take place through the distribution network operators, where all microgrids  
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Fig 3.7 Considered large Scale multi-microgrid area 
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are coupled through the ISS, to exchange power amongst the neighbouring microgrids, termed 

as the shared service providers and internet of energy providers. Let us define a troubled 

microgrid, as a microgrid in which the emergency situation of over-loading or over-generation 

is being monitored. The secondary controller, (termed as the internal service provider i.e. the 

internal service provider which is present inside the multi-microgrid area) will take necessary 

action to retain the normal operation of troubled microgrid, by sending/receiving power to/from 

the shared service provider(s). If the internal service provider is successful in handling the 

emergency situation of the troubled microgrid, then the tertiary controller will not take any 

action. Here it is worth mentioning that tertiary controller, is assumed to be the internet of 

energy, with the ability to transfer the data, over the distribution network, operator’s network. 

Now let us assume that the internal service provider, fails to overcome the emergency situation, 

and then the internet of energy, may negotiate an open access charge, with the distribution 

network operators. In this situation, the proposed optimization technique for the internet of 

energy, aims to resolve the problem for the lowest cost. The basic purpose is to combine the 

market to attain the maximum benefit. 

Market
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Fig 3.8 Communication Enabling Functions for the Proposed. Market Model. 
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To this end, an optimization problem is formulated and solved, with the use of a genetic 

algorithm, which is a meta-heuristic optimization technique and will be described, particularly 

for solving research issue 4, in the chapter 7 of this dissertation. Moreover, the assumed 

communication protocols, needed for the transmission of this information to all controllers is 

depicted in Fig. 3.8.  

The proposed optimization technique will proceed in the following sequence of steps:  

 the droop control or/and the BSS control will be applied with the help of microgrid’s 

secondary controller,  

 coupling amongst neighbour microgrid (s) takes place, 

 power transaction with the IEOP(s), 

 load shedding or the NDERs curtailment in the troubled microgrid (s). 

Hence, if an emergency situation is not resolved by first step, then the proposed 

optimization technique will go onto the next step and so forth. However, the cost will 

increase proportionally, with each step taken. 

To this end, the focus is to look for the most optimal solution to the problem by 

considering all possibilities. Once the troubled microgrid is detected within the multi-

microgrid area, then internet of energy will look for the most optimal combination of service 

providers (SPs) and formulate a market optimization problem, therefore the corresponding 

distribution network operator, will respond and close the ISS on the command received from 

the internet of energy. In this way, the power balance of the troubled microgrid will be 

achieved, and if not, then optimization algorithm will again formulate the market 

optimization problem, until a feasible solution is found. The flow chart for this proposed 

methodology is shown in Fig. 3.9. 
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Fig 3.9 Flow chart for Research Issue 4. 
 

 Research Methodology 

The research methodology related to the field of science and engineering, has been 

implemented into this research to solve the underlying research issues, explained in the 

previous section. The adopted methodology is comprised of following steps: 

1. Modelling of DERs and loads, 

2. checking the authenticity of developed models by performing power flow 

analysis, 

3. Performing exhaustive simulations, accompanied by the heuristic optimisation 

technique, in order to reach to a feasible solution.  

4. Another important aspect of this research is to perform testing of proposed 

models against the technical features.  
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 In this thesis, Chapter 4 demonstrates a modelling framework for the microgrid operation, and 

Chapters 5–7 provide a complete formulation and solution strategy, of the proposed optimisation 

technique for remote area microgrids. 

 Summary 

This chapter has provided a definition of the issues associated with organising the 

optimisation technique and the emergency situations impacting microgrids. By considering the 

socio-economic and technical issues, related to the existing solutions, research problems have 

been described. Additionally, the research questions that have arisen for every research 

problem and they should be discussed and solved for the proposed microgrid models. In order 

to address every predefined research problem, a conceptual procedure and framework has been 

proposed. 
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 Modelling and Operational Analysis of 

Microgrid 

 Introduction 

Microgrids are well known for independent handling of the demand management 

problems. Maintaining the supply and demand balance instantaneously, has always been a 

crucial issue, especially in recent years, due to the high rate of the peak load growth. In the 

traditional way of the demand-supply match, the generation conforms to the loads 

consumption. However, this method is not always applicable and cost-effective. In this chapter, 

a stochastic based model is proposed for the microgrid applications. DERs and loads are 

designed and simulated in Matlab, by estimating potential outcomes from the probability 

distributions. Then, these recommended outcomes are structured for random variation, in 

inputs of one or more that correspond with the period of time. Within the historical data, 

fluctuations have been observed. These fluctuations provide the basis for the random variations 

which can occur within a selected time period, using a standard series. The simulated studies 

are based on the Monte Carlo principle. At first, stochastic modelling of the DERs, is done by 

the use of the step by step Matlab programming. Realistic climate impacts on NDERs output, 

is also analysed by the developed algorithms. Secondary focus will be on the power flow 

analysis of the modelled network that uses optimum operating, bound values for the DDERs. 

Features of climate scenarios, wind speed, fuel, aging, rated values and state of charge (SoC), 
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are taken into consideration, whilst modelling the DER components of microgrids. Finally, an 

explanation of an optimisation solver, is provided, alongside information on its main 

terminologies. The basic purpose of optimisation solver is to achieve an optimised control of 

the modelled microgrid network. 

 NDERs Modelling 

PV and wind are the considered NDERs for the considered microgrid. Special focus 

during NDERs modelling is their unpredictable nature. The modelling is described below  

 PV Generator  

The modelling of PV based NDER is described in details below: 

4.2.1.1 Mathematical Modelling  

The structure for modelling of PV cell is briefly explained in Fig. 4.1 [121]. Under this 

scheme, the current-voltage characteristic of diode can be equated as  

	ௗܫ ൌ 	 ைܫ ቆ݁
௏೏
௏೅ െ 1ቇ (4.1)

்ܸ 	 ൌ 	
݇ܶ
ݍ
. ݈݊. ௖ܰ௘௟௟ (4.2)

where ܫை is rated current, Vd is diode voltage, VT is the terminal voltage, k is constant value, T 

is the provided temperature, nl is diode ideality factor and Ncell are number of cells connected 

in PV module. The shunt and series resistors are provided in Fig. 4.1. The presence of these 

resistors, not only effects these characteristic of the PV cell, but also has dominant effect at the 

maximum value of output power [122]. Normally the in the modelled PV cell, Rs is very small 

as compared to ܴ௦௛ and ranges between 0 and 1 ohm approximately. The key parameters of the 

PV cell are taken from the AU-Optronics PM-200 PV cell and are listed in  
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Fig 4.1 PV cell depiction by its equivalent circuit [121] 

 

Table 4.1 [123]. To this end, probabilistic treatment of solar irradiance data, is performed and 

then it has been incorporated into the described PV model. In order to calculate the PV cell 

temperature, a linear relationship between the insolation level, ambient temperature, and the 

nominal temperature for the operation of the PV cell, with respect to the solar irradiance, the 

following equation is used: 

ܶ ൌ 	 ௔ܶ௠௕ ൅
݂ ൈ ሺ ைܶ െ 20ሻ

0.8
 (4.3)

where f represents the probability density function of the beta distribution, ௔ܶ௠௕ is ambient 

temperature (20 ൏ ௔ܶ௠௕ ൏ 48	ͦC) and To is nominal operating temperature (25ºC). It is used to 

calculate the solar radiation. Probability density function, is a function of pair of shape 

parameters and the considered weather condition. It is essential to select an appropriate 

probability distribution function. It helps to correctly represent the random phenomenon of the 

insolation. 

Table 4.1 Numerical values of PV cell design parameters. 
࢏࢑ V 30.35 ࢉ࢕ࢂ  0.078276 [A/ºC] 

 ௅ 8.8169 Aܫ V 24.14 ࢖࢖࢓ࢂ

࢑࢜	 – 0.32069 [V/ºC]  ை 7.2566e–11 Aܫ

 0.96434 ݈݊ 3000 ࢒࢒ࢋࢉࡺ

 A ܴ௦௛ 1177.4122 Ω 8.76 ࢉ࢙ࡵ

 A ܴ௦ 0.32361 Ω 8.38 ࢖࢖࢓ࡵ
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Fig 4.2 Assumed Beta distributions for the considered three climate conditions. 

 

Although the process of selection is very difficult; there are certain possibilities to select 

a suitable distribution function by using empirical analyses. Several distributions can be tested 

so as to identify the best fit. This has been described in literature to be the normal, Weibull, 

and Beta distribution functions. An alternative solution, is to consider a distribution function 

on the basis of the observed historical data. In many situations, histograms can also provide an 

initial clue for the proper selection of the distribution function, as explained in [124]. 

In this study, Beta distribution has been selected to express the insolation level of the 

three conditions of sunny, cloudy, and rainy as illustrated in Fig. 4.2. Beta distribution can take 

a variety of shapes, depending upon the values of its pair of shape parameters; e.g. (i) Mount 

shape, if both parameters are bigger than one; (ii) J-shape or reverse J-shape, if one parameter 

is larger than one while the other parameter is smaller than one, and (iii) U-shape, if both 

parameters are smaller than one [125]. The data on solar exposure, shading and rainfall, can be 

taken from the original weather data, of the bureau of metrology. The selected Beta distribution 

for sunny conditions (ܺ) is given as 

݂ሺܺ|ܽ, ܾሻ ൌ 	
1

,ሺܽܤ ܾሻ
	ܺ௔ିଵሺ1 െ ܺ௕ିଵ ሻܫሺ଴,ଵሻሺܺሻ (4.4)
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Fig 4.3 Schematic illustration of a single PV module. 

where a and b are the shape parameters of the Beta distribution, and a > 1 and b > 1. The 

indicator function ܫሺ଴,ଵሻሺݔሻ ensures that values of x in the range of 0 to 1 have a nonzero 

probability [126]. As Beta distribution is bounded over two finite limits, it is able to replicate 

the random pattern of insolation levels for any given time (hour) of the day. 

Shading of a PV module is a key point, as it has a great impact on the modelling 

parameters. For a PV system, shading is classified into objective and subjective shading. 

Objective shading can be formed by various weather impacts, such as clouds and haze, and will 

inevitably cause a reduction of the overall sunlight intensity for the PV system. On the other 

hand, objects near or far from the PV, can also block the sunlight and create solid shade shapes, 

which are considered to be subjective shading [127]. Primordial stages for estimation of 

irradiance on a PV generator, includes the case of subjective shading as explained in [128]. A 

dimensionless parameter, known as the shading factor [129], is included in the developed 

model, to deal with any causes of shading. 

It is to be highlighted, that to minimise cracking, overheating and potentially burning due 

to possible hard-edged shading, bypass diodes are used in parallel, with modules that conduct 

when the module is shaded. It is cost-effective to provide a bypass diode, across a sub-string 

of cells, instead of connecting with the individual cell and each sub-string will result in one 

module as shown in Fig. 4.3. Bypass diodes become active only when subjective shading 
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effects appear in the system; otherwise, the bypass diode factor is zero. Beta distributions for 

cloudy and rainy conditions are given as: 

݂ሺܥ|݀, ݁ሻ ൌ 	
1

,ሺ݀ܤ ݁ሻ
ௗିଵሺ1ܥ	 െ ௘ିଵܥ ሻܫሺ଴,ଵሻሺܥሻ (4.5)

݂ሺܴ|݃, ݄ሻ ൌ 	
1

,ሺ݃ܤ ݄ሻ
	ܴ௚ିଵሺ1 െ ܴ௛ିଵ ሻܫሺ଴,ଵሻሺܴሻ (4.6)

where d > 1 and e > 1 are formed from shading factor and݃ > 1 and ݄ < 1 are formed from 

rainfall duration and rainfall intensity components [130]. For a PV cell, the short-circuit current 

is calculated for the sunny, cloudy and rainy condition as 

ௌ஼ሺܺሻܫ ൌ 	݂ሺܺ|ܽ, ܾሻ	ሾܫ௦௖௢ 	൅	݇௜	ሺ ௑ܶ െ 25ሻሿ (4.7)

ሻܥௌ஼ሺܫ ൌ 	 ሾ1	௦௖ሺܵሻܫ െ 	݂ሺܥ|݀, ݁ሻሿ (4.8)

ௌ஼ሺܴሻܫ ൌ 	 ,݃|ሺܵሻ݂ሺܴ	ௌ஼ܫ ݄ሻ െ	݇௜ ሺ ௔ܶ௠௕ െ ைܶሻ (4.9)

where	ܫௌ஼ denotes the short circuit current with X, C and R represents the sunny, cloudy and 

rainy condition respectively, ܫ௦௖௢	is short-circuit current in normal conditions and ܫ௦௖ሺܵሻ	is 

mismatched short-circuit current due to shading, ݇௜	 is Temperature coefficient of 	ܫ௦௖. Now 

open-circuit voltage is calculated for each condition as 

ைܸ஼ሺܺሻ ൌ 	 ௢ܸ௖ 	െ ݇௩	 ௑ܶ (4.10)

ைܸ஼ሺܥሻ ൌ 	 ௢ܸ௖ ൅ 2݉	 ௧ܸ ሾ1݃݋݈ െ݂ሺܥ|݀, ݁ሻ] (4.11)

ைܸ஼ሺܴሻ ൌ 	
ܭ ௔ܶ௠௕

ݍ
݃݋݈ ൬

ௌ஼ሺܵሻܫ
ைܫ

൰ (4.12)

which considers the shading factor due to the objective shading caused by clouds. Here 

where	 ௢ܸ௖ denotes the open circuit voltage, ݇௩	 is Temperature coefficient of	 ைܸ஼, m is the 

bypass diode ideality factor and q is charge on electron. Thus, the voltage and current, at the 

maximum power point, under partial shading conditions can be calculated as: [131] 

௠ܸ௣௣ሺܵሻ ൌ ௠ܸ௣௣ ൅ 	2ܿଵ௠ൈ௏೟ logሾ1 െ݂ሺܥ|݀, ݁ሻ] (4.13)

௠௣௣ሺܵሻܫ ൌ 	 ௠௣௣ሾ1ܫ െ ݂ሺܥ|݀, ݁ሻሿ (4.14)
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From (4.7)-(4.14), the deviation of the current-voltage characteristic of a PV cell with 

respect to the ideal condition, denoted by the fill factor, is determined as: 

ݎ݋ݐܿܽܨ	݈݈݅ܨ ൌ 	 ௠ܸ௣௣	ܫ௠௣௣

௢ܸ௖	ܫ௦௖
 (4.15)

In the above equations, ௠ܸ௣௣ and ܫ௠௣௣ are the voltage and current at maximum power 

point respectively. Thus, the output voltage and current of a PV module, consisting of a strings 

of cells as shown in Fig. 4.3, can be calculated under all condition as: 

௢௨௧ܫ ൌ 	݂ሺݏ|ܽ, ܾሻ	ሾܫ௦௖ 	൅	݇௜	ሺܶ െ 25ሻሿ (4.16)

௢ܸ௨௧ ൌ 	 ௢ܸ௖ 	െ ݇௩	ܶ (4.17)

Thereby, the total output power of a PV module, under any condition, can be defined as 

௉ܲ௏ ൌ ௢௨௧ܫ 	ൈ ௢ܸ௨௧ ൈ (4.18) ݎ݋ݐ݂ܿܽ	݈݈݂݅

4.2.1.2 Developed Algorithm for PV Generator  

The major purpose of the developed algorithm (shown schematically in Fig. 4.4), is to 

calculate the weather-based output power of the PV system. A stochastic modelling approach, 

which is a useful tool for estimations of the probability distributions, has been used here, as the 

simulation technique. The potential outcomes, taken from the Beta probability density function, 

are allowed for random variation of one or more inputs, based on historical data for selected 

intervals, using metrological year data. To this end, a typical metrological data of one month, 

has been captured for a site (e.g. Sydney, Australia). Multiple trial runs are performed in 

Matlab, using random variables, specified earlier in the stochastic modelling stage. It is 

assumed that a sunny condition does not have any clouds; light clouding is considered for 

cloudy conditions, and heavy clouding is considered for rainy conditions. Thus, it is thought 

that a sunny condition does have 0% shading, a cloudy condition has 15-40% shading, while 

45-75% shading is considered for rainy conditions  
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Fig 4.4 Assumed PV System topology. 
 

The required computational procedure is as follows: 

 Step-1: Select the month for which the expected output power is needed. 

 Step-2: Perform statistical analysis, to determine Beta probability density function, from the 

input metrological data. 

 Step-3: Compute the ambient and cell temperature, for that particular time of the day. 

 Step-4: Solve equations of current and voltage for the PV module under consideration 

(Objective shading assumptions made earlier should be taken into account). 

 Step-5: Calculate the fill factor, to see the deviation from the original voltage-current 

characteristics. 

 Step-6: Calculate the output power of the PV system, for a sunny, cloudy and rainy 

condition. 

The flow chart of Fig. 4.5, illustrates schematically the computational procedure in 

more detail. 

 Wind Generator  

The horizontal axis wind turbine, is used as the model for the wind generator. The  
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Fig 4.5 The PV generator algorithm flowchart. 

 

operating machine is assumed to be an upwind machine e.g. the rotor in the modelled scheme 

is assumed to be facing the wind direction, to capture the maximum wind for utilisation. The 

induction generator is selected for the conversion of the mechanical input power to the 

electrical output. Stochastic analysis for the annual energy produced by wind speed, is done by 

using the weibull distribution function, where scale and shape factors are the parameters of 

weibull distribution function. Monte-Carlo Simulations, show that the final output from the 

induction generator can be approximately 15MW maximum at 15m/sec wind speed. Now for 

the wind generator, the calculation of the wind speed (V) is done by the probability density 

function, utilising shape (β), scale (η) and location (γ) parameters [132]. While the location 

parameter is set to the zero value for the purpose of the calculations, the wind generator’s basic 

block diagram representing its functions, is shown in Fig. 4.6. The expected output from power 

generator is calculated after the determination of speed. It includes the following equations 
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Fig 4.6 Functional block diagram of the wind generator. 

௄ܲா ൌ 0.5 ൈ ⍴ ൈ ܣ ൈ ܸଷ (4.19)

Equation (4.19) is utilised for measuring the kinetic energy of wind and then calculating 

the total power captured. Here A is the area of rotor and ⍴	is the standard atmosphere air 

density. 

ܴܶܵ ൌ 	
߱ ൈ ݎ
ܸ

 (4.20)

In (4.20) ܴܶܵ is the Tip speed ratio and it is defined as, the ratio between tangential speed 

and the real wind velocity. 

,ߚ௉ሺܥ ሻߣ ൌ 	0.5 ൈ ൣሺߣ െ 0.22ሻ ൈ Ѳଶ െ 5.6ሻ ൈ ݁ି଴.ଵ଻/ఒ൧ 
(4.21)

While ܥ௉ is the coefficient of performance. Then by using ሺ ௥

்ௌோ
ሻ ൈ ሺଷ଺଴଴

ଵ଺଴ଽ
ሻ, the actual TSR is 

calculated where Ѳ is the blade pitch angle. 
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௠ܲ௘௖௛ ൌ 0.5 ൈ ⍴ ൈ ܣ ൈ ܸଷ ൈ ௉ (4.22)ܥ

௚௘௔௥ߟ ൌ 	
ൣ ௠ܲ௘௖௛ െ ሼ0.01 ൈ ൫ݍ௦௧௘௣ ൈ ௥ܲ௔௧௘ௗ൯ሽ൧

௠ܲ௘௖௛
 (4.23)

௜௡௣௨௧ܩܫ ൌ ௠ܲ௘௖௛ ൈ ௚௘௔௥ (4.24)ߟ

ௐܲ௜௡ௗ ൌ (4.25) ݏ݁ݏݏ݋݈	– ௜௡௣௨௧ܩܫ	

Conversion of mechanical output from the wind turbine to an electrical output is done 

through the use of the induction generator. The wind generator’s Computational block 

diagram, is shown in Fig. 4.7 and the design parameters of the induction generator used for 

energy conversion, are described in Table 4.2. 

Proprietary	
information

Aero	Power	
Calculator

Induction 
Generator

PmechCp

β,
λ V

  

Fig 4.7 Wind Generator computational block diagram. 

 

Table 4.2 Design Specifications of Induction Generator. 
Rated Power 16 MVA Rated Voltage 6600 V 

Frequency 50 Hz Poles 6 

Stator Resistance 0.0052 pu Staor leakage reactance 0.089 pu 

Rotor Resistance 0.0092 pu Rotor leakage reactance 0.13 pu 

Iron loss resistance 135 pu Magnetizing reactance 4.8 pu 
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 DDERs Modelling 

The DGs are assumed as synchronous generators, in which their output power can vary 

between the minimum loading limit and their nominal capacity. The nominal capacity of the  

DGs is decided on the basis of the nominal capacity of the load or microgrid’s demand at that 

time. The auto-synchronizer module, is used for this purpose and it serves better results. The 

reason being, that the synchronisation of frequency, phase and voltage can be done 

automatically [133]. Light load conditions, in terms of the DGs operation and for extended 

hours, can increase the risk of premature ageing and engine failure. Studies show that if the 

loading level is as low as 25%, in comparison to the rated output, then the fuel consumption of 

the DGs, can increase tremendously [134]. It is assumed for the sake of this work that 

஽ܲீ
௖௔௣ ൌ ஽ܲீ

௎஻ ൌ ݁݃ܽݐ݊݁ܿݎ݁݌	݀݁ݐ݈ܿ݁݁ݏ ൈ ௟ܲ௢௔ௗ
௖௔௣  (4.26)

where ஽ܲீ
௖௔௣ is set by stochastic modelling. For economic benefit, it is assumed that DG will 

not be turned off completely. Therefore, for DGs the starting and Shutdown costs are set to 

zero. Another aim is to achieve the long life of the machine. Therefore, restrictions are put on 

a lower operational bound ஽ܲீ
௅஻ and are taken as a necessary operational constraint. Thus, the 

operational power from the DG, should remain higher than	 ஽ܲீ
௅஻ i.e.	 ஽ܲீ ൒ ஽ܲீ

௅஻. 

