8 research outputs found

    Eliminating stick-slip vibrations in drill-strings with a dual-loop control strategy optimized by the CRO-SL algorithm

    Get PDF
    Funding: This work was partially supported by the Spanish Ministerial Commission of Science and Technology (MICYT) through project number TIN2017-85887-C2-2-P Acknowledgments: The authors would like to thank Marian Wiercigroch and Vahid Vaziri from the Centre for Applied Dynamics Research, University of Aberdeen, for providing the realistic drill-string parameters used in this work.Peer reviewedPublisher PD

    Stochastic Optimisation for Complex Mixed-Integer Programming Problems in Asteroid Tour Missions

    Get PDF
    Deep space exploration is key to understand the origin of our Solar System and address the Earth impact risk. Space Trajectory Design (STD) has evolved and incremented in complexity due to the interest within the space community to explore multiple celestial bodies in a single mission. This thesis focuses on an Asteroid Tour Trajectory in the context of the CASTAway mission. CASTAway is a mission proposal for European Space Agency’s 5th call of medium-size missions to explore the Asteroid Main Belt. The objective is not to find the global optima but find feasible sequences of asteroid fly-bys, as per feasible tours of 12 asteroids of a total Δv of less than 9 km/s is meant. The complexity of the problem is given by the large number of possible permutations of 12-asteroid tour solutions – even with a reduced catalogue of 158 asteroids – and because of being a Mixed-Integer Non-Linear Programming (MINLP) problem. Because of this, metaheuristics are used to tackle the problem. A novel problem modelling that achieves uniqueness on the cost paths of the Search Space and a novel ACO solver is presented, with the general objective for the whole CASTPath project of finding a robust low computational heuristic. Due to the scientific interest on having diversity in the sequences, a similarity measurement tool is also developed. Several test cases with different ACO tuning parameters are run on a High Performance Computer. Results show that this algorithm outperforms the previous heuristics on CASTPath obtaining the lowest Δv (7.27 km/s) achieved by an heuristic and finding multiple feasible sequences (97 in 1 h). Moreover, the new problem modelling has allowed within the research group, to find the global optima (6.98 km/s) for this asteroid catalogue by Dynamic Programming

    An Evolutionary Artificial Neural Network approach for spatio-temporal wave height time series reconstruction

    Get PDF
    This paper proposes a novel methodology for recovering missing time series data, a crucial task for subsequent Machine Learning (ML) analyses. The methodology is specifically applied to Significant Wave Height (SWH) time series in the field of marine engineering. The proposed approach involves two phases. Firstly, the SWH time series for each buoy is independently reconstructed using three transfer function models: regression-based, correlation-based, and distance-based. The distance-based transfer function exhibits the best overall performance. Secondly, Evolutionary Artificial Neural Networks (EANNs) are utilised for the final recovery of each time series, using as inputs highly correlated buoys that have been intermediately recovered. The EANNs are evolved considering two metrics, the novel squared error relevance area, which balances the importance of extreme and around-mean values, and the well-known mean squared error. The study considers SWH time series data from 15 buoys in two coastal zones in the United States. The results demonstrate that the distance-based transfer function is generally the best transfer function, and that EANNs outperform a range of state-of-the-art ML techniques in 12 out of the 15 buoys, with a number of connections comparable to linear models. Furthermore, the proposed methodology outperforms the two most popular approaches for time series reconstruction, BRITS and SAITS, for all buoys except one. Therefore, the proposed methodology provides a promising approach, which may be applied to time series from other fields, such as wind or solar energy farms in the field of green energy

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Time series data mining: preprocessing, analysis, segmentation and prediction. Applications

