8,540 research outputs found

    The importance of habitat quality for marine reserve fishery linkages

    Get PDF
    We model marine reserve - fishery linkages to evaluate the potential contribution of habitat-quality improvements inside a marine reserve to fish productivity and fishery catches. Data from Mombasa Marine National Park, Kenya, and the adjacent fishery are used. Marine reserves increase total fish biomass directly by providing refuge from exploitation and indirectly by improving fish habitat in the reserve. As natural mortality of the fish stock decreases in response to habitat enhancement in the reserve, catches increase by up to 2.6 tonnes (t).km(-2).year(-1) and total fish biomass by up to 36 t.km(-2). However, if habitat-quality improvement reduces the propensity of fish to move out of the reserve, catches may fall by up to 0.9 t.km(-2).year(-1). Our results indicate that habitat protection in reserves can underpin fish productivity and, depending on its effects on fish movements, augment catches

    Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: a review

    Get PDF
    Fish biomass estimation is one of the most common and important practices in aquaculture. The regular acquisition of fish biomass information has been identified as an urgent need for managers to optimize daily feeding, control stocking densities and ultimately determine the optimal time for harvesting. However, it is difficult to estimate fish biomass without human intervention because fishes are sensitive and move freely in an environment where visibility, lighting and stability are uncontrollable. Until now, fish biomass estimation has been mostly based on manual sampling, which is usually invasive, time‐consuming and laborious. Therefore, it is imperative and highly desirable to develop a noninvasive, rapid and cost‐effective means. Machine vision, acoustics, environmental DNA and resistivity counter provide the possibility of developing nonintrusive, faster and cheaper methods for in situ estimation of fish biomass. This article summarizes the development of these nonintrusive methods for fish biomass estimation over the past three decades and presents their basic concepts and principles. The strengths and weaknesses of each method are analysed and future research directions are also presented. Studies show that the applications of information technology such as advanced sensors and communication technologies have great significance to accelerate the development of new means and techniques for more effective biomass estimation. However, the accuracy and intelligence still need to be improved to meet intensive aquaculture requirements. Through close cooperation between fisheries experts and engineers, the precision and the level of intelligence for fish biomass estimation will be further improved based on the above methods

    Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass

    Get PDF
    Classical models of phytoplankton–zooplankton interaction show that with nutrient enrichment such systems may abruptly shift from limit cycles to stable phytoplankton domination due to zooplankton predation by planktivorous fish. Such models assume that planktivorous fish eat only zooplankton, but there are various species of filter-feeding fish that may also feed on phytoplankton. Here, we extend these classical models to systematically explore the effects of omnivory by planktivorous fish. Our analysis indicates that if fish forage on phytoplankton in addition to zooplankton, the alternative attractors predicted by the classical models disappear for all realistic parameter settings, even if omnivorous fish have a strong preference for zooplankton. Our model also shows that the level of fish biomass above which zooplankton collapse should be higher when fish are omnivorous than when fish are zooplanktivorous. We also used the model to explore the potential effects of the now increasingly common practice of stocking lakes with filter-feeding fish to control cyanobacteria. Because omnivorous filter-feeding fish forage on phytoplankton as well as on the main grazers of phytoplankton, the net effect of such fish on the phytoplankton biomass is not obvious. Our model suggests that there may be a unimodal relationship between the biomass of omnivorous filter-feeding fish and the biomass of phytoplankton. This implies that to manage for reductions in phytoplankton biomass, heavy stocking or strong reduction of such fish is bes

    Fish Habitat Utilization Patterns and Evaluation of the Efficacy of Marine Protected Areas in Hawaii: Integration of NOAA Digital Benthic Habitat Mapping and Coral Reef Ecological Studies

    Get PDF
    Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages

    The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications

    Get PDF
    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m22). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas

    Fish assemblages across the Mediterranean Sea and the effects of protection from fishing = I Popolamenti ittici nel Mediterraneo e gli effetti della protezione dall’impatto della pesca

    Get PDF
    Several studies have assessed the effectiveness of individual marine protected areas (MPAs) in protecting fish assemblages, but regional assessments of multiple parks are scarce. Here fish surveys using visual census were done in marine parks and fished areas at 31 locations across the Mediterranean Sea. Fish species richness, diversity and biomass (especially of top predators) were higher in MPAs compared to fished areas, and community structure differed significantly between MPAs and fished areas. Results suggest that MPAs are generally effective means to protect and recover fish populations and assemblages

    Putative fishery-induced changes in biomass and population size structures of demersal deep-sea fishes in ICES Sub-area VII, Northeast Atlantic Ocean

    Get PDF
    This work was supported by a series of NERC grants to the principal investigators including NE/C512961/1. The results of the early joint SAMS and IOS surveys were digitized with support from EU MAST Contract MAS2-CT920033 1993–1995, and data analyses was supported by EU FP7 Projects HERMES and HERMIONE. We thank Alain Zuur from Highland Statistics Ltd. for advice with the statistical analyses and Odd Aksel Bergstad for valuable comments that helped to improve the manuscript. We thank the ships’ companies of the RRS Challenger and RRS Discovery.Peer reviewedPublisher PD

    Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment

    Get PDF
    Periphyton communities play an important role in shallow lakes and are controlled by direct forces such as temperature, light, nutrients, and invertebrate grazing, but also indirectly by planktivorous fish predation. We performed a pan-European lake mesocosm experiment on periphyton colonization covering five countries along a north/south geographical/temperature gradient (Estonia, Germany, Czech Republic, Turkey, and Greece). Periphyton biomass on artificial polypropylene strips exposed at 50 cm water depth at low and high nutrient regimes (with mean total phosphorus concentration of 20 and 65 µg L−1, respectively) was compared during mid-summer. No significant effect of nutrient loading on periphyton biomass was observed as nutrient concentrations in the mesocosms were generally above limiting values. Water temperature significantly enhanced summer periphyton biomass development. Additionally, direct and indirect top-down control of snails and fish emerged as a significant factor in periphyton biomass control

    The effects of water quality on freshwater fish populations - final report

    Get PDF
    There is a need to determine quantitative relationships between fishery status and water quality in order to make informed judgements concerning fishery health and the setting of environmental quality standards for fishery protection. Such relationships would also assist in the formulation of a system for classifying fisheries. A national database of fisheries and water quality has been collated from the archives of pollution control authorities throughout the UK. A number of probable and potential water quality effects on fish populations have been identified from a thorough analysis of the database, notwithstanding large confounding effects such as habitat variation and fish mobility, and the generally sparse nature of water quality information. A number of different approaches to data analysis was utilised, and the value of each has been appraised. Recommendations concerning the integration of water quality assessment approaches have been made and further research on fishery status, and its measurement, in relation to water quality has been suggested

    Reef fishes of Saba Bank, Netherlands Antilles : Assemblage structure across a gradient of habitat types

    Get PDF
    Saba Bank is a 2,200 km2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5%) and outer reef flat habitat (2.4%) and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5 – 48.1%) but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats) ranged between 52 and 83 g/m2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks), which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank
    corecore