The safe operation of BSS, is ensured by adopting a battery management system. The 

key advantage in doing so, is the responsibility for monitoring many core parameters for the 

case temperature range and the limits of voltage and currents etc. [135]. It is also critical to 

consider the BSS lifetime and it is necessity for accurate calculation of the operating cost of 

the microgrid. This is achieved by assuming that the lifetime of the BSS, is the time equal to  
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Fig 4.8 SoC profile for BSS [136]. 

 

the total ampere-hour (Ah) throughput and it is similar to the measured Ah throughput. Care is 

taken in that that low SoC, can stress the BSS, as compared to the high SoC values. Hence it is 

important to compare any Ah in case of charge/discharge, with a weighing factor. This factor 

should be higher or lower than the SoC. It is a fact that an effective cumulative lifetime of 

considered BSS, is coorelated to operating SoC values, as described in [136-137] and shown 

in Fig. 4.8. The following limits are considered for SoC of BSS. 

௅஻ܥܱܵ ൏ ܥܱܵ ൏ ௎஻ (4.27)ܥܱܵ

While nominal capacity ௖ܲ௔௣
஻ௌௌ of BSS is taken from the aforementioned stochastic modelling. 

 Load Modelling 

The loads are assumed time-varying and their nominal capacity ( ௖ܲ௔௣
௟௢௔ௗ), is determined 

randomly while the instantaneous power demand of the loads are between zero and their 

nominal values. It is assumed that all considered loads are constant-impedance. Therefore, both 

of the active and reactive load demands, will consequently dependent upon the frequency and 

voltage magnitude, given at their corresponding connection bus [138]. A sample of the load 

profile of 24 hours, generated for the purpose of analysis, is presented in Fig. 4.9. 
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Fig 4.9 A sample of load profile generated for analysis 

 Microgrid Topology and its Components 

The considered topology of a microgrid is shown in Fig. 4.10 and it is assumed that 

microgrid is composed of a total of six buses. Out of which the PV generator is connected to 

bus-1, wind generator to bus-2, BSS with bus-3, load on bus-4, DG on bus-5 and bus-6 will be 

assumed to be connected with an ISS, for the purpose of connectivity with other neighbour 

microgrid(s). It is essential to do demand supply analysis of the considered system. Therefore, 

after modelling, it is important to do a power flow analysis for the microgrid, which is described 

in detail in the next section. 

LOAD

ISS

BUS‐1

BUS‐2

BUS‐3
BUS‐4 BUS‐5

BUS‐6

BSS

Wind Speed(m/sec)

Different metrological 
conditions on PV 

Modules

DG

 

Fig 4.10 Topology of modelled microgrid. 
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 Power Flow Analysis for Modelled Microgrid 

To analyse the microgrid performance, when solving the optimisation problem, a load flow 

analysis is required to reveal the deviation of voltages and the frequency in the microgrid. This 

research uses a modified Gauss-Seidel type algorithm, for this purpose. In this work, it is 

assumed that DDERs (i.e., DGs, BSSs, as well as BSS-coupled NDERs) are droop controlled 

i.e., they regulate the voltage magnitude and frequency, at their point of connection, using the 

droop equations of 

݂ ൌ ݂௠௔௫ െ ݉஽஽ாோ	ܲ஽஽ாோ (4.28)

|ܸ|஽஽ாோ ൌ ܸ௠௔௫ െ ݊஽஽ாோ	ܳ஽஽ாோ (4.29)

where ݉஽஽ாோ and ݊஽஽ாோ are the droop coefficients (see Fig. 4.11). 

In the first iteration, using the instantaneous power of BSS, NDERs and load, the output 

power of DDERs are approximated. Then, using the droop equation of (4.28), the microgrid’s 

frequency, is calculated in this iteration from which the microgrid’s Y-bus and the new active 

and reactive power consumption of each load, is updated by  

ܻ௕௨௦ ൌ ൦

ଵܻଵሺ݂ሻ		 ଵܻଶሺ݂ሻ	… 	 ଵܻேሺ݂ሻ

ଶܻଵሺ݂ሻ		 ଶܻଶሺ݂ሻ	 ⋯ ଶܻேሺ݂ሻ
⋮		⋮ ⋱ ⋮

ேܻଵሺ݂ሻ	 ேܻଶሺ݂ሻ	 ⋯ ேܻேሺ݂ሻ

൪ 
 

(4.30)

ܲ௟௢௔ௗ ൌ 	ܲ௡௢௠ሺ1 ൅ ݇ଵ∆݂ሻሺܸ ܸ௡௢௠⁄ ሻ௞మ (4.31)

ܳ௟௢௔ௗ ൌ 	ܳ௡௢௠ሺ1 ൅ ݇ଷ∆݂ሻሺܸ ܸ௡௢௠⁄ ሻ௞ర (4.32)
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Fig 4.11 Droop Regulated control illustration for microgrid network. 
 

in which ∆݂ ൌ ݂ െ ݂௡௢௠ represents the deviation of microgrid’s frequency from the nominal 

frequency (e.g. 50 Hz) whereas ܸ௡௢௠ is the nominal voltage magnitude in the microgrid (i.e., 

1 pu) and ܲ௡௢௠ and ܳ௡௢௠ denote the instantaneous power of the load at nominal frequency. In 

(4.31)-(4.32),	݇ଵ,	݇ଶ,	݇ଷ and ݇ସ are constants (their numerical values are described in the next 

Chapter) [53]. 

Assuming a set of initial values for voltages of all buses (e.g., 1∠0º pu), the current drawn 

by each load can be calculated. Then, the Gauss-Seidel algorithm is applied to determine the 

voltage 	 ௫ܸ
௝	of all buses [103]. Then, the acceleration factor (ߤ) is applied to slightly modify 

the bus voltages to define new voltages, for the next iteration in the form of  

௫ܸ
௝ାଵ ൌ 	 ௫ܸ

௝ିଵ ൅ 	൫ߤ ௫ܸ
௝ െ ௫ܸ

௝ିଵ൯ (4.33)

At this stage, the power consumed in the lines of the microgrid can be calculated as:  

ܵ௟௜௡௘ ൌ 	 ෍ ෍ െ ௫ܻ,௬
௕௨௦൫ ௫ܸ െ ௬ܸ൯

ଶ
ே್ೠೞ

௬ୀ௫

ே್ೠೞ

௫ୀଵ

 
(4.34)

where ௕ܰ௨௦ denotes the number of buses in the microgrid. Hence, the total output power from 

DDERs (∑ܵ஽஽ாோ) will be: 

෍ܵ஽஽ாோ ൌ෍ܵ௟௢௔ௗ ൅ ܵ௟௜௡௘ െ෍ܵே஽ாோ ൅ ෍ܵ஻ௌௌ (4.35)ߜ

in which	ߜ ൌ ൅1 if the BSS is charging; ߜ ൌ െ1 when discharging and ߜ ൌ 0 when the BSS 
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is not in operation. 

Now, the active and reactive power of DDERs, can be distinguished on the basis of their 

droop ratios by: 

௫ܲ
஽஽ாோ ൌ Re ቀ෍ܵ஽஽ாோቁ	ܴܽ݋݅ݐ஽஽ாோ (4.36)

ܳ௫஽஽ாோ ൌ Imቀ෍ܵ஽஽ாோቁ	ܴܽ݋݅ݐ஽஽ாோ (4.37)

where Reሺ. ሻ and Imሺ. ሻ are respectively the real and imaginary functions and ܴ  ஽஽ாோ shows݋݅ݐܽ

the ratio of the output power of DDERs, correlated to their droop coefficient ݉ ஽஽ாோ. Replacing 

(15) in (7), reveals the voltage magnitude at the DDER buses which will be updated by the 

angles given by the corresponding values in (12). Likewise, replacing (15) in (6) will determine 

the new frequency for the next iteration. The above-discussed iterative technique will be 

continued until the numerical analysis converges. At this stage, the frequency deviation and 

voltage magnitude deviation (i.e.,∆ܸ ൌ max	ሺ| ௫ܸ െ ܸ௡௢௠|) in the microgrid, can be determined 

in which maxሺ. ሻ is the maximum operator. 

Due to the absence of a slack bus, one of the buses in the microgrid (e.g., the bus 

connected to the first DDER, is assumed to be the reference bus, that has an angle of 0º. Thus, 

all other angles are calculated with respect to this reference bus.  

 Optimisation Solver 

In this study, a genetic algorithm, based upon optimisation techniques is used to find the 

most suitable control variables (i.e., the output power of DGs and BSSs, as well as the level of 

load-shedding and renewable curtailment in NDERs) that result in the least fitness or objective 

function value, amongst any other variables. Floating point-genetic algorithm, is a special type 

of genetic algorithm which uses floating-point numbers, instead of binary numbers, which is 
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common in traditional genetic algorithms. Thus, it is more advantageous in terms of efficiency, 

memory utilisation, and precision [103]. Moreover, there is greater flexibility in using different 

operators. To this end, floating point-genetic algorithms, generates a series of output powers 

for every control variable, in the form of floating-point numbers, which are referred to as genes 

(gene). Each combination of these genes form a vector, referred to as chromosome. While a 

group of chromosomes, constitute the population. Floating point-genetic algorithm, includes 

an iterative mechanism of population initialisation, calculating the developed fitness function, 

for each chromosome of the population, applying different operators on a specific or suitable 

portion of the population, to generate a new population until fulfilling the stopping criteria. 

This optimisation solver, is explained in more detail with its operators, in the next coming 

chapter of this work. However, the different terminologies of the floating point-genetic 

algorithm-based solver, are shown in Table 4.3. 

 

Table 4.3 Floating point genetic algorithm terminologies. 
 

Terms Explanation 

Gene or individual (ind) Each control variable 

Chromosome  The vector consisting of all inds 

Population  The set of all chromosomes 

Fitness value Quality of a chromosome 

 Order of a chromosomes when sorted from least to highest number ࢑࢔ࢇࡾ

 Position of an ind within a chromosome for crossover ࢉࡺ

 Number of inds in a chromosome ࢊ࢔࢏ࡺ

 Percentage of inds for which crossover is applied ࢉ࢘ࢋࡼ

 Percentage of inds for which mutation is applied ࢓࢘ࢋࡼ
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Fig 4.12 Wind based NDERs output 

 Simulation Results 

The simulation studies have been completed for the considered microgrid topology which 

was shown previously in Fig. 4.10. In this chapter only those simulation studies, related to the 

NDERs and DDERs, are presented. While power flow analysis and floating point-genetic 

algorithm solver implementations will be discussed later in Chapter 5, 6 and 7 respectively. 

 NDERs Numerical Analysis 

Monte-Carlo Simulations show that nominal capacities of NDERs, can be approximately 

18MW (out of which ܲ ௖௔௣
௉௏  is 3MW and ܲ ௖௔௣

௪௜௡ௗ is 15MW with corresponding maximum 15m/sec 

wind speed). The units of DERs powers can be changed according to the considered microgrid 

system (for example in coming Chapters, the units are kW instead of MW for the standalone 

and clustered microgrid systems). Wind based NDERs output analysis is depicted in Fig. 4.12. 

The performance of a PV System, with the developed algorithm, is evaluated by considering 

one year’s data, and is tabulated in Table 4.4. First, ݂ሺܺሻ has been computed using (4.4) where 

parameters a, b < 1, so the beta probability density function obtained for sunny conditions is 

U-shaped as demonstrated previously in Fig. 4.2. After this, the corresponding temperature is  
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Table 4.4 Comparisons amongst the assumed three weather conditions and their expected 

output power for the months of a year 

Month ࢌሺࢄሻ ࢄࡼ ሾ܅ۻሿ ࢌሺ࡯ሻ ࡯ࡼ ሾ܅ۻሿ ࢌሺࡾሻ ࡾࡼ ሾ܅ۻሿ 

January 0.301 4.713 0.391 2.923 0.771 1.723 

February 0.422 8.922 0.232 4.902 0.992 1.122 

March 0.324 5.131 0.673 2.481 0.513 1.831 

April 0.321 5.349 0.534 2.509 0.904 1.309 

May 0.311 4.358 0.215 4.08 0.795 1.708 

June 0.292 4.667 0.546 2.487 0.786 1.717 

July 0.403 7.276 0.697 2.156 0.947 1.856 

August 0.325 5.185 0.228 4.075 0.818 1.225 

September 0.392 7.794 0.399 2.804 0.719 1.914 

October 0.351 5.903 0.351 3.253 0.961 1.183 

November 0.313 4.312 0.542 2.592 0.672 1.962 

December 0.406 7.721 0.173 5.871 0.613 2.161 

 

calculated while the normal operating temperature is set at 25ºC. The short circuit current 

obtained using (3.7) for 12 months, is in the range of 1.05 to 1.28 A, while the open circuit 

voltage is in the range of 22.04 to 22.08 V. The fill factor value is 0.7 for sunny weather.  

Finally, ௑ܲ values are calculated and indicate that the expected output power is the maximum 

(approximately 8.9 MW) for February, due to the highest expected insolation level, while lower 

values of 4.3 MW, are expected for May and November, because of the lower expected 

exposure to sunlight. 

When the evaluation is carried out for cloudy weather, the shading factor is involved in 

the composition of ݂ሺܥሻ ,so a high value of shading will create a lower power output, and the 

probability density function has a mount-curve shape. The expected output power of the  
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Fig 4.13 Graphical representation of the expected output power of the considered PV system 

under sunny, cloudy and rainy conditions. 

 

considered PV system in rainy conditions ( ஼ܲ) is 5.87 MW for December, while it reduces to 

2.15 MW in July, because of the larger expected shadings. Beta probability density function 

for rainy conditions is made from the rainfall duration and rainfall intensity factors and 

inclusion of shading effects is obvious in this case. The probability density function has a J-

shaped curve. The expected output power, of the considered PV system, in this condition ( ோܲ), 

is expected to generate 1.85 and 1.22 MW, for July and August. Fig. 4.13 illustrates the 

expected output power of the considered PV system, in these three conditions, throughout the 

year. 

The stochastic analysis shows a reduction of respectively 25-40 % and 60-70 %, in the 

expected output power of the considered PV system, for cloudy and rainy conditions in 

comparison to sunny conditions. 
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 Numerical Analysis with Droop Control 

For stochastic modelling of DG, ramp up and down limits, fuel and aging, rating and 

overloading limits, are important features. The ramp up and ramp down limit of DG are 

considered as 95% ௖ܲ௔௣
஽ீ  and 30% ௖ܲ௔௣

஽ீ  respectively. In the same manner, battery operation is 

bounded by charging/ discharging times, SoC limits, Battery capacity etc. So the ܵܥ݋௅஻ is set 

at 20% and ܵܥ݋௎஻is 90% respectively.  

Exhaustive simulations are carried out for finding the minimum effective values of 

DDERs, using droop regulated based control algorithms, developed in Matlab. The purpose is 

to look at the feasible DERs values to ensure all modelling parameters are satisfied. Values 

should be satisfying the demand, at that particular time of the planning horizon. First the 

demand supply analysis is necessary when the DDERs are operating at their rated capacities. 

Table 4.5 explains the situation when the NDERs are generating their powers and the climate 

situation, is also taken into account. The solar irradiance level and wind speeds have 

predominant influence on the generation levels of the NDERs. Load patterns are also randomly 

generated, with the help of historical data. When the DDERs are operating at their maximum 

available capacity, it can then create a power overload, so in order to create an optimum 

scenario, it is necessary to identify the preferable values that can provide maximum benefit. 

Fig 4.14 (a) shows the demand supply analysis without including the DDERs and it is clear 

that scenario (3, 4, 6, 7, 8, 9, and 10) are suffering from a power deficiency. While (1, 2) are 

experiencing a power overload, only 5 is ideal one with the power balance. When the system 

is solved to meet the modelling constraints of the DDERs, then we can attain the power balance 

of the microgrid network. So firstly, the NDERs generation will be monitored in relation to its 

accommodation of the required load. 
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If the NDERs generation meets the load demand, then the excessive power from DG can be 

utilised to charge BSS (with the condition that SoC of BSS should not be reached on maximum 

limit). On the other hand, if the NDERs, is not enough to meet the load demand, then power 

will be taken from the DG (with the condition that the DG will not operate at the maximum 

limit).For making the modelled DERs, more economical for microgrid operation, effort is made 

to operate the DGs at their minimum possible level and the rest of power (if desired) is fetched 

from BSS discharging. In an ideal and of course rare situation, in which the NDERs are 

producing accurate amounts of power as the load demands, then the DG will operate at the 

lower limit and the DG power can be transmitted to BSS (so that SoC limit is not violated). 

More explanations about the developed function for the demand supply analysis, as well the 

three related situations are presented in Table 4.5, while the graphical depiction is provided in 

Fig. 4.14 (b). 

  

(a)                                                                (b) 

Fig 4.14 Demand/supply analysis of microgrid (a) without droop control (b) with droop 

control 
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Table 4.5 Simulation results for the considered microgrid demand and supply analysis. 

Scenario PV Wind Load ࢂࡼࡼ

൅ ࢊ࢔࢏ࢃࡼ

െ  ࢊࢇ࢕ࡸࡼ

ࡳࡰ࢖ࢇࢉࡼ  ࡿࡿ࡮ࡼ ࡿࡿ࡮࢖ࢇࢉࡼ ࡳࡰࡼ 

Climate 

Scenario 

ܲ௉௏ 

(MW) 

 Speed 

(m/s) 

ܲௐ௜௡ௗ 

(MW) 

ܲ௅௢௔ௗ 

(MW) 

(MW) (MW) (MW) (MW) (MW) 

1. cloudy 1.24 12 7.03 6.2 2.07 9.67 2.9 5.2 -4.97 

2. rainy 0.89 10 5.37 3.14 3.12 3.79 1.13 9.38 -4.25 

3. cloudy 1.19 9.8 4.71 8.88 -2.97 15.17 4.55 8.61 -1.58 

4. cloudy 1.26 13 9.23 14.39 -3.89 14.77 4.43 6.95 -0.54 

5. sunny 1.92 13 5.58 7.02 0 11.73 3.52 12.38 -3.52 

6. cloudy 0.83 6.5 1.5 8.17 -5.84 13.52  4.05 12.52 1.79 

7.  sunny  1.79  7 2.57 5.84 -1.47 7.12  2.13 8.93 -0.66 

8. cloudy 1.15 8.5 3.95 10.22 -5.11 12.40 3.72 12.75 1.39 

9. cloudy 1.29 3 0.2 8.74 -7.25 7.65 2.29 6.94 4.96 

10. rainy 0.62 5.6 1.34 7.33 -5.36 9.84 2.95 9.75 2.41 

 Summary 

In this chapter, the modelling of DERs, for microgrid operations followed by the power 

flow analysis is discussed. Here, the NDERs model includes the environmental aspects. The 

unpredicted nature of the NDERs is embedded by the use of different probability density 

functions, and then the stochastic modelling is applied to replicate the phenomenon of random 

variables. DDERs have operational limits due to their controllable nature and loads are 

assumed to be a constant impedance time in the considered time horizon. The demand supply 

analysis, of the considered microgrid topology, has shown that within a certain time frame, the 

load can be accommodated by the combination of the NDERs output at that time, adjustment 

of operational limits for DGs, as well as the BSS conditions of charge and discharge. 
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 Optimisation Technique for Standalone 

Microgrid  

 Introduction 

The standalone hybrid remote area power systems, also known as microgrids, can provide 

reasonable priced electricity in geographically isolated and edge of grid locations, for their 

operators. To achieve the reliable operation of microgrids along with minimal consumption of 

fossil fuels and maximum penetration of renewables, the frequency and voltage, should be 

maintained within acceptable limits. This can be realised by solving an optimisation problem. 

The floating point-genetic algorithm, is a heuristic technique that has been strongly proven to 

find feasible/optimal solutions. This solver requires a fitness function, to extract the most 

suitable, as well as optimal control variables, for the microgrid. And it is done on top of the 

selection of the appropriate operators. At first, a suitable fitness function, is formulated in this 

chapter and it is done by including the operational, interruption and technical costs, which are 

then solved with a floating point-genetic algorithm, using different operators. The considered 

operators along with the developed fitness functions are testified to have a non-linear 

optimisation algorithm of a 38-bus microgrid. Detailed discussions are provided, on the impact 

of which different operators have on the outcomes of the fitness function. 
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 Optimisation Formulation 

This section presents the formulated fitness function and the considered constraints for 

addressing Research Issue 1, described earlier in Chapter 3.  

 Formulated Fitness Function and Technical Constraints 

As mentioned above, the main aims are to minimise the overall cost of electricity 

generation in the microgrid, losses, interruption to loads and renewable curtailment, and 

enhance the lifecycle of BSSs. Thus, a fitness function can be defined as a mixed integer 

nonlinear optimisation problem and formulated as 

ܨܨ ൌ ௢௣ܨܨ ൅ ௜௡௧ܨܨ ൅ ௩௙ (5.1)ܨܨ

where ܨܨ௢௣, ܨܨ௜௡௧ and ܨܨ௩௙ are respectively the microgrid’s operational costs, interruption 

costs because of load-shedding or curtailment of NDERs, and the equivalent cost of voltage 

and frequency deviation. ܨܨ௢௣ is defined as 

௢௣ܨܨ ൌ ஽ீݐݏ݋ܿ ൅ ஻ௌௌݐݏ݋ܿ ൅ ௟௢௦௦ (5.2)ݐݏ݋ܿ

where ܿݐݏ݋஽ீ is the cost of power generation by DGs, ܿݐݏ݋஻ௌௌ is the life loss cost of BSS 

because of charging/discharging, and ܿݐݏ݋௟௢௦௦ is the cost of power loss in the microgrid lines. 

 ஽ீ is calculated asݐݏ݋ܿ

஽ீݐݏ݋ܿ ൌ ∆ܶ෍ܲ஽ீሺܿݐݏ݋୤୳ୣ୪ ൅ ୫ሻ (5.3)ୣݐݏ݋ܿ

where ∆ܶ is the period for which the new actions will be applied in the system (see Fig. 3.2 of 

Chapter 3), ܲ஽ீ is the output power of DGs (in kW), ܿݐݏ݋୤୳ୣ୪ ,is the cost of fuel used in the 

DGs (in $/liter) and ܿୣݐݏ݋୫ , is their greenhouse emission cost (in $/kg). The fuel expenditure 
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is taken as a quadratic function and expressed as: 

୤୳ୣ୪ݐݏ݋ܿ ൌ ߰	ሺߛଵଵ ൅ ܲ஽ீ	ଵଶߛ ൅ ଵଷሺܲ஽ீሻଶሻ (5.4)ߛ

where ߛ is a constant, and ߰ ൌ 0 when the DG is not operating; otherwise, it is unity. In a 

similar way, ܿݐݏ݋஻ௌௌ and ܿݐݏ݋௟௢௦௦ are defined as  

஻ௌௌݐݏ݋ܿ ൌ ߰	ሺߛଶଵ ൅ ||ܲ஻ௌௌ	ଶଶߛ ൅ ଶଷߛ ሺܲ஻ௌௌሻଶሻ (5.5)

௟௢௦௦ݐݏ݋ܿ ൌ ଷଵܲ௟௢௦௦ߛ ൅ ሺܲ௟௢௦௦ሻଶ (5.6)	ଷଶߛ

In (5.5), ߰ ൌ 1 if the BSS is in operation; otherwise, it is zero. Also, the absolute operator of 

|. | is used in (5.5) because ܲ஻ௌௌ can be positive and negative. 

In (5.1), ܨܨ௜௡௧ is formulated as 

௜௡௧ܨܨ ൌ ∆ܶ ቀ෍ ௦ܲ௛௘ௗ
௟௢௔ௗܿݐݏ݋௦௛௘ௗ ൅෍ ௖ܲ௨௥௧

ே஽ாோܿݐݏ݋௖௨௥௧ቁ 
(5.7)

in which ௦ܲ௛௘ௗ
௟௢௔ௗ and ௖ܲ௨௥௧

ே஽ாோ are respectively the amount of load-shedding and renewable 

curtailment (in kW) whilst ܿݐݏ݋௦௛௘ௗ and ܿݐݏ݋௖௨௥௧ are respectively, their corresponding costs 

(in $/kWh).  

Similarly, ܨܨ௩௙ is derived as 

௩௙ܨܨ ൌ maxሺ∆ ௫ܸሻ ൅ |∆݂| ൅ (5.8) ܨܲ

Where PF is penalty factor and ܲܨ ൌ 0 unless one of the following technical constraints is not 

satisfied:  

෍ܵ஽஽ாோ ൅෍ܵே஽ாோ ൌ෍ܵ஻ௌௌ ൅෍ܵ௟௢௔ௗ ൅෍ܵ௟௢௦௦ (5.9a)
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െ ௖ܲ௔௣
஻ௌௌ ൑ ܲ஻ௌௌ ൑ ൅ ௖ܲ௔௣

஻ௌௌ (5.9b)

௠௜௡ܥ݋ܵ ൑ ܥ݋ܵ ൑ ௠௔௫ (5.9c)ܥ݋ܵ

௅ܲ஻
஽ீ ൑ ܲ஽ீ ൑ ௖ܲ௔௣

஽ீ  (5.9d)

െට൫ܵ௖௔௣஽஽ாோ൯
ଶ
െ ൫ܲ஽஽ாோ൯

ଶ
൑ ܳ஽஽ாோ ൑ ට൫ܵ௖௔௣஽஽ாோ൯

ଶ
െ ൫ܲ஽஽ாோ൯

ଶ
 (5.9e)

௦ܲ௛௘ௗ
௟௢௔ௗ ൑ ܲ௟௢௔ௗ (5.9f)

௖ܲ௨௥௧
ே஽ாோ ൑ ܲே஽ாோ (5.9g)

ܸ௠௜௡ ൑ | ௫ܸ| ൑ ܸ௠௔௫ (5.9h)

݂௠௜௡ ൑ ݂ ൑ ݂௠௔௫ (5.9i)

௟ܫ ൑ ሺܫ௟ሻ௠௔௫ (5.9j)

ܲ௟௢௦௦ ൏ ሺܲ௟௢௦௦ሻ௠௔௫ (5.9k)

Eq. (5.9a), represent the power balance within the microgrid while (5.9b-c), show the limitation 

in power exchange and the SoC of the BSS. The lower and upper bounds of the output power 

of a DG and a DDER are given by (5.9d-e). The maximum load-shedding limit and curtailment 

of the NDERs are defined in (5.9f-g). Eq. (5.9h-k) show the permissible variation in voltage 

and frequency in the buses of the microgrid, as well as the thermal limits of the current and the 

power loss in the network lines. 

 Floating Point Genetic Algorithm Solver 

The floating point-genetic algorithm operation, includes an iterative mechanism of 

population initialisation, calculating the developed fitness function for each chromosome of  
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Fig 5.1 Flowchart of the floating point-genetic algorithm-based optimisation including the 

frequency-dependent analysis of the microgrid. 

the population, applying different operators on a specific or suitable portion of the population, 

to generate a new population, until fulfilling the stopping criteria. The different stages of the 

floating point-genetic algorithm-based solution and frequency dependent power flow analysis 

(as described in Chapter 4), is depicted in Fig. 5.1. 

 Population Initialisation 

In this study, the first population is created randomly; however, it is to be noted that under 

some situations, a randomly generated initial population, can restrict the considered solutions 

in the zone of local minima [139]. Alternatively, other techniques such as full load average 

production, cost-based priority order, and adapted priority list, can be used [140-141]. 

Considering the control variables for this study as being the output power of the DGs, the BSSs, 

load-shedding and the NDERs curtailment (i.e., ܲ஽ீ, ܲ஻ௌௌ, ௦ܲ௛௘ௗ
௟௢௔ௗ and ௖ܲ௨௥௧

ே஽ாோ), a population 
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with N chromosomes, can be formed and represented by a matrix in the form of (5.10), in which 

each gene takes a floating-point number. Thus, the population is a double vector, considering 

both the integer and decimal numbers of the genes [142]. 

݌݋݌ ൌ

1-݉ݎ݄ܿ
2-݉ݎ݄ܿ

⋮
ܰ-݉ݎ݄ܿ ۏ

ێ
ێ
ێ
ۍ ଵܲ

஽஽ாோ … ேܲವವಶೃ
஽஽ாோ

ଶܲ
஽஽ாோ … ேܲವವಶೃ

஽஽ாோ

⋮
ேܲ
஽஽ாோ … ேܲವವಶೃ

஽஽ாோ 	

௦ܲ௛௘ௗ,ଵ
௟௢௔ௗ … ௦ܲ௛௘ௗ,ே೗೚ೌ೏

௟௢௔ௗ
௖ܲ௨௥௧,ଵ
ே஽ாோ … ௖ܲ௨௥௧,ேಿವಶೃ

ே஽ாோ

௦ܲ௛௘ௗ,ଶ
௟௢௔ௗ … ௦ܲ௛௘ௗ,ே೗೚ೌ೏

௟௢௔ௗ
ேܲ஽ாோ,ଶ
௖௨௥௧ … ௖ܲ௨௥௧,ேಿವಶೃ

ே஽ாோ

⋮
௦ܲ௛௘ௗ,ଷ
௟௢௔ௗ … 	 ௦ܲ௛௘ௗ,ே೗೚ೌ೏

௟௢௔ௗ 	 ேܲ஽ாோ,ே
௖௨௥௧ … ௖ܲ௨௥௧,ேಿವಶೃ

ே஽ாோ ے
ۑ
ۑ
ۑ
ې

 
(5.10)

 Floating Point Genetic Algorithm Operators 

Three operators of scaling, crossover and mutation, are used here to define the optimal 

solution. They are discussed briefly below, while their characteristics are summarised in Table 

5.1. 

In each iteration of the floating point-genetic algorithm, the scaling operator makes 

copies of solutions that pose the best values of the fitness function in the previous iteration. If 

for some solutions, the considered technical constraints are not met, the scaling operator will 

try to scale them in a range that is suitable for the mutation and cross over operations. 

Otherwise, if the solution does not seem to be feasible, it will eliminate them from the solution 

pool. This operator affects the performance of the floating point-genetic algorithm, by selecting 

a suitable range for the scaled values. For instance, if the scaled values vary too widely, the 

gene with the highest scaled values, reproduce too rapidly, taking over the solution pool too 

quickly, and preventing the floating point-genetic algorithm, from searching other areas of the 

solution space. On the other hand, if the scaled values vary only a little, all genes will have 

approximately the same chance of reproduction, and thereby, the search will progress very 

slowly. The sum of the scaled values, over the entire population, equals the number of parents 

needed to create the next population. 
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The scaling operator can be used in either of the Rank, Proportional, Top and Shift-linear 

functions. The Rank function, scales the solutions based on the rank (Rank) of each gene (i.e., 

the order of a chromosome within a population, when sorted from least to highest fitness 

function value). This function scales down each chromosome by 1 √ܴܽ݊݇⁄  of that 

chromosome. On the other hand, the Proportional function distributes proportionately, between 

the unscaled and scaled genes. This function forms a new population, with all chromosomes in 

the previous population, after sorting them in proportional to their Rank. The Top function 

forms a new population by a process in which a specific percentage of chromosomes with the 

best Rank, are selected and then multiplied with a constant number to equalize them. Thus, 

only a certain percentage of the fittest gene is selected as parents, for the next population. 

Hence, the Top function restricts parents to the fittest gene and creates less diverse populations, 

than other functions. In case of Shift-linear function, a new population is formed by adding and 

multiplying a constant number to each chromosome  

Table 5.1 Floating Point-Genetic Algorithm Operators Characteristics. 
 

Operator Function Characteristics 

Scaling 

[143-145] 

Rank  All chromosomes of the population are selected, however, each 

chromosome is scaled down by 1 √ܴܽ݊݇⁄  of that chromosome. 

Proportional  New population is formed by all chromosomes in the previous 

population after being sorted proportional to their Rank.  

Top  New population is formed by a process in which a specific 

percentage of chromosomes with best Rank are selected and then 

multiplied with a constant number to equalize them. 

Shift-linear  New population is formed by adding and multiplying a constant 

number to each chromosome. 

Crossover Constraint-  Crossover of chromosome is applied such that the corresponding 
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[146-147] dependent constraints of genes are satisfied. 

1-point  Forming a child by selecting the first portion of genes from parent-1 

and the second portion from parent-2 based on the assumed position 

of a gene within a chromosome and a specific percentage of 

chromosomes. 

2-point  Forming a child by selecting the first portion of genes from parent-1, 

the second portion from parent-2 and the third portion from parent-1 

based on the assumed position of two genes within a chromosome 

and a specific percentage of chromosomes. 

Scattered  Creating a random binary vector (with a size equal to that of a parent) 

and forming a child by selecting gene from parent-1 when the 

random number is unity and from parent-2 when the random number 

is zero. 

Intermediate  Forming a child by adding one of the parents with the difference 

between two parents after being multiplied by a random number. 

Heuristic  Forming a child by adding the parent with the higher Rank to the 

absolute of the difference between two parents after being multiplied 

by a random number. 

Arithmetic  Forming a child by averaging each gene of two parents.  

Mutation 

[148-149]  

Constraint-

dependent 

 Mutation of the chromosome is applied so that the corresponding 

constraints of the genes are satisfied. 

Gaussian  Adding a random number (taken from a Gaussian distribution curve 

with a zero mean value) to each gene. 

Uniform  Adding a random number to a specific percentage of genes 

Feasible  Adding or subtracting a random number to each gene to result in 

feasible values for each decision variable. 
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The crossover operator, aims to recombine different solutions whilst serving two main 

roles: providing new chromosomes for the next iteration from the current population, and 

provides unique and new hyperplanes for the existing new chromosomes, which were not 

presented by the parent chromosomes. Thus, there will be a chance that the probability of the 

better performing child will increase. This operator can be applied using different methods such 

as the well-known 1-point, 2-point, scattered techniques, or the newly proposed ones such as 

the constrained-dependent, intermediate, heuristic and arithmetic [143] (see Table 5.1). 

The mutation operator is used,, to visit, some untouched points, in the search space. To 

this end, a random number can be added to the existing population. Low probability is assigned 

to this operator, to avoid the increase of randomness. This operator can be applied, using 

different functions, such as constrained-dependent, Gaussian, uniform and the adaptive feasible 

functions [143] (see Table 5.1). 

Along with the abovementioned operators, there are two variables that should be selected 

carefully for the reproduction of genes for the next population. These variables are elite count 

and crossover fractions. The elite count determines the number of genes that are sure to survive 

in the next population and its value is less than or equal to the population size. On the other 

hand, the crossover fraction, varying between 0 and 1, determines the proportion of the genes 

that the crossover operator is applied to. 

  Stopping Criterion 

The iterative procedure of generating new populations from an existing one, continues 

until defining the optimal solution. The stopping criterion achieves an acceptable convergence 

for the fitness function with a confidence level of 95%. This is deemed to be true when no 

significant improvement is observed in the progressive solution; e.g.., the mean and variance  
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Fig 5.2 Considered 38-bus system microgrid system. 

 

of the fitness functions’ optimal value obtained in each trial remains almost unchanged, with 

respect to the number of iterations. Additionally, to prevent immature results, a minimum 

number of iterations have to be applied. Moreover, a maximum number of iterations are also 

assumed to reduce the simulation time. 

 Performance Evaluation  

A floating point-genetic algorithm, is applied to yield the most optimal performance of  

the considered 38-bus microgrid of Fig. 5.2, to solve the formulated fitness function of (5.1). 

In the considered microgrid, it is assumed that x NDERs and 2 x DDERs (composed of one 

DG and one BSS) are connected to the network, as seen in the following figure. Table 5.2 lists 

their assumed nominal capacities, as well as the nominal and permissible limits of variation, 

for the voltage and frequency in the microgrid, along with the assumed costs for the different  
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Table 5.2 Considered parameters for numerical analyses. 

Parameters used in (4.19)-(4.25) for power calculation of wind-based NDERs 

ࣅ ൌ ૡ. ૚; ⍴ ൌ ૚. ૛૛૞	 ܏۹ ⁄;૜ܕ ࣁ	 ൌ ૙. ૠ૞; Ѳ ൌ ૙. ૛; ࡭ ൌ ૠ. ૛૞૝  ;૛ܕ

࢖ࢋ࢚࢙ࢗ ൌ ૙. ૠ૜;	ࢊ࢔࢏࢝࢖ࢇࢉࡼ ൌ ૟૙	܅ܓ 

Weibull probability density function parameters: shape =0-2; scale=0-1; location=0 

Nominal Capacities of demand, supply and storage system 

ࢂࡼ࢖ࢇࢉࡼ  

[kW] 

 ࢊ࢔࢏࢝࢖ࢇࢉࡼ

[kW] 

 ࢊࢇ࢕࢒࢖ࢇࢉࡼ

[kW] 

࡮ࡸࡼ
 ࡳࡰ

[kW] 

ࡳࡰ࢖ࢇࢉࡼ  

[kW] 

 ࡿࡿ࡮࢖ࢇࢉࡼ

[kW] 

SOC 

(%) 

࢞ࢇ࢓,ࢎࢉࡼ
ࡿࡿ࡮  

[kW] 

࢔࢏࢓,ࢎࢉࡰࡼ
ࡿࡿ࡮  

[kW] 

50 60 850 70 650 200 20-100 20 190 

Technical permissible limits 

࢓࢕࢔ࢌ ൌ ૞૙	۶;ܢ	࢔࢏࢓ࢌ ൌ ૝ૢ. ૞	۶ܢ; ࢞ࢇ࢓ࢌ ൌ ૞૙. ૞  ܢ۶

࢓࢕࢔ࢂ ൌ ૚ܝܘ; ࢔࢏࢓ࢂ ൌ ૙. ૢૠ૞	ܝܘ; ࢞ࢇ࢓ࢂ ൌ ૚. ૙૛૞  ܝܘ

Costs and parameters values for fitness function calculation 

࢒ࢋ࢛ࢌ࢚࢙࢕ࢉ ൌ ૞	$/kWh; ࢓ࢋ࢚࢙࢕ࢉ ൌ ૛ $/kg; ࢙࢙࢕࢒࢚࢙࢕ࢉ ൌ ૙. ૡ $/kWh; 

࢚࢛࢘ࢉ࢚࢙࢕ࢉ	 ൌ ૛૞ $/kWh;	ࢊࢋࢎ࢙࢚࢙࢕ࢉ ൌ ૞. ૞ $/kWh; 

૚૚ࢽ ൌ ૛. ૝૜ૡ, ૚૛ࢽ ൌ ૛. ૞૞૝;	ࢽ૚૜ ൌ ૙. ૙૙૛૞;	ࢽ૛૚ ൌ ૜. ૙૚;	ࢽ૛૛ ൌ ૙. ૙ૡ;	 

૛૜ࢽ ൌ ૙. ૙૙૛૞;	ࢽ૜૚ ൌ ૚. ૡ;	ࢽ૜૛ ൌ ૙. ૙૙ૡૠ૟, ࢑૚= 2.7; ࢑૛= 1; ࢑૜= 1.3; ࢑૝= 1. 

 

 

criteria in (5.2)-(5.8) and the limits of the technical constraints of (5.9). The considered network 

topology and impedances are taken from [150]. 

The microgrid of Fig. 5.2, is analysed under two events. In Event-1, it is assumed that 

the total demand of the microgrid increases from 651 to 675 kW (i.e., 6% increase). Following 

this demand increase, the maximum voltage and frequency of the system respectively drops to 

0.92 pu and 49.23 Hz (both below the permissible limits of 0.95 pu and 49.5 Hz, respectively).  
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Table 5.3 Considered events and their optimal solutions. 

 

At this time, the DG is supplying 636.2 kW, while the NDERs’ overall contribution is 38.8 

kW. In Event-2, it is assumed that the total demand of the microgrid, decreases from 500 to 

450 kW while the DG is supplying 392.7 kW along with a 57.8 kW contribution from NDERs. 

As a result, the frequency and the maximum voltage across the microgrid, are respectively 50.2 

Hz and 1.046 pu (i.e., voltage exceeds the permissible limit of 1.025 pu, while frequency is 

within the range). Table 5.3 summarizes these events. 

When applying the floating point-genetic algorithm, to determine the optimal control 

variables for the microgrid, under consideration in each of the above two events, it is assumed 

that the size of the population is 100 and that the initialisation of the first population is random. 

Based on (5.10), each chromosome in this study is composed of 38 genes (i.e., one ஽ܲீ, one 

஻ܲௌௌ, 32 ௟ܲ௢௔ௗ
௦௛௘ௗ and 4 ேܲ஽ாோ

௖௨௥௧ ). The elite count for gene reproduction in the next iteration is 

thought to be 5% of the population size (i.e., 5) while the crossover fraction is 0.5. When using 

the Top function as the scaling operator, 40% of the fittest genes are scaled to the same value. 

Initial status  

 ܲ௟௢௔ௗ ܲ஽ீ maxሺ| ௫ܸ|ሻ minሺ| ௫ܸ|ሻ ݂ ܲே஽ாோ 

[kW] [kW] [pu] [pu] [Hz] [kW] 

Event-1 675 636.2 0.994 0.923 49.23 38.8 

Event-2 450 392.7 1.046 1.039 50.2 57.8 

Optimal solution 

 ܲ஽ீ max	ሺ| ௫ܸ|ሻ minሺ| ௫ܸ|ሻ ݂ ܲ஻ௌௌ ܲ௟௢௦௦ ௖ܲ௨௥௧
ே஽ாோ ௦ܲ௛௘ௗ

௟௢௔ௗ 

 [kW] [pu] [pu] [Hz] [kW] [kW] [kW] [kW] 

Event-1 623.3 1.034 0.986 49.82 13.5 1.6 0 1.3 

Event-2 411.2 1.022 0.991 50.12 -15 0.2 4 0 
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The minimum number of iterations needed to prevent an immature solution is assumed to be 

50 while the maximum number of iterations are set to be 150. Also, the confidence level for 

the convergence of the analysis, is assumed to be 95%. 

For the given assumptions, the fitness function of (5.1), is solved several times for each 

event in Matlab. In each study, the type of the function of one of the operators is varied. 

Considering the 4 functions for scaling, 6 functions for crossover and 4 functions for mutation 

(see Table 5.1), overall, the system can be analysed under 44 ൈ 6 ൈ 4 ൌ 96 scenarios. It is 

noteworthy that the actual number can be infinite, considering the continuous range of 

numerical variations that some functions have. Also, as the considered microgrid has technical 

constraints to satisfy, at least one of the operators of the crossover or mutation should be 

constraint-dependent; otherwise, all constraints will not be satisfied and the results will be 

unacceptable. 

From this perspective, Table 5.4 lists only those analysis results in which a constraint-

dependent function is used. The analyses are referred to as R1 to R10, P1 to P10, T1 to T10 

and S1 to S10 so as to respectively denote those analyses that the scaling operator is using 

including Rank, Proportional, Top and Shift-linear functions whereas numbers 1 to 10 illustrate 

different combinations of crossover and mutation functions. For any of these scenarios, the best 

(optimal) solution is presented, for both of the considered events. The number of iterations in 

which the best solution is defined, is also given. The scenario that has yielded the lowest fitness 

function value is highlighted for each group of the scaling functions (i.e., scenario-R4, P3, T9 

and S3 for Event-1, and R9, P5, T1 and S9 for Event-2). 

The convergence of the fitness function value for each of these scenarios, is depicted in 

Fig. 6. Comparing these scenarios between Event-1 and Event-2, illustrates no consistency on 

the combination type of the crossover and mutation functions for each scaling function. 

However, it can be seen that the Top function of the scaling operator, yields the most feasible 
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solution (i.e., the solution with the least fitness function at the least number of iterations) for 

both events (i.e., scenario-T9 and T1 for Event-1 and 2, respectively). This is in line with the 

findings of [147] because this function restricts parents to the fittest gene and creates less 

diverse populations than other functions. The study further continues to analyse 1,000+ 

different events in a Monte Carlo analysis and the above conclusion was observed for those 

events as well. 

 

 

Table 5.4 Different combinations of the operators for solving the microgrid optimisation 

problem using an floating point-genetic algorithm. 

Scenario 
Scaling 

Function 
Mutation Crossover 

Optimal Solution 

Event-1 Event-2 

Iteration 

number 

Fitness 

function [$]

Iteration 

number 

Fitness 

function [$]

R1 

Rank 

Constraint-

dependent 

Constraint-

dependent 

93 102.26 150 96.67 

R2 Gaussian 89 Infeasible 150 Infeasible 

R3 Uniform 150 95.01 141 94.36 

R4 
Adaptive 

Feasible 
91 93.48 150 95.34 

R5 

Constraint-

dependent 

Scattered 134 94.34 142 92.81 

R6 1-point 79 113.02 150 94.65 

R7 2- point 150 98.14 150 92.88 

R8 Intermediate 150 94.04 148 95.20 

R9 Heuristic 125 115.21 141 94.59 

R10 Arithmetic 144 96.19 143 92.93 
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P1 

Proportional 

Constraint-

dependent 

Constraint-

dependent 

95 96.68 150 99.23 

P2 Gaussian 150 Infeasible 150 Infeasible 

P3 Uniform 141 96.13 147 92.44 

P4 
Adaptive 

Feasible 
150 92.15 146 95.39 

P5 

Constraint-

dependent 

Scattered 150 96.87 142 92.86 

P6 1-point 150 98.43 150 92.94 

P7 2- point 150 94.92 136 96.33 

P8 Intermediate 68 99.19 150 97.41 

P9 Heuristic 150 92.11 150 93.05 

P10 Arithmetic 131 97.91 119 94.34 

T1 

Top 

Constraint-

dependent 

Constraint-

dependent 

133 94.91 138 90.16 

T2 Gaussian 150 Infeasible 89 Infeasible 

T3 Uniform 144 94.77 150 96.45 

T4 
Adaptive 

Feasible 
150 96.01 150 94.66 

T5 

Constraint-

dependent 

Scattered 150 97.15 134 96.23 

T6 1-point 150 92.23 79 95.46 

T7 2- point 150 97.78 150 97.03 

T8 Intermediate 150 98.97 150 96.56 

T9 Heuristic 150 92.15 138 97.32 

T10 Arithmetic 64 102.25 144 94.80 

S1 

Shift-linear 

Constraint-

dependent 
Constraint-

dependent 

101 96.54 93 93.29 

S2 Gaussian 150 Infeasible 89 Infeasible 

S3 Uniform 125 93.22 150 94.35 

S4 Adaptive 70 97.35 150 95.01 
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Feasible 

S5 

Constraint-

dependent 

Scattered 150 93.87 134 94.66 

S6 1-point 150  79 93.23 

S7 2- point 122 101.05 150 92.69 

S8 Intermediate 150 93.64 150 92.84 

S9 Heuristic 150 94.66 139 92.20 

S10 Arithmetic 66 97.27 144 94.38 

  

  

  

R4 

P3 

T9 

R9 

P5 

T1
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Fig 5.3 Comparison of potential results of all case studies of observed events. 
 

As seen from Table 5.4, the best value of the fitness function in Scenario-T9 versus those 

of R4, P3 and S3 is 1-5% lower for Event-1. This is similar, when comparing the fitness 

function of Scenario-T1 versus those of R9, P5 and S9. The values of the control variables 

defined by scenario-T9 and T1 (for Event-1 and 2 respectively) are listed in Table 5.3. As seen 

from this Table, in Event-1, before applying the optimisation technique, the microgrid had to 

apply a load-shedding of 13.4 kW to maintain the frequency within the desired limit. However, 

the developed fitness function proposes to reduce the output power of the DG from 636.2 to 

623.3 kW on top of discharging the BSS by 13.5 kW and a load-shedding of 1.3 kW. Thus, the 

microgrid frequency increases from 49.23 to 49.82 Hz (above the minimum allowed level of 

49.5 Hz) whilst the minimum observed voltage magnitude of the microgrid, increases from 

0.923 to 0.986 pu (above the minimum allowed level of 0.975 pu). Similarly, in Event-2, before 

applying the optimisation technique, the microgrid had to apply a RC of 19 kW to maintain the 

voltage to within the desired limits. However, the developed fitness function proposes to charge 

the BSS by 15 kW and a RC of 4 kW. Thus, the maximum observed voltage magnitude of the 

microgrid reduces from 1.046 to 1.022 pu (below the maximum allowed level of 1.025 pu). 

S3  S9
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 Summary 

A floating point-genetic algorithm-based solver, is used in this chapter to determine the 

optimal control variables in a standalone microgrid, under emergencies such as overloading 

and excessive generations of the NDERs that has led to unacceptable voltage and/or frequency 

deviation. The formulated fitness function, considers the operational cost of the DDERs, the 

interruption cost to loads and the NDERs, as well as the voltage and frequency deviation from 

their nominal values. The study has focused on the impact of the scaling operator for the 

floating point-genetic algorithm solver, when forming new populations within the optimisation 

algorithm, along with different combinations of the crossover and mutation functions. The 

efficacy of a scaling operator in combination with other operators is already proven in the 

literature; thus, this chapter only focused on the interplay of various functions of the scaling 

operator. Through numerous analyses over a considered microgrid network, realised in Matlab, 

it is seen that the Top function of the scaling operator helps the solver to yield a 1-5% lower 

value for the best fitness function, in comparison to the other scaling functions. The results 

were validated by a Monte Carlo study.  

It is to be noted that scaled fitness functions can also be applied for solving optimisation 

problems of large interconnected systems within a floating point-genetic algorithm solver; 

however, a standalone hybrid microgrid, was considered as the non-linear test case in this 

research, because it can observe larger deviations in its voltage and frequency, due to the 

variability of its loads and the NDERs.
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 Supervisory Emergency Control for 

Microgrid Clusters 

  Introduction 

Remote and regional areas are usually supplied by isolated and self-sufficient, electricity 

supply systems. These systems, often referred to as microgrids, rely on renewable energy-based 

NDERs, to reduce the overall cost of electricity production. Emergencies, such as overloading 

and excessive generation by renewables sources, can lead to significant voltage or frequency 

deviation in these systems. As a result, protective relays trip some of the sources or loads, to 

prevent system instability. This chapter presents a multi-stage, supervisory emergency 

controller, for microgrids in such emergencies so as to provisionally manage them. The 

proposed controller, includes different layers of actions. These actions include, soft actions, 

such as adjustments of the droop control parameters of the sources and charging/discharging 

the control of the existing battery energy storage systems Other actions are the intermedial 

actions, which include the power exchanges within a group of neighbouring microgrids (which 

is highly probable in the case of large remote areas), as well as the hard actions, such as the 

curtailment of the loads or renewable sources (as the last resort). Other objectives, include the 

minimizing of the power loss in the tie-lines between the microgrids as well as minimising the 

dependency of a microgrid upon the external microgrids, Another focus includes maximizing 

the contribution of renewable sources to the generation of electricity, whilst minimizing the 
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fuel consumption and greenhouse gas emissions from the conventional generators, along with 

frequency and voltage deviations. To this end, a suitable optimisation problem is formulated 

and solved, identifying the most suitable actions and their level of contribution, to producing 

the least cost for the operator. The performance of this proposal, is evaluated by several 

numerical analyses carried out in Matlab. 

 Problem Formulation 

The optimisation problem has been formed to determine the most economical solution to 

overcoming the overloading or over-generation issue. This issue subsequently causes under-

voltage/frequency and over-voltage/frequency, in the problem microgrid(s), under the 

proposed power transaction strategy, described above. This is formulated as an objective 

function (ܱܨ), which is solved by the supervisory emergency controller, to yield the most 

feasible solution whilst minimizing the overall operational costs and maximizing the footprint 

of renewables and the spinning reserve in them as well as satisfying the considered technical 

constraints. It is formulated as a multi-objective problem, with an OF in the form of 

ܨܱ ൌ ୲ୣୡ୦ܨଵܱݓ ൅ ୭୮ୣ୰ܨଶܱݓ ൅ ୡ୭୬୲ (6.1)ܨଷܱݓ

where ܱܨ୲ୣୡ୦,  ୡ୭୬୲ are respectively the OFs denoting the technical, operationalܨܱ ୭୮ୣ୰ andܨܱ

and desirable conditions in the coupled microgrid and the isolated problem microgrid(s). In 

 ଷ are the weightings of the considered OFs. The calculated OF, highly dependsݓ ଵ toݓ ,(6.1)

upon the assumed weightings, related to each OF; therefore, it is important to carefully select 

them. In power systems that have complex configurations, there is no systematic method to 

define these weightings; however, an acceptable method is to conduct a survey with field 

experts’ to gather their opinions regarding the importance and impact of each OF [53]. These 

experts may express the importance either n numerical terms (e.g., 0 to 100%) or linguistic 

terms (e.g. extremely/very/little big/small or neutral). These responses can then be mapped into 
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a digit, in the range of [0, 1] and then normalised. At the end, the weighting of each OF, they 

will be expressed as the average of all normalised values as: 

ݓ ൌ෍ ௞ݓ
௞

/ ୣܰ୶୮ (6.2)

where ܰ ୣ୶୮ is the number of experts that participated in the survey. In this work, for the purpose 

of simplicity, it is assumed that ݓଵ ൌ ଶݓ ൌ  ଷ (e.g., each OF is assumed to be of equalݓ

importance). 

In (6.1), the ܱܨ୲ୣୡ୦ aims to selecting those sets of decision variables (actions) that will 

yield the minimum voltage and frequency deviation, in the coupled microgrid and the isolated, 

problem microgrid. It is expressed as, 

୲ୣୡ୦ܨܱ ൌ |∆݂| ൅ maxሺ|∆ܸ|ሻ ൅ ݊݋݅ݐ݈ܽ݋ܸ݅ ൈ (6.3) ݕݐ݈ܽ݊݁ܲ

in which |∆ܸ| and |∆݂| represents respectively, the level of voltage magnitude deviation, in all 

the buses of the microgrids; within the coupled microgrid and the isolated problem microgrid(s) 

and the corresponding frequency deviation (in pu). ݈ܲ݁݊ܽݕݐ is selected as a large value (e.g., 

108 ), to eliminate those sets of decisions (conditions), that yield unacceptable voltage or 

frequency deviation, in the coupled microgrid and the isolated problem microgrid(s), or 

overloading of microgrid lines. Thus, ݊݋݅ݐ݈ܽ݋݅ݒ is defined as: 

݊݋݅ݐ݈ܽ݋ܸ݅ ൌ ୴ܸ୧୭ ൅ ୴୧୭ܫ ൅ ୴݂୧୭ ൅ ୴୧୭ (6.4)ݐ݊݅ܽݎݐݏ݊݋ܥ

where 

୴ܸ୧୭ ൌ ቄ1 	∃|∆ ௜ܸ| ൐ ∆ܸ୫ୟ୶, ݅ ∈ ܛܝ܊
0 otherwise

 

(6.5)

୴୧୭ܫ ൌ ቄ1 |௜ܫ|∃	 ൐ ,୫ୟ୶ܫ ݅ ∈ ܍ܖܑܔ
0 otherwise

 

୴݂୧୭ ൌ ቄ1 	|∆݂| ൐ ∆݂୫ୟ୶

0 otherwise
 

୴୧୭ݐ݊݅ܽݎݐݏ݊݋ܥ ൌ ቄ1 	if	a	considered constraint is not met
0 otherwise

 

in which ∆ܸ୫ୟ୶, ∆݂୫ୟ୶ and ܫ୫ୟ୶ are respectively the permissible limits for the voltage 
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deviation, frequency deviation and the maximum line loading limit. Also, ܛܝ܊ and ܍ܖܑܔ , are 

two vectors, representing the number of the buses and the lines, of the coupled microgrid and 

the isolated problem microgrid(s). These parameters are calculated from the power flow 

analysis, for clustered microgrids, which are described in next section of this chapter. 

The ܱܨ୭୮ୣ୰ in (6.1), aims at minimising the overall operational cost of the coupled microgrid 

and the isolated problem microgrid(s), which includes those of the DGs, the BSSs, the power 

loss and the power transaction, along with the penalties because of the curtailing of the NDERs 

or non-essential loads and emitting greenhouse gases. It is formulated as: 

୭୮ୣ୰ܨܱ ൌ෍ ሺߙଵܱܨୈୋ ൅ ୆ୗୗܨଶܱߙ ൅ ୡ୳୰୲ܨଷܱߙ ൅ ୲୰ୟ୬ୱܨସܱߙ ൅ ୪୭ୱୱሻܶ݅݉݁ܨହܱߙ
௞

	 

∀݇ ∈ ۵ۻ

(6.6)

where ܱܨୈୋ,  ୡ୳୰୲ are respectively the OFs, denoting the running cost of theܨܱ ୆ୗୗ andܨܱ

DG(s), life loss cost of the BSS(s), and the penalty cost of curtailing the NDER(s) and/or non-

essential load(s) of all microgrids, within the coupled microgrid and the isolated problem 

microgrid(s). ܱܨ୲୰ୟ୬ୱ denotes the power transaction costs, for selected healthy microgrid(s) 

within the coupled microgrid, while ܱܨ୪୭ୱୱ represents the corresponding cost of the power loss 

in the tie-line(s) between the microgrids of the coupled microgrid. The vector ۵ۻ includes, the 

number of microgrids within the coupled microgrid and the isolated problem microgrid(s) 

while ܶ ݅݉݁ , is the total time required for the system to operate under the new condition (which 

is equal to ∆ܶ of Fig. 3.6c in Chapter 3). In (6.6), ߙଵ to ߙହ be coefficients to equalize the impact 

of the abovementioned OFs, which are derived respectively as: 

ୈୋܨܱ ൌ෍ ൫ܥfuel ൅ cfp߲௞൯ܥ ௞ܲ
ୈୋ

௞
∀݇ ∈ ۲۵ (6.6a)

୆ୗୗܨܱ ൌ෍ BSSหܥ ௞ܲ
BSSห

௞
															 ∀݇ ∈ (6.6b) ܁܁۰

ୡ୳୰୲ܨܱ ൌ෍ curtܥ
NDERs

ୡܲ୳୰୲
୒ୈ୉ୖୱ

௞
൅෍ curtܥ

load
ୡܲ୳୰୲
୪୭ୟୢ

௟
∀݇ ∈ ܀۲۳ۼ , ݈ ∈ (6.6c) 	܌܉ܗܔ
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୲୰ୟ୬ୱܨܱ ൌ෍ |transܥ ௞ܲ
trans|

௞
							∀݇ ∈ (6.6d) ۵ۻ

୪୭ୱୱܨܱ ൌ෍ ܥ loss
௞ܲ
୪୭ୱୱ

௞
														∀݇ ∈ (6.6e) ܍ܖܑܔ

In (6.6a), ܱܨୈୋ , aims to minimise the running cost the power generation by the DGs 

(denoted by C in $/kWh) which includes the cost for fuel consumption and the corresponding 

carbon footprints (respectively denoted by fuel	and cfp) where	߲௞ is the emission ratio (in 

kg/kWh). As the BSS does not have any ongoing operational costs, only the cost of its life loss 

is considered in ܱܨ୆ୗୗ in (6.6b). Similarly, the corresponding cost of curtailing the output 

power of NDERs by ୡܲ୳୰୲
୒ୈ୉ୖୱ and the non-essential loads by ୡܲ୳୰୲

୪୭ୟୢ (respectively denoted by 

curtܥ
NDERs and ܥcurt

load in $/kWh) is used in (6.6c) to determine ܱܨୡ୳୰୲. The corresponding cost of 

power transaction (|ܲtrans| in kW) over the tielines between the microgrids of the coupled 

microgrid (denoted by ܥtrans in $/kWh) is used in (6d) to define ܱܨ୲୰ୟ୬ୱ. Eq. (6.6e), aims at 

minimising the power loss in the tie-lines between the microgrids of the coupled microgrid 

(ܲ୪୭ୱୱ in kW) when calculating ܱܨ୪୭ୱୱ while ܥloss is the associated power loss cost (in $/kWh). 

In (6.6), ۲۵,۰܁܁, ,܀۲۳ۼ  are vectors respectively representing the number of ܍ܖܑܔ and ܌܉ܗܔ

the DGs, the BSSs, the NDERs ,the loads and lines (including tie-lines between microgrids) in 

the microgrids within the coupled microgrid and the isolated problem microgrid(s). 

The ܱܨୡ୭୬୲ in (6.1) aims at maximising the contribution of NDERs in the overall demand 

supply as well as maximising the spinning reserve of the coupled microgrid and the isolated 

problem microgrid(s). It is formulated as: 

ୡ୭୬୲ܨܱ ൌ ሺ1 െ ሻܮܴܲ ൅ ሺ1 െ ሻ (6.7)ܫܴܵ

in which ܴܲܮ ∈ ሾ0, 1ሿ , represents the renewable penetration level of the coupled microgrid or 

the isolated problem microgrid, and is defined from: 

ܮܴܲ ൌ
∑ ܲNDER
௞భ

∑ ܲload
௞మ

		 											∀݇ଵ ∈ ;܀۲۳ۼ ∀݇ଶ ∈ (6.8) ܌܉ܗܔ
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to maximise the footprint of renewables, at the system for any given demand, while ܴܵܫ ∈

ሾ0, 1ሿ is the spinning reserve index of the microgrid, derived from: 

ܫܴܵ ൌ෍ 1െ ௞ܲ
ୈୋ

൫ ௞ܲ
ୈୋ൯

୫ୟ୶
௞

												∀݇ ∈ ۲۵ (6.9)

to have enough capacity in the system to respond appropriately and without being overloaded 

by a sudden increase in demand or an unexpected drop in the output power of the NDERs. 

The ܱܨ of (6.1), is then solved by a genetic algorithm solver, with different composition of 

chromosome (described in next section), while considering the constraints of: 

෍ ܵୈୋ
௞భ

൅෍ ܵ୒ୈ୉ୖ
௞మ

൅෍ ୆ୗୗܵߚ
௞య

൅෍ ܵ୲୰ୟ୬ୱ
௞ర

ൌ෍ ܵ୪୭ୟୢ
௞ఱ

෍ ܵ୪୧୬ୣ
௞ల

 

∀݇ଵ ∈ ۲۵;	∀݇ଶ ∈ ;܀۲۳ۼ ∀݇ଷ ∈ ;܁܁۰۳ ∀݇ସ ∈ ;۵ۻ ∀݇ହ ∈ ଺݇∀	;܌܉ܗܔ ∈ ܍ܖܑܔ

(6.10a)

ቐ
൫ ௞ܲ

ୈୋ൯
୫୧୬

൑ ௞ܲ
ୈୋ ൑ ൫ ௞ܲ

ୈୋ൯
୫ୟ୶

หܳ௞
ୈୋห ൑ ට൫൫ܵ௞

ୈୋ൯
୫ୟ୶

൯
ଶ
െ ൫ܳ௞

ୈୋ൯
ଶ

∀݇ ∈ ۲۵ (6.10b)

ቊെ൫ ௞ܲ
୆ୗୗ൯

୫ୟ୶
൑ ௞ܲ

୆ୗୗ ൑ ൫ ௞ܲ
୆ୗୗ൯

୫ୟ୶

୫୧୬ܥ݋ܵ ൑ ௞ܥ݋ܵ ൑ ୫ୟ୶ܥ݋ܵ
∀݇ ∈ (6.10c) ܁܁۰

ܸ୫୧୬ ൑ |ܸ௞| ൑ ܸ୫ୟ୶												∀݇ ∈ (6.10d) ܛܝ܊

݂୫୧୬ ൑ ݂ ൑ ݂୫ୟ୶ (6.10e)

௞ܫ ൑ ௞ܫ
୫ୟ୶																	∀݇ ∈ (6.10f) ܍ܖܑܔ

Constraint (6.10a) shows the apparent power balance equation within the coupled microgrid 

and the isolated problem microgrid(s)in which ߚ is respectively +1 and –1 for the discharging 

and charging BSSs. Constraint (6.10b) denotes the active and reactive power loading of DGs. 

Likewise, the active power loading and SoC limits of BSSs are given by (6.10c). The variation 

limits of the voltage magnitude at all buses of the coupled microgrid or isolated problem 

microgrid(s) are given by (6.10d-e) whereas (6.10f) shows the current loading of each line in 

those systems. 
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 Optimisation of Clustered microgrids using Genetic Algorithm 

Genetic algorithm, is the solver used for finding the best optimal solution for the 

proposed supervisory emergency controller that has a proven record of accomplishment in 

solving optimisation problems of electrical distribution networks, including their planning and 

operational analysis [103]. In each iteration of the genetic algorithm, first a population is 

initialised, which is made of multiple chromosomes. The considered chromosome structure, 

for the purpose of this research, is illustrated schematically in Fig. 6.1 and includes respectively 

the droop set-points of ݂୫ୟ୶ and ܸ୫ୟ୶, the droop coefficients of ݉ୈୖୗ and ݊ୈୖୗ for every 

droop regulated system, the power exchange between the microgrid and its BSSs, the power 

transaction between the microgrid and its neighbouring microgrids, the level of power curtailed 

from the NDERs and the load-shedding. 

Next, the considered problem microgrid or the coupled microgrid, is analysed using the 

assumed control variables in each chromosome to find the corresponding ܱܨ of (1). Following 

this, the heuristic crossover, adaptive feasible mutation, and the Top scaling function are used 

to produce new chromosomes for the next iteration of the optimisation, until achieving a 

suitable convergence of the optimal ܱܨ value, with a confidence level of 95% and a maximum 

number of 200 iterations, while a minimum of 50 iterations are assumed to prevent immature 

convergence. 

P1
curt ….

Power exchange
with BSSs

NDDs curtailment

P N
curt

4 P1
load …. P N

load
5P trans

1 …. P trans
N3

Load‐shedding

P trans
1 …. P trans

N2

Droop settings
of DRSs

n DRS

1 …. n DRS

N1
mDRS

1 …. mDRS

N1
V max f max

Soft actions

Power of neighboring 
MG

Intermedial actions Hard actions

Considered Chromosome

 
Fig 6.1 Considered structure of the chromosome in the genetic algorithm solver. 
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MG-2

MG-k

(b) (c)

(d) (e)

MG-k

MG-N

MG-2

MG-1

MG-N

MG-k

MG-N

(a)

 

Fig 6.2 Possible physical communication links between microgrid(s) participating in coupled 

microgrids 

 Performance Evaluation 

To evaluate the performance of the developed supervisory emergency controller, in 

sucessfully eleminating the emergency condition of a remote area microgrid, a Monte Carlo 

analysis is conducted in Matlab. Numerous random study cases have been produced, for some 

of which, an emergency condition of overloading, or excessive NDER generation, has been 

observed. The studies demonstrate that the developed supervisory emergency controller, can 

effectively address the emergency of a problem microgrid and can convert it to a healthy 

microgrid, by finding optimal values for the assumed soft, Intermedial and hard actions. A few 

of these study cases are described below: 

First, let us consider a large remote area with 6 microgrids (named as microgrid-1 to 

microgrid-6) that are connected through a common central node (similar to the topology of Fig.  
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LOAD

BUS‐1BUS‐2

BUS‐3

BUS‐4 BUS‐5

BUS‐6

ISS

 

Fig 6.3 Topology of the considered microgrids for performance evaluation. 

 

6.2a). For simplicity, all microgrids are assumed to have the same topology as of Fig. 6.3 

because the performance of the developed supervisory emergency controller, is independent 

upon the internal topology of the microgrids, as well as their internal components and ratings. 

As seen from this figure, each microgrid is presumed to have two PV and wind-based NDERs, 

one BSS and one droop regulated system. All loads are connected to bus-4 of the microgrids,  

Table 6.1 Considered nominal capacities for components of each microgrid in the numerical 

analysis. 

 NDERs Load ۲۵ ۰܁܁ 

 ୡܲୟ୮
୒ୈ୉ୖୱ  

(kW) 

ୡܲୟ୮
୪୭ୟୢ  

(kW) 

ሺܲୈୋሻ୫୧୬

(kW) 

ሺܲୈୋሻ୫ୟ୶

(kW) 

ܲ୆ୗୗ 

(kWh)

୫୧୬ܥܱܵ

(%) 

 ୫ୟ୶ܥܱܵ

(%) 

ሺܲ୆ୗୗሻ୫ୟ୶

(kW) 

MG-1 25 65 12 40 10 20 100 9 

MG-2 25 60 13.5 45 10 20 100 9 

MG-3 35 85 15 50 12 20 100 11 

MG-4 20 45 9 30 8 20 100 7 

MG-5 30 80 16.5 55 14 20 100 12 

MG-6 25 65 12 40 10 20 100 9 
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Table 6.2 Assumed distance between each microgrid of Fig. 4a from the central common 
point. 

 MG-1 MG-2 MG-3 MG-4 MG-5 MG-6 

Distance (km) 4 6 2 7 5 5 

 
while the microgrids can couple with a neighbouring microgrid, through an ISS and a tie line 

at bus-6. The assumed nominal capacities of the loads, NDERs, DGs and BSSs of each 

microgrids are provided in Table 6.1, while the impedance data for all buses of the microgrids, 

is taken from [70]. Table 6.2, lists the distance between the microgrids, while Table 6.3 and 

6.4 summarize the presumed different costs required, in calculating the OF of (6.1) and the 

important terminologies used in the numerical analysis. It is worth mentioning here that in all 

case studies the values of powers are normalize as pu values by using same base value.  

Table 6.3 Considered costs data for the numerical analyses. 
curt࡯ fuel 0.31$/kWh࡯

load 0.15 $/kWh

BSS 0.98 $/kWhܥ cfp 0.02 $/kg࡯

curtܥ loss 0.04 $/kWh࡯
NDERs 0.3 $/kWh 

∂ 0.003 kg/kWh  trans 0.4 $/kWhܥ

 

Table 6.4 Important terminologies used in Case Studies for the proposed network 
Terms Explanation 

PMGOL Problem Microgrid experiencing overloading 

PMGOG Problem microgrid experiencing excessive generation by NDERs 

PMGI Problem Microgrid is left isolated 

HMGA Healthy Microgrid available 

CMGF Coupled Microgrid is formed 

+ Power exported/discharged 

- Power exported/discharged 

ACS All constraints satisfied after actions 
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 An overloaded Problem Microgrid 

Consider study case-I (see Fig. 6.3a), in which microgrid-3 is detected as a PMGOL (with 

a frequency of 49.38 Hz and a minimum voltage of 0.912 pu, both beyond the safe mode). As 

seen from Table 6.5, this microgrid has a load demand of 0.738 pu, an SRI of below 1% and 

an RPL of 34%). The developed supervisory emergency controller, proposes only soft action 

as the most optimal solution (with an OF value of 5.26$), to address the emergency of this 

microgrid. The supervisory emergency controller does not use any Intermedial and hard actions 

for this study case. As a result, a 0.034 pu support from the BSS reduces the output power of 

the droop regulated system from 0.498 to 0.446 pu, which will subsequently increase the 

observed minimum voltage and frequency to 0.963 pu and 49.71 Hz, respectively.  

Now, let us consider study case-II, in which microgrid-5, is defined as an overloaded 

problem microgrid (denoted by PMGOL) because of its operation within the unsafe mode (i.e., 

a frequency drop to 49.29 Hz and a voltage drop to 0.923 pu, both below the acceptable limits). 

At this condition, as seen from Table 6.5, the microgrid load demand is 0.782 pu, its RPL is 

30% and its droop regulated system supplies 0.548 pu (nearly equal to its nominal capacity of 

0.55 pu, as seen from Table 6.5), assuming a base power of 100kVA. Thereby, the SRI of the 

microgrid is almost zero. Without the developed supervisory emergency controller, the only 

possibility of recovering the microgrid into the safe mode, is a load-shedding of 0.1 pu. 

Assuming the implementation of the developed supervisory emergency controller, it takes 

action immediately when the voltage and frequency drop beyond the safe zone and solves this 

problem using a combination of soft and intermedial actions. As a result, microgrid-2 (a healthy 

microgrid with a load demand of 0.233 pu, an RPL of 23%, a minimum voltage of 1.039 pu, a 

frequency of 50.39 Hz and an SRI of 60%) along with microgrid-4 (A healthy microgrid with 

a load demand of 0.135 pu, an RPL of 8.9%, operating at 50.41 Hz and observing a minimum 

voltage of 1.034 pu and an SRI of 58.6%), are coupled with microgrid-5. This is the most 



Chapter 6 – Supervisory Emergency Control for Microgrid Clusters 
 

94 

optimal solution with an OF value of 9$. As a result, microgrid-5 imports a total of 0.096 pu 

(i.e., 0.067 pu from microgrid-2 and 0.039 pu from microgrid-4 after a 0.01 pu loss in the tie 

lines) (see Fig. 6.4b). In addition, the droop regulated system of microgrid-2 and microgrid-4, 

supply 0.224 and 0.163 pu, respectively, which results in the droop regulated system of 

microgrid-5, to reduce its output to 0.452 pu. Additionally, the BSS of microgrid-2, will 

discharges 0.023 pu. As expected, the coupled microgrid formation increases the bus voltages 

in microgrid-5, while they decrease in microgrid-2 and microgrid-4. Consequently, the coupled 

microgrid frequency settles at 50.21 Hz and a minimum voltage of 0.989 pu, is observed 

throughout the coupled microgrid. As a result, the coupled microgrid’s SRI becomes 35% while 

its overall RPL is 26%. 

Now, let us consider case study-III, in which microgrid-3 is detected as the problem 

microgridOL, as shown in Fig. 6.4c and Table 6.5 (with a frequency of 49.69 Hz which is within 

the permissible range, but a minimum voltage of 0.937 pu, which is below the minimum 

allowed limit). Microgrid-3 has a load demand of 0.82 pu, an RPL of 39% and an SRI of only 

1%. The developed supervisory emergency controller, proposes a combination of soft, 

intermedial and hard actions as none of the soft or intermedial actions alone can reach a feasible 

solution. The supervisory emergency controller proposes coupling of microgrid-1 (a healthy 

microgrid with a load demand of 0.206 pu, an SRI of 52% and an RPL of 8%, and operating at 

a frequency of 50.32 Hz and a minimum voltage of 1.024 pu) with the problem microgrid, as 

the most economical solution which results in the optimal OF value of 8.7$. Therefore, the 

output power of the droop regulated system of microgrid-1, increases from 0.192 to 0.232 pu, 

from which 0.056 pu is exported to the problem microgrid, while its BSS discharges by 0.016 

pu, along with a load-shedding of 0.008 pu, in the problem microgrid. Thereby, microgrid-3 

lowers down the output of its droop regulated system to 0.434 pu. Thus, the formed coupled 

microgrid, will observe a minimum voltage of 0.987 pu, and a frequency of 49.87 Hz along  
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Table 6.5 Case studies results for overloaded problem microgrids 
Case Study I II III IV 

Observed MGs MG-3 MG-2 MG-4 MG-5 MG-3 MG-1 MG-2 

MG’s State PMGOL HMG HMG PMGOL PMGOL HMG PMGOL 

MG Parameters under Emergency 

Pload (pu) 0.738 0.233 0.135 0.782 0.82 0.206 0.57 

PNDERs (pu) 0.260 0.055 0.012 0.236 0.326 0.017 0.128 

PDG (pu) 0.498 0.18 0.124 0.548 0.494 0.192 0.446 

max (V) (pu) 0.998 1.045 1.057 0.994 0.990 1.045 0.991 

min (V) (pu) 0.912 1.039 1.034 0.923 0.937 1.024 0.910 

f (Hz) 49.38 50.39 50.41 49.29 49.69 50.32 49.46 

Mode Unsafe Safe Safe Unsafe Alarm Safe Unsafe 

SRI (%) 0.65 60 58.6 0.3 1.2 52 0.8 

RPL (%) 34.21 23.6 8.9 30.17 39.7 8.2 22.4 

CMG(s) Parameters after SEC’s performance 

HMGA no yes yes no 

CMGF no yes yes no 

PMGI yes no no yes 

ACS yes yes yes yes 

Ptrans (pu)  0.067 0.039 –0.096 –0.052 0.056  

ܜܚܝ܋ࡼ
     (pu)	ܛ܀۲۳ۼ

ܜܚܝ܋ࡼ
 0.008  0.006   (pu)	܌܉ܗܔ

PBSS (pu) 0.034 0.023    0.016 0.008 

PDG (pu) 0.446 0.224 0.163 0.452 0.434 0.232 0.428 

CMG max (V) (pu) 1.041 1.034 1.039 1.004 

CMG min (V) (pu) 0.963 0.989 0.987 0.955 

 49.71 50.21 49.87 49.61 (Hz) ࢌ

CMG Mode Safe Safe Safe Safe 

Ploss (pu) 0.002 0.01 0.004  

CMG SRI (%)  35 74  

CMG RPL (%)  26.34 33.4  

OF ($) 5.26 9.00 8.70 12.23 
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MG‐1 
V = 0.137 pu
f = 0.132 Hz

MG‐2 
V = 0.141 pu
f = 0.121 Hz

MG‐4 
V = 0.143pu
f = 0.120 Hz

MG‐6 
V = 0.155 pu
f =0.123 Hz

MG‐5 
V = 0.133pu
f = 0.19 Hz

MG‐3 
Vmax=0.145pu
f = 0.125 Hz

MG‐1 

MG‐4 

MG‐6 

MG‐5 

MG‐3 

MG‐3 (PMG)
Pload = 0.738pu
PNDER = 0.26 pu
PDG = 0.498 pu

max(V) = 0.998 pu
f = 49.38 Hz

MG‐3 
PBSS = 0.034pu
PDG = 0.446 pu

max(V) = 1.041 pu
f = 49.71 Hz

 (a) 

MG‐1 
V = 0.147pu
f = 0.125 Hz

MG‐2 (HMG)
Pload = 0.233 pu
PNDERs = 0.055 pu
PDG = 0.18 pu

max(V) = 1.045 pu
f = 50.39 Hz

MG‐4 (HMG) 
Pload = 0.135 pu
PNDER= 0.012 pu
PDG= 0.124 pu

max(V) = 1.057 pu
f = 50.41 Hz

MG‐6 
V = 0.137pu
f = 0.123 Hz

MG‐3 
V = 0.132pu
f = 0.124 Hz

MG‐1 

MG‐2 
Ptrans = 0.067 pu
PBSS = 0.023 pu
PDG = 0.224 pu

max(V) = 1.042 pu
f = 50.27 Hz

MG‐4 
Ptrans = 0.039 pu
PDG= 0.163 pu

max(V) = 1.042 pu
f = 50.31 Hz

MG‐6 

MG‐5 
Pload = 0.782 pu
PNDER = 0.236 pu
PDG = 0.452 pu

max(V) = 1.034 pu
f = 49.84 Hz

MG‐3 

MG‐5 (PMG) 
Pload= 0.782 pu
PNDER = 0.236 pu
PDG = 0.548 pu

max(V) = 0.994 pu
f = 49.29 Hz

(b) 

MG‐1 (HMG)
Pload = 0.206 pu
PNDER = 0.017 pu
PDG= 0.192 pu

max(V)  = 1.045 pu
f = 50.32 Hz

MG‐2 
V = 0.141 pu
f =0.121 Hz

MG‐4 
V = 0.163 pu
f =0.150 Hz

MG‐6 
V = 0.175 pu
f =0.153 Hz

MG‐3 (PMG)
PDG= 0.494 pu

max(V)  = 0.990 pu
f = 49.69 Hz

MG‐2 

MG‐4 

MG‐6 

MG‐5MG‐5 
V =  0.143 pu
f = 0.129 Hz

MG‐1
PBSS = 0.016 pu
PDG = 0.232 pu
V = 0.139 pu
f = 49.98 Hz MG‐3 

PDG= 0.434 pu
Pload =  0.812pu
V = 0.11 pu
f = 49.92 Hz

 

(c) 
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MG‐1 
V = 0.137pu
f = 0.132 Hz

MG‐2 
Vmax=0.141pu
f =0.121 pu

MG‐4 
V = 0.143pu
f= 0.120 Hz

MG‐6 
V = 0.155pu
 f = 0.123 Hz

MG‐5 
V =0.133pu
f =0.19 Hz

MG‐3 
V = 0.145pu
f = 0.125 Hz

MG‐2 (PMG)
Pload = 0.57 pu
PNDER = 0.128 pu
PDG = 0.446 pu

max(V)  = 0.991 pu
f = 49.46 Hz
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Fig 6.4 Schematic illustration of study case-I to IV for overloaded PMG. 
 

with an SRI of 74% and an RPL of 33.4%. Now, let us consider study case-IV (see Fig. 6.4d), 

in which microgrid-2 is detected as a PMGOL (with a frequency of 49.46 Hz and a minimum 

voltage of 0.91 pu, both beyond the safe mode). As seen from Table 6.4, this microgrid has a 

load demand of 0.57 pu, an SRI of below 1% and an RPL of 22%). The developed supervisory 

emergency controller proposes a combination of soft and hard actions, as the most optimal 

solution (with an OF value of 12.23$) to address the emergency of this microgrid. The 

supervisory emergency controller, does not use any intermedial actions for this study case. As 

a result, a load curtailment of 0.006 pu, along with a 0.008 pu support from the BSS ,reduces 

the output power of the droop regulated system from 0.446 to 0.428 pu, which will 

subsequently increase the observed minimum voltage and frequency to 0.955 pu and 49.61 Hz, 

respectively.  

 A Problem Microgrid Experiencing Excessive Generation 

Consider case study-V (see Fig. 6.5a) in which microgrid-5 is detected as a problem 

microgrid, observing excessive generation from its NDERs (referred to as PMGOG) and 
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experiencing a maximum voltage and a frequency of 1.056 pu and 50.6 Hz, respectively, both 

beyond the safe mode limits). As seen from Table 6.6, microgrid-5, has a load demand of 0.251 

pu, an SRI of 67% and an RPL of 29%. Without the application of the proposed supervisory 

emergency controller, a renewable curtailment of 0.03 pu, is needed to retain this microgrid in 

the safe mode. The supervisory emergency controller finds a combination of soft and 

Intermedial actions, as the most optimal solution to address this emergency (with an OF value 

of 7.29$). To this end, the supervisory emergency controller, proposes the coupling of 

microgrid-5 to microgrid-6 (a healthy microgrid with a load demand of 0.153 pu, an SRI of 

66.5% and an RPL of 12%, operating at a frequency of 49.7 Hz and a maximum voltage of 

1.036 pu). As a result, microgrid-5 exports 0.032 pu, out of which 0.026 pu, is received by 

microgrid-6, considering the losses in the tie line and all this power is charged into the BSS of 

microgrid-6. Thereby, the coupled microgrid operates at a new frequency of 50.26 Hz, and will 

observe a maximum voltage of 1.05 pu, an SRI of 36% and an RPL of 23%. 

Now, let us consider case studyVI (see Fig. 6.5b), in which the microgrid-4 is detected 

as problem microgridOG (operating in the unsafe mode, with a load demand of 0.20 pu, an SRI 

of 44% and an RPL of 12%, with a frequency of 50.53 Hz and a maximum voltage of 1.061 

pu, both beyond the permissible limits). Without the proposed supervisory emergency 

controller, a renewable curtailment of 0.04 pu, is required to eliminate the emergency. The 

proposed supervisory emergency controller, determines a combination of soft, intermedial and 

hard actions, as the most suitable solution to address the emergency (with an OF value of $10). 

As a result, the supervisory emergency controller, proposes to couple microgrid-1 (a healthy 

microgrid with a load demand of 0.32 pu, an SRI of 26% and an RPL of 7%, operating at a 

frequency of 49.9 Hz and observing a maximum voltage of 1.018 pu) and microgrid-6 (A 

healthy microgrid with a load demand of 0.305 pu, an SRI of 32% and an RPL of 12% operating 

at a frequency of 50.19 Hz and a maximum voltage of 1.036 pu) with microgrid-4. Thereby,  
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Table 6.6 Case studies results for problem microgrids with excessive generation  
Case Study V VI VII 

Observed MG(s) MG-5 MG-6 MG-1 MG-4 MG-6 MG-1 

MG’s State PMGOG HMG HMG PMGOG HMG PMGOG 

MG Parameters under Emergency 

Pload (pu) 0.251 0.153 0.32 0.2 0.305 0.346 

PNDERs (pu) 0.074 0.019 0.023 0.037 0.038 0.012 

PDG (pu) 0.182 0.134 0.294 0.168 0.272 0.334 

max (V) (pu) 1.056 1.036 1.018 1.061 1.036 1.072 

min (V) (pu) 1.034 1.008 0.988 1.026 1.024 1.040 

f (Hz) 50.6 49.7 49.9 50.53 50.19 50.48 

Mode Unsafe Safe Safe Unsafe Safe Alarm 

SRI (%) 66.9 66.5 26.5 44 32 74.22 

RPL (%) 29.48 12.41 7.18 12.45 12.4 3.46 

CMG(s) Parameters after SEC’s performance 

HMGA yes yes no 

CMGF yes yes no 

PMGI no no yes 

ACS yes yes yes 

Ptrans (pu) 0.032 –0.026 –0.019 0.045 –0.023  

ܜܚܝ܋ࡼ
 0.008  0.009    (pu)	ܛ܀۲۳ۼ

ܜܚܝ܋ࡼ
     (pu)	܌܉ܗܔ

PBSS (pu)  –0.026 –0.016  –0.022 –0.013 

PDG (pu) 0.214 0.134 0.297 0.205 0.272 0.356 

CMG max (V) (pu) 1.050 1.039 1.032 

CMG min (V) (pu) 0.993 1.017 0.998 

 50.26 49.88 50.21 (Hz) ࢌ

CMG Mode Safe Safe Safe 

Ploss (pu) 0.006 0.003 0.002 

CMG SRI (%) 36.63 29.63  

CMG RPL (%) 23.01 9.45  

OF ($) 7.29 10.00 6.32 
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(c) 

Fig 6.5 Schematic illustration of study case-V to VII. 
 

microgrid-4 exports 0.045 pu (out of which 0.019 pu is imported by microgrid-1 and 0.023 pu 

is imported by microgrid-6 after a total loss of 0.003 pu). In this period, the output power of 

the droop regulated system of microgrid-4, increases from 0.168 to 0.205 pu, whilst this value 
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almost remains unchanged, for microgrid-1 and microgrid-6. The imported power by these 

microgrids is charged by their BSSs. Thus, the frequency in the formed, coupled microgrid 

reaches up to 49.88 Hz, while a maximum voltage of 1.039 pu, is observed. Also, the coupled 

microgrid observes an SRI of 29% and an RPL of 9%. 

Consider case study VII (see Fig. 6.5c) in which microgrid-1, is detected as a PMGOG 

(observing a maximum voltage of 1.071 pu, which is higher than the acceptable permissible 

limi,t whereas its frequency is 50.48 Hz and within the safe mode range). This microgrid has a 

load demand of 0.346 pu, an SRI of 74% and an RPL of 3%. The supervisory emergency 

controller defines a combination of soft and hard actions, as the most suitable solution for this 

emergency (with an OF value of 6.32$). As seen from Table 6.6, the supervisory emergency 

controller, proposes a renewable curtailment of 0.009 pu and a BSS charging by 0.013 pu, 

which will reduce the output power of the DG from 35.6 to 0.334 pu. Thus, the microgrid will 

have operated at a frequency of 50.21 Hz and will observe a maximum voltage of 1.032 pu. 

 Multiple Problem Microgrids 

Consider case study VIII (see Fig. 6.6), in which microgrid-1 is defined as a problem 

microgridOG (observing a maximum voltage of 1.054pu and a frequency of 50.61 Hz, both are 

beyond the permissible limits of the safe mode, with a load demand of 0.132 pu, an SRI of 67% 

and an RPL of 3%), while microgrid-4 is defined as a problem microgridOL (observing a 

minimum voltage of 0.937 pu and a frequency of 49.23Hz, both beyond the permissible limits 

of the safe mode, with a load demand of 0.43 pu, an SRI of almost zero and an RPL of 30%). 

The supervisory emergency controller, finds a combination of soft, intermedial and hard 

actions when addressing this concurrent emergency in two of the considered microgrids. To 

this end, the supervisory emergency controller, proposes coupling of microgrid-3 (a healthy 

microgrid with a load demand of 0.468 pu, an SRI of 29% and an RPL of 24%, operating at a 
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Table 6.7 Case studies result for multiple problem microgrids 
Case Study VIII 

Observed MG(s) MG-1 MG-3 MG-4 MG-5 

Observed MG(s) State PMGOG HMG PMGOL HMG 

 MG Parameters under Emergency 

Pload (pu) 0.132 0.468 0.43 0.296 

PNDERs (pu) 0.004 0.116 0.132 0.004 

PDG (pu) 0.129 0.354 0.298 0.292 

max (V) (pu) 1.054 1.016 0.991 1.038 

min (V) (pu) 1.032 0.980 0.937 1.025 

f (Hz) 50.61 51.28 49.23 49.59 

Mode Alarm Safe Unsafe Safe 

SRI (%) 67.7 29.2 0.66 46.90 

RPL (%) 3.03 24.8 30.69 1.35 

 CMG(s) Parameters after SEC’s performance 

HMGA yes 

CMGF yes 

PMGI no 

ACS yes 

Ptrans (pu) 0.074 –0.070 –0.063 0.065 

ܜܚܝ܋ࡼ
   0.033  (pu)	ܛ۲۲ۼ

ܜܚܝ܋ࡼ
  0.012   (pu)	܌܉ܗܔ

PBSS (pu) –0.031 –0.037  0.04

PDG (pu) 0.234 0.387 0.223 0.32 

CMG max (V) (pu) 1.039 

CMG min (V) (pu) 0.987 

 49.77 (Hz) ࢌ

CMG Mode Safe 

Ploss (pu) 0.007 

CMG SRI (%) 66.51 

CMG RPL (%) 16.8 

OF ($) 11.45 
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Fig 6.6 Schematic illustration of study case-VIII. 
 

frequency of 51.28 Hz, and a minimum and maximum voltages of respectively 0.98 and 1.016 

pu) with microgrid-5 (a healthy microgrid with a load demand of 0.296 pu, an SRI of 46% and 

an RPL of 1%, observing a frequency of 49.59 Hz, and a minimum and maximum voltages of 

respectively 1.025 and 1.038 pu), with both problem microgrids, as the most optimal solution 

(with an OF value of 11.45$). Therefore, microgrid-1 and microgrid-5 export respectively 

0.074 and 0.065 pu, whilst microgrid-3 and microgrid-4 import respectively 0.07 and 0.063 pu. 

The BSS of microgrid-1 and microgrid-3 charges by 0.031 and 0.037 pu, respectively while 

the BSS of microgrid-5 discharges by 0.04 pu. Thereby, the output power of the droop 

regulated system of microgrid-1, microgrid-3 and microgrid-5, increases from 12.9, 35.4 and 

29.2 to respectively 0.234, 0.387 and 0.32 pu, while this figure decreases from 0.298 to 0.223 

pu for microgrid-4. Thereby, the frequency of the coupled microgrid reaches 49.77 Hz and 

observes a minimum and maximum voltages of respectively 0.987 and 1.039 pu. It also has an 

SRI of 66% and an RPL of 16%. 

 Summary 

This chapter has presented a multi-stage supervisory emergency controller, for 
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eliminating the overloading and excessive generation emergencies, of remote area microgrids. 

Supervisory emergency controller is activated as soon as the voltage and frequency of the 

microgrid drops beyond the safe mode and determines a set of actions, to eliminate the 

emergency and recover the microgrid to the safe mode of operation. The considered actions are 

soft actions, such as the adjustment of the droop parameters of the droop regulated systems and 

the charging/discharging control of the BSSs, intermedial actions, such as power exchange with 

one or more neighbouring microgrids. Additionally there are also the hard actions taken which 

have included load-shedding or renewable curtailment which are considered in a sequential 

basis. The aim of the formulated objective function is to reduce the operational cost of 

conventional diesel generators, whilst maximizing the RPL and SRI along with minimising the 

power loss in the tie-lines amongst the microgrids and the frequency and voltage deviation. 

The successful operation of the proposed technique is validated, through the numerical analysis 

performed in Matlab.
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 Market Model for Clustered Microgrid 

Optimisation 

 Introduction 

This chapter proposes a new market model, to enable the optimisation of clustered 

microgrids that are connected by distribution networks, in conditions of energy balance, and 

emergency situations i.e. overloading or over-generations within the cluster. The proposed 

structure, enables the integration of the internet of energy providers within the networked 

microgrids. The microgrids, internal service providers, internet of energy providers and 

distribution network operators, are present as distinct entities, with individual objectives of 

minimum operational cost. Each MG is assumed to be composed of the NDERs and the 

DDERs with a commitment to service its own loads prior to exportation. To this end, an 

optimization problem is formulated, with the core objective being the minimum cost of 

operation, reduced network loss and least distribution network operator charges. A novel 

control strategy, is proposed for the coordinated operation of the microgrids by introducing 

the internal service providers, whose objective is formulated as a bi-level stochastic 

problem. The first level relates to determine the generation level of DERs in emergency 

situations and the second level is to adjust the generation, based upon the optimization 

constraints. The problem formulated in this way is then solved by using a genetic algorithm. 

Case studies are carried out on a distribution system, with multiple microgrids, internal 
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service providers and internet of energy providers, which illustrates the effectiveness of the 

proposed market, optimization strategy. 

 Market Optimisation Problem Formulation 

Market optimization goal is formulated as  

ܨܱ ൌ ݉݅݊ ൥ܭଵ. ෍ ூௌ௉ܨܱ

௡

ெீୀଵ

	൅ ଶܭ ෍ ூைா௉ܨܱ

ே

ாௌ௉ୀଵ

൅ ଷܭ ෍ ෍ ෍ ஽ேைܨܱ

௡

ௌ௧௔௧௘ୀଵ

ே

ௌௌ௉ୀଵ

ே

ூைா௉ୀଵ

൩ ൈ ∆ܶ 
(7.1)

The main objective for the optimal choice selection, from the internet of energy, depends 

upon three factors these include the cost of the operation of the internal service provider e.g.. 

 and the cost of the operation of the	ாா௅ܨܱ .ூௌ௉, cost of economic efficiency loss i.eܨܱ

distribution network operatorܱܨ஽ேை. Multipliers	ܭଵ,	ܭଶ and ܭଷ are the weightings assigned to 

each OF, such that sum of all multipliers will be unity e.g.∑ ௜ܭ
௡
௜ୀଵ ൌ 1 and ∆ܶ is the time taken 

by the internet of energy, to re-evaluates the systems’ condition. Each part of (7.1) is described 

in detail, with constraints in the subsections A, B and C, as given below. 

 Internal Service Provider Operation 

For the internal service provider OF formulation, the rolling horizon optimization 

approach [151], is used (see Fig. 7.1.). Therefore, (t+ ௣ܶሻ is the total time considered for the 

optimization window of the internal service provider, where ܶ ௣ is the time taken by the internal 

service provider to implement necessary changes, according to internet of energy optimization 

decision. Scenarios i and p are related to the rolling horizon time t and ௣ܶ respectively. The 

operation of the internal service provider is assumed to be a bi-level stochastic process [152], 

so decision variables are divided into  
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Fig 7.1. Pictorial representation of rolling-horizon approach for internal service provider 
 

two groups. At first, the actual realization of supply and demand, is done using the power flow 

analysis based on the modified Guass-Siedel iterative technique [153]. Once the uncertain 

scenarios have unfolded, further operational adjustments can made, according to the internet 

of energy decision. Hence, the OF for the internal service provider, is the combination of the 

sum of the operational costs of the troubled microgrid, both in emergency (i) and adjustment 

of emergency (p) scenarios as under: 

ூௌ௉ܨܱ ൌ ݉݅݊ ෍ ቌ෍ݐݏ݋ܥ௧
ௌଵ

௜

൅෍ݐݏ݋ܥ
೛்
ௌଶ

௣

ቍ

ே

்ெீୀଵ

∀ ISP ∈ MMA 

 

(7.2)

Eq (7.2) is the desired OF for the internal service provider operation and it consists of two

parts: first is related with the cost analysis of the troubled microgrids, during emergency 

conditions, while the second describes the adjustments of operational costs, proposed by 

the internet of energy as the optimal solution. For scenario i, the internet of energy providers 

cannot be included in the optimization horizon. It typically relates with to the

demand/supply analysis of the troubled microgrid(s). 
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(7.3)

Eq (7.3) is associated with level one of the bi-level stochastic programming, in which the 

internal service provider will describe the demand supply situation of the troubled 

microgrids and possible shared service provider(s) contributions to overcoming the power 

deficiency situation. Internal service providers will make a demand/supply analysis at this

stage and the cost analysis will indicate the existing economics of the troubled microgrids.
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(7.4)

Part two e.g. Eq (7.4), is related to the second level of the bi level stochastic

program. Part two describes the adjustments of the operation costs to overcome the

emergency situation, following the internet of energy optimal analysis, which is described

in the coming section of this paper. The cost of the import/export power from the internet

of energy providers, is also included in the predictive horizon. This decision directly

effects the connect/disconnect condition of ISS. The first item in (7.3), represents the 

generation cost of all diesel generators present within the troubled microgrids. The next 

item is the estimated cost of diesel generator emissions. The NDERs (WT, PV) and the
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BSS have zero fuel costs, but costs due to the unpredictable changes in the output of the 

NDERs and the load are included here. The fourth and fifth item represents the BSS life

loss cost, as well as the import/export energy cost, amongst the shared service providers,

respectively. Following on from the internet of energy optimization solution, adjustment 

of the costs described in (7.3), is required. These adjustment costs not only play a role in

the demand management, but also give an idea as to whether V/f controls are achieved or 

not. For example, if demand management is not possible by the shared service providers’

adjustment, as shown in (7.3), then a request will be sent to the internal service provider.

The proposed control action between the internal service provider and multi-microgrid 

area -microgrids, is based on the master-slave control strategy. The DG or the BSS inside 

the troubled microgrids, which adopt constant V/f control, could serve as the master

control unit [154]. All of the other DGs will adopt P/Q control for certain active and

reactive power outputs. These DG or BSS will provide a local reference voltage in

microgrids. It is obvious that frequency adjustment, is not needed if multi-microgrid area

is working in connection with the internet of energy providers. Moreover for the

connect/disconnect purposes of ISS, it is assumed that only the low bandwidth

communications are needed to control the microgrid power flow and synchronization with

the internet of energy providers. There are two possibilities in this situation: 1) importing

energy from SPs or 2) exporting energy to the SPs. Hence the fourth item of objective

function, represents the adjustment cost for the import/export power between the internet

of energy providers and the internal service providers with the intermediate connection of

the internet of energy. 

Now the constraints related to the described OF are listed below: 

ௌܲௌ௉ ൌ ߙ௝,௧
ௌௌ௉ െ ௝,௧ߚ

ௌௌ௉  ,	ߙ, ߚ ൌ ቄ0
1

 , ∀݅ ∈ (7.5) ݐ
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Constraint (7.5), represents the power exchange between the shared service providers. As 

it is assumed that during level one of bi level stochastic programming, internet of energy

providers, cannot participate in the planning horizon because of the V/f control, so the

parameters ሺߙ,  ሻ are set equal to 0 or 1. This means that the troubled microgrid can orߚ

cannot import/export power from/to a certain shared service provider. 

௞,௜,௠௜௡ܥܱܵ ൑ ௞,௜ܥܱܵ ൑ ,௞,௜,௠௔௫ܥܱܵ ∀ ݇, ݅ ∈ (7.6)  ݐ

௞,௜,௧ܥܱܵ ൌ ܥܱܵ ൅ න
஻ܲௌௌ,௥௔௧௘ ஻ܲௌௌ௜,௧

ௗܸ௖ܫௗ௖,௥௔௧௘ܥ஻ௌௌ,௥௔௧௘
,ݐ݀ ∀ ݇, ݅ ∈ ݐ  (7.7)

െ ஻ܲௌௌ,௞,௜
௖௛,௠௔௫ߛ௞,௜,௧ ൑ ஻ܲௌௌ,௞,௜ ൑ ஻ܲௌௌ,௞,௜

ௗ௖௛,௠௔௫ߣ௞,௜,௧, ∀ ݇, ݅ ∈ ݐ  (7.8)

௞,௜,௧ߛ ൅ ௞,௜,௧ߣ ൑ 1 ,   ∀ ݅, ݇ ∈ (7.9) ݐ

Constraint (7.6), represents the state of charge (SOC) limits for BSS Constraint (7.7), is 

related to the SOC value available, in existing in time t. Constraint (7.8), represents the 

charge/discharge limit for the BSS. Constraint (7.9), shows that the charging and

discharging of the BSS cannot take place at the same time, this means that either ߛ	or	ߣ , 

will be equal to zero during the operation of the network. 

௜ܲ,௧ ൌ ෍| ூܸ|
ே

௜ୀଵ

| ௟ܸ|ሺܩூ௟ݏ݋ܥ∅ூ௟ ൅ ூ௟ܵ݅݊∅ூ௟ሻܤ , ,ܫ∀ ݈ ∈ ݐ  (7.10)

ܳ௜,௧ ൌ෍| ூܸ|
ே

௜ୀଵ

| ௟ܸ|ሺܩூ௟ݏ݋ܥ∅ூ௟ ൅ ூ௟ܵ݅݊∅ூ௟ሻܤ , ,ܫ∀ ݈ ∈ ݐ  (7.11)

∅ூ௟ ൌ 	 ூߜ െ ௟ (7.12)ߜ

1 െ ߝ ൑ ௜ܸ,௧ ൑ 1 ൅ ,	ߝ ∀݅ ∈ (7.13) 	ݐ

Constraints (7.10-7.11), are the power flow equations of the network. Constraint (7.12) is

the difference in the voltage angles between two nodes of the distribution system.

Constraint (7.13), signifies the voltage deviation at each bus of the system will have voltage 

deviations that are within permissible limits. ߝ is a constant that is applied to guarantee the 
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voltage deviation. Its value can be set between 0.05 to 0.08. 

௜ܲ,௧
௘௫௣.௢௨௧ ൑ ௜ܲ,௧

஽ீ ൅ ௞,௧ߪ ௞ܲ,௧
஻ௌௌ െ ௜ܲ,௧

௟௢௦௦ ൅෍ ௜ܲ,௧
ே஽ாோ௦

௜,௡,௧

, ∀݅ ∈ (7.14) ݐ

ܳ௜,௧
௘௫௣.௢௨௧ ൑ ܳ௜,௧

஽ீ ൅෍ܳ௜,௧
ே஽ாோ௦	

௜,௡,௧

, ∀݅ ∈ ݐ  (7.15)

Constraint (7.14-7.15), are the expected active/reactive power outputs from the troubled 

microgrids following the first level of stochastic programming. Active power losses, which 

is are a substantial issue arising in the distribution system, are also included. 

௜ܲ,௧
஽ீ ൅ ௞ܲ,௧

஻ௌௌ ൅෍ ௜ܲ,௧
ே஽ாோ௦	

௜,௡,௧

൑ ෍ ௜ܲ,௧
௟௢௔ௗ

௜,௧

, ∀݅ ∈ ݐ  (7.16)

௜ܲ,௟,௧
௟௢௦௦,௠௜௡݉݌௜,௟,௧ ൑ ෍ ௜ܲ,௟,௧

௟௢௦௦

ே

௜ୀଵ

൑ ௜ܲ,௟,௧
௟௢௦௦,௠௔௫,݉݌௜,௟,௧ ൒ 0, ∀݅ ∈ (7.17) ݐ

,௣ܥ ೛்
ఊ೛ ൒ ሺܥ஽ீ ൅ ௘௠௜ܥ ൅ ௜௠௣ܥ ൅ ݅∀, ௘௫௣ሻܥ ∈ ,ݐ ݌ ∈ ௣ܶ (7.18)

Constraint (7.17), shows that the first stage of the load, can or cannot be equal to the

generation from the DGs. Constraint (7.18), shows the permissible limit of the system

losses, so that the power factor cannot drop to a minimum range. Constraint (7.19), assumes

that cost of the adjustment for the second leve,l can be equal or greater than first level costs

of the operation. 

Constraints (7.19-7.31), represents the adjustment scenarios, applied for overcoming

emergency situation. p is chosen as the probability and ௣ܶ is the time in which the 

adjustment takes place. It is to be noted here that i is also included in some constraints, 

because the total the time of the optimization window is (t+ ௣ܶሻ , therefore some constraints 

can be effected by stage one variables also. Constraint (7.19), represents the adjustment of

the power needed upstream from the network, following the P/Q control. Due to the power 
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emergency of the troubled microgrid(s), the power transaction will be carried out. Therefore

import/export parameters are set as Δߙ ൒ 0, Δߚ ൒ 0. 

∆ ூܲைா௉ ൌ ∆ߙ௝, ೛்
ூைா௉ െ ,௝ߚ∆ ೛்

ூைா௉ ,	Δߙ ൒ 0, Δߚ ൌ ݌∀,0 ∈ ௣ܶ (7.19)

Constraint (7.21-7.23), represents adjustments of BSS second stage variables i.e.

Δܱܵܥ, ∆ ஻ܲௌௌ.  

௞,௣,௠௜௡ܥܱܵ ൑ ௞,௜ܥܱܵ ൅ ,௞ܥܱܵ∆ ೛் ൑ ∀ , ௞,௣,௠௔௫ܥܱܵ ݇, ݌ ∈ ௣ܶ  (7.20)

,௞,௣ܥܱܵ ೛் ൌ ܥܱܵ ൅ ,௞,௣ܥܱܵ∆ ೛் ൅ න
஻ܲௌௌ,௥௔௧௘∆ ஻ܲௌௌ௜,௣

ௗܸ௖ܫௗ௖,௥௔௧௘ܥ஻ௌௌ,௥௔௧௘
,ݐ݀ ∀ ݇, ݌ ∈ ௣ܶ

 							 

(7.21)

െ ஻ܲௌௌ,௞,௣
௖௛,௠௔௫ߛ௞,௣, ೛் ൑ ஻ܲௌௌ,௞,௣, ೛் ൅ ∆ ஻ܲௌௌ,௞,௣, ೛் ൑ ஻ܲௌௌ,௞,௜

ௗ௖௛,௠௔௫ߣ௞,௣, ೛்  ∀ ݇, ݌ ∈ ௣ܶ 

            
     

(7.22)

,௞,௣ߛ ೛்
௔ௗ௝ ൅ ,௞,௣ߣ ೛்

௔ௗ௝ ൑ 1, ∀	݇, ݌ ∈ ௣ܶ       

       	 

(7.23)

Constraint (7.24-7.26), are power flow equations representated for the scenario p with 

adjustment variables ∆ ௜ܲ,௣, ೛் , ∆ܳ௜,௣, ೛் and ∆∅ூ௟ respectively. 

∆ ௜ܲ,௣, ೛் ൌ ∑ |∆ ூܸ|
ே
௜ୀଵ |∆ ௟ܸ|ܩூ௟Cos	ሺ∅ூ௟ ൅ ∆∅ூ௟ሻ ൅ ூ௟ܵ݅݊ሺ∅ூ௟ܤ ൅ ∆∅ூ௟ሻ , ,ܫ∀ ݈ ∈ ௣ܶ	 

            
    	 

(7.24)

∆ܳ௜,௣, ೛் ൌ ∑ |∆ ூܸ|
ே
௜ୀଵ |∆ ௟ܸ|ܩூ௟Cos	ሺ∅ூ௟ ൅ ∆∅ூ௟ሻ ൅ ூ௟ܵ݅݊ሺ∅ூ௟ܤ ൅ ∆∅ூ௟ሻ , ,ܫ∀ ݈ ∈ ௣ܶ 

            
    	 

(7.25)

∆∅ூ௟ ൌ ூߜ∆	 െ           ௟ߜ∆

        
(7.26)

Constraint (7.28), guarantees that the voltage at each bus of the network, will not deviate

from its permissible limits, when the supply adjustment takes place. Variable ∆ ௣ܸ, ೛் is the 

voltage adjustment variable. 

1 െ ߝ ൑ ௜ܸ,௧ ൅ ∆ ௣ܸ, ೛் ൑ 1 ൅ ,	ߝ ∀݅ ∈ ௣ܶ       

           	 
(7.27)

Constraint (7.28-7.29) are the expected active/reactive power outputs following the second

stage of stochastic programming.	Δ ௜ܲ,௣, ೛்
஽ீ /Δܳ௜,௣, ೛்

஽ீ , Δ ௞ܲ,௣, ೛்
஻ௌௌ  , are adjustments made to the 

active/reactive powers of the master control unit operators. 
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Δ ௜ܲ,௣, ೛்	
௘௫௣.௢௨௧ ൌ Δ ௜ܲ,௣, ೛்

஽ீ ൅ ,௞ߪ ೛்Δ ௞ܲ,௣, ೛்
஻ௌௌ െ ௜ܲ,௣, ೛்

௟௢௦௦ ൅ ∑ ௜ܲ,௧
ே஽ாோ௦

௜,௡, ೛் , ∀݅, ݌ ∈ ௣ܶ	  

            
   	 

(7.28)

Δܳ௜,௣, ೛்	
௘௫௣.௢௨௧ ൌ Δܳ௜,௣, ೛்

஽ீ ൅ ∑ ܳ௜,௧
ே஽ாோ௦

௜,௡, ೛் , ∀݅, ݌ ∈ ௣ܶ     

            	 

(7.29)

Constraint (7.30), guarantees that the DGs generation, is still less than the load

demand as the V/f control was failed at the first level, so the ESP power import is needed.

Constraint (7.31), shows the permissible limit of system losses, after adjustments to the

power factor correction. 

Δ ௜ܲ,௣, ೛்
஽ீ ൅ Δ ௞ܲ, ೛்

஻ௌௌ ൅ ∑ Δ ௜ܲ,௣, ೛்
ே஽ாோ௦

௜,௡, ೛் ൏ ∑ Δ ௜ܲ,௣, ೛்
௟௢௔ௗ

௜, ೛் , ∀݅, ݌ ∈ ௣ܶ   

             
(7.30)

௜ܲ,௟, ೛்
௟௢௦௦,௠௜௡݉݌௜,௟, ೛் ൑ ෍ ௜ܲ,௟, ೛்

௟௢௦௦

ே

௜ୀଵ

൑ ௜ܲ,௟, ೛்
௟௢௦௦,௠௔௫,݉݌௜,௟, ೛் ൒ 0, ∀݅ ∈ ௣ܶ 

(7.31)

 Market Model for Internet of Energy Provider  

The main idea of restructuring the electricity market, is to gain maximum benefit for the 

buyers, by creating a competitive environment. In the proposed strategy, it is assumed that 

there is more than one energy import choice is made available and that these choices come in 

the form of the internet of energy providers. Three entities mainly participate in the market 

model. These entities are, 1) the internal service providers on behalf of the multi-microgrid 

area. as the buyers 2) the internet of energy providers, as the sellers 3) the internet of energy, 

as the choice provider for most economical solutions. However, a static monopoly, exploitation 

model exists in the case of one buyer and many sellers, so arguably the buyer can exploit the 

sellers, by setting low prices so that they can gain profit. Two main types of contracts are 

available in such situations these are the one day-ahead market and the one hour-ahead 

mechanism [155]. So in both methods, the availability of the generation mix, trades and bids 

are determined on per day or a per hour basis, respectively. Each internet of energy provider 

will compete to sell electricity to the multi-microgrid area and as a result, the price will 

typically decrease as every service provider tries to underbid each other. It is also assumed that 
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one or multiple internet of energy provider(s), can be chosen as qualifier bidders, if one seller 

could not meet the necessary requirements of overcoming the certain emergency situation. 

Hence, the overall objective function for internet of energy providers, can be defined as  

ூைா௉ܨܱ ൌ ௥௔௡௦.஺௖௖௘௦௦்ܨܱ ൅        ாா௅ܨܱ
          

(7.32)

In which the first part of (7.32), relates to the minimization of the internet of energy 

provider, pricing for providing transmission access, to the distribution network operator in 

emergency situations and defined as: 

௥௔௡௦.஺௖௖௘௦௦்ܨܱ ൌ ܲ௜௠௣/௘௫௣௢ ൈ ݁݉݅ݐ ൈ ܫܣܰ ൈ     ௘௡௘௥௚௬ݐݏ݋ܥ
       	 

(7.33)

where ܲ௜௠௣/௘௫௣௢ is the required power transaction for the troubled microgrid, ݁݉݅ݐ describes 

how long the transaction will take place,	ܰܫܣ , is the network availability index and it is defined 

as 

ܫܣܰ ൌ ௟௜௡௘ݕݐ݅ܿܽ݌ܽܿ ൈ        ݎ݋ݐ݂ܿܽ	݀ܽ݋݈
          

(7.34)

Now if ݈݀ܽ݋	ݎ݋ݐ݂ܿܽ ൐ 1 , then cost will remain as base charge /kW but if ݈݀ܽ݋	ݎ݋ݐ݂ܿܽ ൏

1, then the distribution network operator will charge the highest price. The last part of (7.33), 

relates to cost of energy transfer in $/kWh. 

For the second part of (7.32), let us assume that ߱ is the internet of energy providers bidding 

price and L is the economic benefit of the internal service provider. By using the monopoly 

price, R is the total revenue which increases with an increase in L. The main objective is to 

choose L, such that the profit Pr, would be maximized and given by 

ሻܮሺݎܲ ൌ ܴሺܮሻ െ ߱ሺܮሻ.           ܮ

        
(7.35)

 Suppose at the maximum profit	ܲᇱሺܮሻ ൌ 0, so for the purpose of maximization 

0 ൌ ܴᇱሺܮሻ െ ߱ᇱሺܮሻ. ܮ െ ߱ሺܮሻ        (7.36) 

where ߱ᇱሺܮሻ is the derivative of the function ߱ሺܮሻ, rearranging eq (7.36) gives 

ܴᇱሺܮሻ ൌ ߱ᇱሺܮሻ. ܮ ൅ ߱ሺܮሻ         (7.37) 
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Fig 7.2 Overview of economic cost curves for market model 
 

Table 7.1Time slots and SMBP for IOEPs [157] 

*Shoulder and off-peak mean the more consumption shifted to these times the more will be the saving for 
electricity cost. 

Now the left hand side of this equation is the marginal revenue (MR), produced for the multi-

microgrid area in the case of an extra P being generated due to increased L, and the right hand 

side is the marginal cost (MC) of the electricity, from internet of energy providers, due to extra 

cost requested from internal service provider, in a case of an emergency situation. So MC will 

be higher than the supplied bidding cost from ESPs. The economic cost curves for the market 

model is shown in Fig. 7.2. The grey triangle describes the competitive social surplus e.g. 

benefit for both consumer and supplier [156] and the triangle ACM highlighted in yellow is 

IOEPs 
GST = 10% of (Supply charge & Consumption) 

Supply Charge = ࢖࢛࢙.૚ࡼࡱࡻࡵ࣓ $/day 

Supply charge for additional MGs = ࢙ࡳࡹ࡭.૚ࡼࡱࡻࡵ࣓ $/day 
Time Slot 

 
Timings 	࣓ࡼࡱࡻࡵ 

($/kWh) 
 

Peak 

3Weekdays : 11am to 5pm (Summer) 
Weekdays : 7am to 11am (Winter) 
Weekdays : 5pm to 9pm (Winter) 

 
߱௫ଵ 

 

*Weekday Shoulder 
Weekdays : 11am to 5pm (Summer) 
Weekdays : 7am to 11am (Winter) 
Weekdays : 5pm to 9pm (Winter) 

 
߱௫ଶ 

Weekend Shoulder 7am to 9pm ߱௫ଷ 
*Off-Peak Everyday 9pm to 7am ߱௫ସ 
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the deadweight loss (DWL), or the allocative inefficiency e,g. it is the loss of economic 

efficiency and described as  

ܮܹܦ ൌ ூைா௉ܮܹܦ ൅          ூௌ௉ܮܹܦ

        
(7.38)

where 

ூைா௉ܮܹܦ ൌ ௠௢௡௢௣௟௬ݐݏ݋ܥ
ூௌ௉          

        
(7.39)

ூௌ௉ܮܹܦ ൌ ௌ்ீݐݏ݋ܥ	ௌெ஻௉൅ݐݏ݋ܥ ൅      ௦௨௣௣௟௬ݐݏ݋ܥ
      	 

(7.40)

DWL is composed of two parts: The first part (7.39), describes that due to the monopoly the 

internal service provider, can take advantage of monopoly pricing and this causes economic 

efficiency loss, for the internet of energy providers. The second part (7.40), relates to the 

environment of competition, in which each provider tries to be a qualified bidder, which causes 

the DWL on internet of energy providers side. However, on the other hand, this situation will 

result in an overall increase of ܴሺܮሻ for the multi-microgrid area. Hence, the cost of electricity 

bidding prices provided by internet of energy providers, are assumed to be, smart bidding prices 

(SMBP). However, due to monopoly, it will be bounded by the conditions of R(L). The main 

aim of the SMBP is to encourage the multi-microgrid area customers to shift their usage of 

electricity to off-peak hours by offering reasonably low prices as compared to peak load hours. 

Second and third costs in (7.40), are general sales tax (GST) cost on the overall consumption 

and the electricity supply cost (both of these costs are applied irrespective of the usage of 

electricity and are taken to be an excess burden and should be paid by the internal service 

provider on the total import power from the ESPs). The idea of timing the days and the 

corresponding estimated costs for the SMBP is taken from the Synergy Western Australia [157] 

and are shown in Table 7.1. To this end, OF for the economic efficiency los,s can be formulated 

as  

ாா௅ܨܱ ൌ ܲூைா௉ܮܹܦூைா௉ ൅ ܲூௌ௉ܮܹܦூௌ௉      
      

(7.41)
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s.t. 

∑ ܥܯ ൐ாௌ௉௦ ∑ ாௌ௉௦ܥܵ           
       

(7.42)

ܲܤܯܵ ൌ ൜
߱௠௜௡, ݂݅	߱௠௜௡ ൒ ߱ሺܮሻ
߱ሺܮሻ, ݂݅	߱௠௜௡ ൑ ߱ሺܮሻ

 
(7.43)

݁ ൌ
ܴᇱሺ߱ሻ െ ߱

߱
 

(7.44)

ܲܤܧ ൑	 ሺ߱ூைா௉ ൅ ߱௦௨௣.௖௢௦௧ሻ ൈ % (7.45) ܶܵܩ

Constraint (7.42), is for the economic cost curves of SPs and (7.43), is the relationship 

between SMBP and multi-microgrid area monopoly, pricing to maximiseሺܮሻ. Now with all the 

internet of energy providers, being governed by the state of competition, the rate of exploitation 

will be equal to zero i.e. ݁ ൌ 0 in (7.44). The total electricity bidding price will be the 

combination of the internet of energy providers bidding price, supply charges and tax on the 

total cost, as described in Constraint (7.45).  

 Operation of Distribution Network Operator  

The third part of (7.1), is related to the operation of the distribution network operator that 

connects the selected, troubled microgrid(s) with the SPs by using the ISS.  

஽ேைܨܱ ൌ 	ܲ௟௜௡௘	௟௢௦௦ ൈ ௦௪௜௧௖௛௔௕௟௘ݐݏ݋ܥ ௟௜௡௘௦ (7.46)

s.t. 

෍ ௢௣௘௥௔௧௜௢௡ܵܵܫ

௡

௦௧௔௧௘ୀଵ

൑ ௫ܶ	,	 

∀	ISS ൌ 1,2,… , n	&	 ௫ܶ ൌ 	 ௫ܶభ ൅ 	 ௫ܶమ ൅ ௫ܶయ 

 

 

(7.47)

The basic operation of the distribution network operator, is to determine the available SPs 

and their respective distance, from the troubled microgrid(s), to calculate the line losses along 

with cost of switching between the SPs transmission lines as shown in (7.46). In Eq (7.47), the 

main function of the ISS, is to automatically shift between the SPs connected and intentional 
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islanding operation modes. The cost of ISS can be based on the opening, closing and re-closing 

states. For this purpose, a multi-agent based control method, is assumed for ISS operation 

[158], as described in the research issue 4 in chapter 3. Thus, the operational stages of ISS, can 

be divided into three states such as: 1) closing the ISS after getting the signal from the DNO. 

2) the energy transaction duration 3) the ISS opening after the power/ supply balance is 

achieved within the troubled microgrids. So the total operational time for the ISS will be the 

addition of three states, so that if	 ௫ܶభ ൌ seconds, then ௫ܶమ	ݔ ൌ ݔ ൈ and ௫ܶయ ,ݏ݁ݐݑ݊݅݉	60 ൌ

  .seconds respectively	ݔ2

 Numerical Results of Simulations 

The formulated market optimization problem, is assessed by performing the exhaustive 

simulations in Matlab. As an example, a network consisting of three microgrids and two 

internet of energy providers, is assumed as shown in Fig. 7.3. The assumed data for the 

transmission lines, in the considered network and the respective distance of each microgrid and 

internet of energy provider, from distribution network operator, is illustrated in Fig. 7.3. It is 

to be noted here, that communication lines are not displayed in the shown net-work, but the 

protocols are the same as those previously described in Fig. 2. The microgrids are assumed to 

have the same topology inside themselves. Although in reality, this scenario is not possible, 

this assumption is made, for the sake of reducing and simplifying the complexity of the 

situation. The impedance data for the microgrids internal structure, is taken from [29] and all 

values used in case studies are taken in kW units.  
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Fig 7.3 Considered network topology along with line impedances and respective distance of 

each line from the central position of distribution network operator. 

 

Table 7.2 Nominal capacities of DERs of microgrids in multi-microgrid area 

Photovoltaic Diesel Generator 
P୔୚
ୡୟ୮  10 kW Pୈୋ

୫୧୬ 13 kW 

Wind Pୈୋ
୫ୟ୶ 80 kW 

P୵୧୬ୢ
ୡୟ୮  15 kW Storage System 

Load  Capacity  70 kW 
P୪୭ୟୢ
ୡୟ୮  100 kW SOC୐୍୑୍୘ 20% - 90% 

P୆ୗୗ
େୌ,୑୅ଡ଼ 14 kW P୆ୗୗ

ୈେୌ,୑୍୒ 65 kW 
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(a) 

 
(b) 

Fig 7.4 (a) Highest and lowest voltage levels, of each microgrid in multi-microgrid area (b) 

Sample of frequency for each microgrid 

 

The nominal capacities of the DERs existing inside the microgrids, are presented in Table 7.2, 

whilst all of the costs data which has been used in the simulations is presented in Table 7.3. 

The maximum and minimum rangesof the technical impacts of the voltage and frequency of 

each microgrid in islanded mode, are depicted in Fig. 7.4a and 7.4b respectively. 

The Genetic Algorithm is the solver being utilized here to identify the best feasible 

solution for the market optimization of the assumed network. This analysis is done for a total 

of 150 iterations. In each iteration, at first, a population is initialized with multiple 

chromosomes, which includes the droop set points of the DDERs and the NDERs in 

microgrids, the BSS state of operation, the power exchange with shared service providers, the 

power export/import to/from the IEOPs and the transmission lines power loss. Secondly OF in 

(7.1), is calculated for the optimal solution, along the constraints application as previously 

presented in Section III of this paper so as to realize the evaluation criteria. Once the parent 
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solution pool is formed by the selection procedure, then the off springs are created by the 

recombination process. The top scaling, heuristic cross-over and adaptive feasible mutation, 

are used as the Genetic Algorithm operators. 

Finally, the developed market optimization technique will continue until the minimum 

desired cost is achieved for the considered MGs cluster, to overcome the emergency situation. 

The Pseudo code of optimization algorithm, is shown here. 

 

Table 7.3 Assumed cost data for numerical analysis 
Cost data for DERs of microgrids used in internal service provider operation 

kWh/$0.1 ࡳࡰ࡯ ࡳࡰ࡯
kWh/$0.15 ࢐ࢊࢇ

kg/$0.02 ࢏࢓ࢋ࡯ ݅݉݁ܥ
݆ܽ݀  0.025$/kg

࢔࢕࢏࢚࢖࢛࢛࢚࢘࢘࢔࢏࡯
ࢊࢇ࢕࢒,࢙ࡾࡱࡰࡺ 0.3$/kWh ߲ 0.003kg/kWh

࢙࢙࢕࢒ࢋࢌ࢏࢒࡯
ࡿࡿ࡮  10$/kWh ݊݋݅ݐ݌ݑݎݎݑݐ݊݅ܥ

݆ܽ݀ 0.35$/kWh

Cost data for market model analysis 
Electricity price offered by microgrids in multi-microgrid area network 

MG-1 = 0.52$/kWh , MG-2 = 0.49$/kWh , MG-3 = 0.45$/KWh 
 kWh/$0.75 =࢟ࢍ࢘ࢋ࢔ࢋ࢚࢙࢕࡯ 

Technical permissible limits 
࢓࢕࢔ࢌ ൌ ૞૙ ;ܢ۶ ࢔࢏࢓ࢌ ൌ ૝ૢ. ૞ ;ܢ۶ ࢞ࢇ࢓ࢌ ൌ ૞૙. ૞  ܢ۶
࢓࢕࢔ࢂ ൌ ૚ܝܘ; ࢔࢏࢓ࢂ ൌ ૙. ૢૠ૞ ;ܝܘ ࢞ࢇ࢓ࢂ ൌ ૚. ૙ૠ૞  ܝܘ

Cost data for distribution network operator operation  
ࢋ࢒࢈ࢇࢎࢉ࢚࢏࢙࢚࢙࢝࢕࡯  $2 =࢙ࢋ࢔࢏࢒

ISS operational states with respective costs 
 

State Closing Operation Opening Re-closing
Time 

(includes DNO 
request) 

1ݔܶ
ൌ 2 െ  ܿ݁ݏ3

3ݔܶ min 60-40 =2ݔܶ
ൌ 4 െ 6  ܿ݁ݏ

If needed then 
3-7 sec  

after DNO 
request 

 for 1 hr and 0.5$ for every $0.8 $0.1 ࡸࡿ࢚࢙࢕࡯
extra hour requested 

0.1 $ 0.3$ 

 

SMBP offered by IOEPs
IOEP-1 IOEP-2

h/$0.3 ࢖࢛࢙.૚ࡼࡱࡻࡵ࣓	 h/$0.32 ݌ݑݏ.2ܲܧܱܫ߱

࢙ࡳࡹ࡭.૚ࡼࡱࡻࡵ࣓	 0.15$/h h/$0.17 ݏܩܯܣ.2ܲܧܱܫ߱

࣓࢞૚૚ 0.52$/kWh kWh/$0.37 21ݔ߱

࣓࢞૚૛ 0.26$/kWh kWh/$0.15 22ݔ߱

࣓࢞૚૜ 0.21$/kWh kWh/$0.18 23ݔ߱

࣓࢞૚૝ 0.13$/kWh kWh/$0.1 24ݔ߱
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Algorithm: The Genetic Algorithm Solver for market optimization technique.

1. for MG-1 to MG-N 

2. Define the output of secondary controller based on DERs set-points ; 

3. Declare the MG(s) as a TMG;  

4. Define the minimum and maximum bounds for NDERs/loads curtailment, the DGs, the BSSs and power 

transaction for each MG in the multi-microgrid area;    

5. end 

6. Initialize GA parameters (initial population, individual fitness evaluation, selection and recombination)  

7. Generate initial population with all selected control variables and constraints, along with the crossover and 

mutation probabilities; 

8. Define the optimization stopping criteria; 

9. while iterations <= Iteration maximum  

10. for function tolerance =< 1e-6 and ∆T <= t (sec) 

11.  Define the number of SPs and the MG(s) which are not participating as the shared service providers; 

12.  Recognize the MG(s) isolated from the cluster, due to emergency conditions ; 

13.  Call the modified Gauss–Seidel-based power flow analysis function ; 

14.  Identify the DDERs, the BSS and the NDERs outputs, load demand, SoC of the BSSs, frequency and 

voltage deviation for the MG(s), in the multi-microgrid area and the TMG(s); 

15.  Calculate cost of the DG, the cost of emissions, the BSSs life loss cost, curtailment of load/NDDs cost (if 

any , the DWL, power loss in transmission ,lines cost; 

16.  Calculate the cost of the power transaction (import/export) for each TMG(s), in multi-microgrid area;  

17.  Evaluate the equality, inequality and boundary constraints;  

18.  If the feasible solution is not converged “OR” constraints are not met, then repeat lines (13 to 17) by 

applying small increase in the integer variables tolerance; 

19.  Calculate ࡼࡿࡵࡲࡻ,   ; along with their weightings, using (2), (30) and (44) ࡻࡺࡰࡲࡻ	ࢊ࢔ࢇ	ࡼࡱࡻࡵࡲࡻ

20.  Calculate OF, using equation (1), for each individual population; 

 21. end 

22. Define the most feasible population of the current iteration and identify the best chromosomes with high 

rank fitness; 

23. Update the values of the chromosomes within the selected population and limit them with boundary 

constraints and tolerance; 

24. end 

 

Let us consider case study-I (numerically described in Table 7.4), in which MG-2 is 

declared as a troubled microgrid, with the nominal frequency of 50.6 Hz and the voltage 

maximum limit being on 1.095pu (both are above permissible limits as defined in Table 7.3). 

The main reason for this is because the DG is operating at 62kW, while its nominal capacity is 
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65kW, its’ load is 77kW and the NDERs contribution is 12 kW, while the BSS is present with 

standby mode of operation. As the data has been collected on basis of ‘one day ahead’, so the 

time slot for this study, is noted as the weekend shoulder. Without a developed optimization 

strategy, the best solution is to do the NDERs curtailment of 9kW, so that both the frequency 

and the voltage will be within the permissible limits. A sample operation profile of MG-2, is 

shown in Fig 7.5.  

This developed strategy, proposes to export power of 10 kW to the shared service 

providers and the internet of energy providers. Therefore, the distribution network operator 

will recommend the power export to the MG-3 and IOEP-2, as the best feasible solution. In 

this way, the MG-3 will couple with the MG-2 and form a power sharing environment, between 

two neighbors. MG-3 will work as shared service provider (load is 36kW, DG is operating at 

25kW, NDERs contribution is 9kW, BSS has discharged for 2kW to accommodate the load). 

Now the MG-2 export of the 2.2kW to the MG-3 with the transmission line loss of 0.2kW, 

while 7.8kW is transmitted to IOEP-2 out of which 0.7 kW is wasted as power loss due to the 

distance of 8km from common central node of distribution network operator. The minimum 

cost of operation for this solution is calculated to be 13.41$ (out of which ܱܨூௌ௉ is 4.81$, 

 ஽ேை is 1.98$ respectively). The related costs to each OF are presentedܨܱ ூைா௉ is 6.62$ andܨܱ

in Fig. 7.6. 

It is clear from the pictorial representation provided, that the maximum cost is to be paid 

by IOEP-2 (i.e. 4.13$/kWh) and it matches the idea that the extra burden of the supply cost and 

the GST is also included. But an interesting fact revealed herein, is that as this emergency 

situation happened on a weekend shoulder time, the SMBP is as relatively low as 0.21 $/kWh. 

Similarly, the minimum cost has emerged for the shared service provider (i.e. MG-3 in this 

case), due to the fact that it is available, on minimum distance from the distribution network 

operator (i.e. at 5km as shown in Fig. 7.3). Therefore, the corresponding transmission line loss, 
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is relatively low. Similarly, due to the application of the proposed optimization technique, the 

technical aspects of the troubled microgrid (i.e. MG-2 in this study) has been settled down i.e. 

maximum voltage reaches to 1.044 pu and the frequency is exactly 50Hz, due to 

interconnection with IOEP-2.  

Table 7.4 Numerical values observed for case study-I. In order to overcome the emergency 

situation, of over generation within a single troubled microgrid, presented inside a multi-

microgrid area 

 

 
 

Fig 7.5 Sample operation profiles for 25 iterations out of a total of 150 iterations in case 

study-I, when MG-2 is under emergency situation, of over generation 

Initially observed data 
Observed 

TMG 
TMG status ݂௡௢௠ 

(Hz) 
ܸ௠௔௫ 
(pu) 

PDG 

(kW) 
Pload 

(kW) 
PNDERs  

(kW) 
Time 
slot 

MG-2 Over 
generated 

50.6 1.095 62 77 12 Weekend 

Market optimization solution  

࢒ࢇ࢚࢕ࢀࡼ
࢕࢖࢞ࢋ  

(kW) 

Available 
SSP 

Selected 
IOEP 

ௌܲௌ௉
௟௢௔ௗ 

(kW) 
ௌܲௌ௉
஽ீ  

(kW) 
ௌܲௌ௉
ே஽ாோ 

(kW) 
ௌܲௌ௉
஻ௌௌ 

(kW) 
ௌܲௌ௉
௘௫௣௢ 

(kW) 
ூܲைா௉
௘௫௣௢ 

(kW) 

ܲ௟௜௡௘	௟௢௦௦ 
(kW) 

10 MG-3 IOEP-2 36 25 9 2 (discharge) 2.2 7.8 0.9 
OF ($) = 13.41$ 

 ஽ேை($) 1.98ܨܱ ூைா௉($) 6.62ܨܱ 4.81 ($)ࡼࡿࡵࡲࡻ
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OFTrans.A=3.47$/kWh

OFIOEP =4.13$/kWh

OFISP

 
Fig 7.6. Contribution of each OF, in reaching the optimal solution to accommodate the 

emergency situation of the over generation of case study-I 

 

Now let us consider another case study-II (numerically described in Table 7.5), in which 

MG-2(with nominal frequency of 50.6 Hz and voltage maximum limit is on 1.035 pu e.g. both 

are above the permissible limits) and MG-3 (with nominal frequency of 49.23 Hz and the 

voltage maximum limit is on 0.991 pu e.g. the. Frequency and voltage both are below the 

permissible limit) are declared as troubled microgrids. In the MG-2 (load is 32 kW, DG is 

operating at 30.8 kW with 1.3 kW coming from the NDERs) and MG-3 (load is 43kW, DG is 

operating at 29.8kW with 13.2kW coming from the NDERs). As the data has been collected 

on a day-ahead basis, the time period for this study is noted in peak hours. Sample operation 

profiles, for both troubled microgrid(s) are shown in Fig 7.7. Without a developed optimization 

strategy, the best solution is to perform a load curtailment of the total 3kW in MG-2, and 

NDERs curtailment of 5kW in MG-3 so that both the frequency and the voltage will be within 

permissible limits. 

The developed strategy, proposes to export power of total 3.5 kW, from MG-3 to MG-2, 

whilst no internet of energy provider will be used to overcome an emergency situation. 

Therefore, the distribution network operator will recommend the power import from  
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Table 7.5 Numerical values observed for the case study-II, in order to overcome the 

emergency situation of over loading and over-generation in the multiple TMG(s), present 

inside the multi-microgrid area. 

 

MG-3 as the most feasible solution. In this way, 2.9 kW is transmitted from MG-3 out of which 

0.4 kW, is wasted as a power loss, due to the distance of 2 km from the common central node 

of the distribution network operator. The minimum cost of operation for this solution, is 

calculated as 9.2$ (out of which ܱܨூௌ௉ is 8.9$, ܱܨ஽ேை is only 0.4$ whileܱܨூைா௉ is having no 

cost because they are not participating in overcoming the emergency situation). It is clear from 

the pictorial representation, that maximum cost is to be paid by MG-2 (i.e. 9.2$/kWh). 

However, an interesting fact revealed here, is that as this is an emergency situation that 

occurred during the peak weekday hours, the SMBP is relatively high but as no IOEP is taking 

part into this case study so SMBP is not applied at all.  

Now let us consider another case study-III (numerically described in Table 7.6), in which 

MG-3(with nominal frequency of 49.38Hz and voltage maximum limit is on 0.0986pu e.g. both 

are below the permissible limits as defined in Table 7.3) and MG-1 (with nominal frequency 

of 49.41Hz and the voltage maximum limit is on 1.037 pu e.g. the. frequency is below the 

 Initially observed data  

Observed 

TMG 

TMG status ݂௡௢௠ 

(Hz) 

ܸ௠௔௫ 

(pu) 

PDG 

(kW) 

Pload 

(kW) 

PNDERs  

(kW) 

PBSS  

(kW) 

Time 

slot 

MG-2 Overloaded 50.6 1.035 30.8 32 1.2 - Peak 

MG-3 Over-

generated 

49.23 0.099 29.8 43 13.2 - 

  Market optimization solution  

࢒ࢇ࢚࢕ࢀࡼ
࢖࢓࢏  

(kW) 

Available 

SSP 

Selected 

IOEP 
ௌܲௌ௉
௘௫௣௢ 

(kW) 

Distance from DNO 

(km) 

ܲ௟௜௡௘	௟௢௦௦ 

(kW) 

2.9 MG-3 - 3.5 5 0.4 

OF ($) = 9.2$ 

 ஽ேை($) 0.4ܨܱ - ($)ூைா௉ܨܱ 8.9 ($)ࡼࡿࡵࡲࡻ
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permissible limit, whilst the voltage is within the normal range) are declared as troubled 

microgrids. In the MG-3 (load is 54kW, DG is operating at 39kW with 8kW coming from the 

NDERs and 7kW is the power support from the BSS) and MG-1 (load is 23kW, DG is operating 

at 16kW with 6kW coming from the NDERs and only 1kW of power support from the BSS). 

As the data has been collected on a day-ahead basis, the time period for this study is noted in 

peak hours. Sample operation profiles, for both troubled microgrid(s) are shown in Fig 7.7. 

Without a developed optimization strategy, the best solution is to perform a load curtailment 

of the total 12kW, so that both the frequency and the voltage will be within permissible limits. 

The developed strategy, proposes to import power of 12 kW, from both the internet of 

energy providers, whilst no shared service provider will be usedto overcome an emergency 

situation. Therefore, the distribution network operator will recommend the power import from  

Table 7.6 Numerical values observed for the case study-III, in order to overcome the 

emergency situation of over loading in the multiple TMG(s), present inside the multi-

microgrid area. 

 

IOEP-1 and IOEP-2 as the most feasible solution. In this way, 11kW is transmitted from IOEP-

1 out of which 2.3 kW, is wasted as a power loss, due to the distance of 10km from the common 

central node of the distribution network operator, whilst 4kW is imported from IOEP-2, out of 

 Initially observed data  

Observed 

TMG 

TMG status ݂௡௢௠ 

(Hz) 

ܸ௠௔௫ 

(pu) 

PDG 

(kW) 

Pload 

(kW) 

PNDERs  

(kW) 

PBSS  

(kW) 

Time 

slot 

MG-1 Overloaded 49.41 1.037 16 23 6 1 Peak 

MG-3 49.38 0.098 39 54 8 7 

  Market optimization solution  

࢒ࢇ࢚࢕ࢀࡼ
࢖࢓࢏  

(kW) 

Available 

SSP 

Selected 

IOEP 
ூܲைா௉
௘௫௣௢ 

(kW) 

Distance from DNO 

(km) 

ܲ௟௜௡௘	௟௢௦௦ 

(kW) 

12 - IOEP-1 11 10 2.3 

IOEP-2 4 5 0.7 

OF ($) = 23.64$ 

 ஽ேை($) 4.14ܨܱ ூைா௉($) 12.3ܨܱ 7.2 ($)ࡼࡿࡵࡲࡻ
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which 0.7kW, is being wasted as the transmission line power loss. The minimum cost of 

operation for this solution, is calculated as 23.64$ (out of which ܱܨூௌ௉ is 7.2$, ܱܨூைா௉ is 12.3$ 

and ܱܨ஽ேை is 4.14$ respectively). The related costs with each OF are shown in Fig. 7.8.  

 

 

(a) 

 
(b) 

 

Fig 7.7. Sample operation profiles for 25 iterations out of total 150 iterations, in case study-

III, when MG-1 (a) and MG-3 (B), are in an emergency situation created by over loading 
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OFIOEP =9$/kWh

 
 

Fig 7.8 Contribution of each OF in reaching the optimal solution to accommodate the 

emergency situation of overloading and over generation of multi-microgrid area’s TMG(s) 

 

It is clear from the pictorial representation, that maximum cost is to be paid by IOEP-1 (i.e. 

9$/kWh) and it matches the idea, that extra burden of the supply cost and the GST is also 

included. However, an interesting fact revealed here, is that as this is an emergency situation 

that occurred during the peak weekday hours, the SMBP is relatively high for IOEP-1 as 0.52 

$/kWh, while IOEP-1 is importing power of 3.3kW at the relatively low cost of 0.37$/kWh. 

Similarly, the IOEP-1, is at a greater distance of 10km from the distribution network operator, 

as compared to IOEP-1, thus the transmission line losses for IOEP-1, are 2.6kW while the 

IOEP-1, is presenting with a lower loss of 1.54kW. Similarly, due to the application of the 

proposed optimization technique, the technical aspects of the troubled microgrids (e.g. MG-3 

and MG-1, in this study), has been settled down. For instance, the MG-3 maximum voltage 

reaches to 1.035 pu and MG-1 voltage is steady at 1.038pu, while both microgrids are working 

within the permissible limits of frequency as well. 

 Summary 

This chapter provides a strategy for the market optimization of remote area microgrids 

by utilizing the interaction between microgrids and the internet of energy providers, with the 
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help of the distribution network operator. The distribution network operator and each of the 

microgrids have their own objectives for minimizing the overall cost of the operations. The 

optimal control of the entire network, is achieved by using the heuristic optimization approach 

of Genetic Algorithm. Case studies are done on a sample network of two internet of energy 

providers and three microgrids. The simulation results show that stochastic decisions end with 

the optimal value of the operation cost, permissible limits of voltage level and minimum 

efficiency loss. The results also highlight the significance of utilizing SMBP costs, which gives 

substantial benefit to microgrid customers. Compared to the previous efforts made in the 

literature about microgrids, market optimization, this work gives liberty to the internet of 

energy providers, for providing consent to export or import power, in certain emergency 

situations of multi-microgrid areas. The interaction amongst distribution network operators and 

microgrids for the integration of the internet of energy providers have also been taken into 

account, to ensure the safe operation of the network. 
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 Conclusions and Recommendations 

This chapter summarises the general findings of the thesis. Some recommendations for 

future research in the areas of the thesis, are also introduced here. 

  Conclusions 

The general conclusions of the thesis are: 

(1) The evaluation and analysis of two different events, reveal that, over a considered 

standalone microgrid network, realised in Matlab, it is seen that the top function of the 

scaling operator, helps the floating point-genetic algorithm solver, to yield a 1-5% 

lower value for the best fitness function, compared to the other scaling functions. The 

results were validated by a Monte Carlo study.  

(2) Based on the economic analysis of the formulated fitness function, it is evident that if 

the combination of a suitable diesel generator, photovoltaic system, wind turbines and 

a battery energy storage system is used, then , it is to be noted that scaled fitness 

functions, can also be applied for solving the optimisation problems of the large 

interconnected systems, within a floating point-genetic algorithm solver; however, a 

standalone hybrid microgrid, was considered as the non-linear test case, in this research 

because it can observed as larger deviations in its voltage and frequency, due to the 

variability of its loads and the NDERs. The analysis illustrates that the suggested hybrid 

microgrid system, is a feasible system that can be used to meet the sudden change in 
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loads, with the help of scaling, crossover and the mutation operator, an effective cost 

of operation is generated, for an off-grid microgrid. 

(3) From the sensitivity analysis, the optimal control variables, in a standalone microgrid 

placed in an emergency situation, such as an overloading and excessive generation of 

the NDERs, leads to unacceptable voltage and/or frequency deviations and can be 

overcome by the interplay of the various functions of the scaling operator. 

(4) The proposal of a multi-stage supervisory emergency controller, for eliminating the 

overloading and excessive generation emergencies of remote area microgrids, has 

shown effective results to overcome the emergency situation. It is activated as soon as 

the voltage and frequency of the microgrid, drop beyond the safe mode and determine 

a set of actions to eliminate the emergency, and recover the microgrid to the safe mode 

of operation.  

(5) The considered actions to take are the soft actions such as, adjustment of the droop 

parameters of the droop regulated systems and charging/discharging control of the 

BSSs, intermedial actions such as the power exchange with one or more neighbouring 

microgrids, as well as the hard actions such as load-shedding or renewable curtailment, 

which are considered in a sequential basis. The several case studies concluded that, the 

emergency situation can be eliminated by using a combination of all actions of the 

controller or by using separated actions of the controller. It is worth mentioning here, 

that the proposed controller has chosen the best optimal solution in every situation, 

along with the permissible limits of voltage and frequency. 

(6) The distribution network operator and each of the microgrids, have their own objectives 

for minimizing the overall cost of operation. It is revealed by the simulation results, that 

stochastic decisions end with an optimal value of the operation costs, permissible limits 

of the voltage level and minimum loss of efficiency. The results also highlight the 
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significance of utilizing the SMBP costs which give substantial benefit to the microgrid 

customers. The interaction amongst the distribution network operators and using the 

microgrids for integration of the internet of energy providers, proves to be a sound 

strategy in resolving a sudden emergency situation, within microgrid clusters. 

 Recommendations for Future Research 

Some future research topics in the area of this thesis are presented below: 

(1) The BSS, is the only utilised energy storage system, in this research; however, in order 

to control and minimise the economics of microgrids, applications of flywheels can be 

considered, as a probable energy storage system, in future analyses. 

(2) In this research, only remote area microgrids are analysed in standalone, coupled or grid 

connected modes of operation. Similar analysis, can also be performed for microgrids 

working in cooperation with utility or private generation companies. This idea can 

provide significant benefits in terms of cost, by including the concept of competitive 

bidding strategies, for outsider companies and creating an environment of competition 

amongst them. 

(3) The optimisation technique, only focuses on achieving the minimum operating cost, 

with permissible limits of voltage and frequency, to resolve an emergency situation for 

remote area microgrid clusters. Setting up the priority list of customers and allowing 

them to participate in the operation horizon, by introducing demand response programs, 

could prove to be a useful and helpful way to understand the consumption of the 

microgrid, the demand response incentives and the contribution of each customer to the 

load shedding plan and so forth. 

(4) The inclusion of an electric vehicle in the modelled structure of the microgrid and 

employing that vehicle as an active, participative, element, instead of remaining a 
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typically passive load. This inclusion could benefit both the system operators and the 

electric vehicle owners. This action would also increase the resilience and 

controllability of the entire, considered network.  
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Appendices 

Appendix I 

The assumed data for 38-bus microgrid topology is tabulated below. 

Table A: Control Parameters of DERs in the considered 38-Bus microgrid system 

DER Bus No. ܭ௉ ܭொ ௢݂ ௢ܸ ܴ௫ ܺ௫ 
  (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) 

DG 1 0.0045 0.0362 0.9777 1.02 0.0030 0.0288 
BSS 34 0.0015 0.0725 0.9792 1.02 0.0030 0.0288 
WT 35 0.0023 0.0217 0.9770 1.02 0.0030 0.0288 
WT 36 0.0023 0.1087 0.9766 1.02 0.0030 0.0288 
PV 37 0.0008 0.0217 0.9769 1.02 0.0030 0.0288 
PV 38 0.0006 0.0215 0.9762 1.02 0.0030 0.0288 

 

Table B: Network parameters for the 38 bus microgrid system [150] 
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