    Get PDF
    Currently, the amount of data which is produced for any information system is increasing exponentially. This motivates the development of automatic techniques to process and mine these data correctly. Specifically, in this Thesis, we tackled these problems for time series data, that is, temporal data which is collected chronologically. This kind of data can be found in many fields of science, such as palaeoclimatology, hydrology, financial problems, etc. TSDM consists of several tasks which try to achieve different objectives, such as, classification, segmentation, clustering, prediction, analysis, etc. However, in this Thesis, we focus on time series preprocessing, segmentation and prediction. Time series preprocessing is a prerequisite for other posterior tasks: for example, the reconstruction of missing values in incomplete parts of time series can be essential for clustering them. In this Thesis, we tackled the problem of massive missing data reconstruction in SWH time series from the Gulf of Alaska. It is very common that buoys stop working for different periods, what it is usually related to malfunctioning or bad weather conditions. The relation of the time series of each buoy is analysed and exploited to reconstruct the whole missing time series. In this context, EANNs with PUs are trained, showing that the resulting models are simple and able to recover these values with high precision. In the case of time series segmentation, the procedure consists in dividing the time series into different subsequences to achieve different purposes. This segmentation can be done trying to find useful patterns in the time series. In this Thesis, we have developed novel bioinspired algorithms in this context. For instance, for paleoclimate data, an initial genetic algorithm was proposed to discover early warning signals of TPs, whose detection was supported by expert opinions. However, given that the expert had to individually evaluate every solution given by the algorithm, the evaluation of the results was very tedious. This led to an improvement in the body of the GA to evaluate the procedure automatically. For significant wave height time series, the objective was the detection of groups which contains extreme waves, i.e. those which are relatively large with respect other waves close in time. The main motivation is to design alert systems. This was done using an HA, where an LS process was included by using a likelihood-based segmentation, assuming that the points follow a beta distribution. Finally, the analysis of similarities in different periods of European stock markets was also tackled with the aim of evaluating the influence of different markets in Europe. When segmenting time series with the aim of reducing the number of points, different techniques have been proposed. However, it is an open challenge given the difficulty to operate with large amounts of data in different applications. In this work, we propose a novel statistically-driven CRO algorithm (SCRO), which automatically adapts its parameters during the evolution, taking into account the statistical distribution of the population fitness. This algorithm improves the state-of-the-art with respect to accuracy and robustness. Also, this problem has been tackled using an improvement of the BBPSO algorithm, which includes a dynamical update of the cognitive and social components in the evolution, combined with mathematical tricks to obtain the fitness of the solutions, which significantly reduces the computational cost of previously proposed coral reef methods. Also, the optimisation of both objectives (clustering quality and approximation quality), which are in conflict, could be an interesting open challenge, which will be tackled in this Thesis. For that, an MOEA for time series segmentation is developed, improving the clustering quality of the solutions and their approximation. The prediction in time series is the estimation of future values by observing and studying the previous ones. In this context, we solve this task by applying prediction over high-order representations of the elements of the time series, i.e. the segments obtained by time series segmentation. This is applied to two challenging problems, i.e. the prediction of extreme wave height and fog prediction. On the one hand, the number of extreme values in SWH time series is less with respect to the number of standard values. In this way, the prediction of these values cannot be done using standard algorithms without taking into account the imbalanced ratio of the dataset. For that, an algorithm that automatically finds the set of segments and then applies EANNs is developed, showing the high ability of the algorithm to detect and predict these special events. On the other hand, fog prediction is affected by the same problem, that is, the number of fog events is much lower tan that of non-fog events, requiring a special treatment too. A preprocessing of different data coming from sensors situated in different parts of the Valladolid airport are used for making a simple ANN model, which is physically corroborated and discussed. The last challenge which opens new horizons is the estimation of the statistical distribution of time series to guide different methodologies. For this, the estimation of a mixed distribution for SWH time series is then used for fixing the threshold of POT approaches. Also, the determination of the fittest distribution for the time series is used for discretising it and making a prediction which treats the problem as ordinal classification. The work developed in this Thesis is supported by twelve papers in international journals, seven papers in international conferences, and four papers in national conferences

    11th International Coral Reef Symposium Proceedings

    Get PDF
    A defining theme of the 11th International Coral Reef Symposium was that the news for coral reef ecosystems are far from encouraging. Climate change happens now much faster than in an ice-age transition, and coral reefs continue to suffer fever-high temperatures as well as sour ocean conditions. Corals may be falling behind, and there appears to be no special silver bullet remedy. Nevertheless, there are hopeful signs that we should not despair. Reef ecosystems respond vigorously to protective measures and alleviation of stress. For concerned scientists, managers, conservationists, stakeholders, students, and citizens, there is a great role to play in continuing to report on the extreme threat that climate change represents to earth’s natural systems. Urgent action is needed to reduce CO2 emissions. In the interim, we can and must buy time for coral reefs through increased protection from sewage, sediment, pollutants, overfishing, development, and other stressors, all of which we know can damage coral health. The time to act is now. The canary in the coral-coal mine is dead, but we still have time to save the miners. We need effective management rooted in solid interdisciplinary science and coupled with stakeholder buy in, working at local, regional, and international scales alongside global efforts to give reefs a chance.https://nsuworks.nova.edu/occ_icrs/1000/thumbnail.jp

    New coral reefs-based approaches for the model type selection problem: A novel method to predict a nation's future energy demand

    No full text
    In this paper, we describe two new methods to address the model type selection problem (MTSP) based on modifications of the coral reefs optimisation algorithm (CRO). The effectiveness of these novel approaches is subsequently illustrated in a problem of energy demand estimation in Spain. First, we describe how coral species can be defined in the CRO algorithm, so each specie defines a competing model for the MTSP. Second, we propose another method to solve MTSPs by modifying the original CRO with a substrate layer, so that the different models considered can be encoded similarly. This second method to solve the MTSP simplifies the application of the CRO operators. Finally, we evaluate the performance of the two CRO-based algorithms by solving a MTSP consisting of the prediction of future energy demand from macro-economic data in Spain as a case study

    Eliminating Stick-Slip Vibrations in Drill-Strings with a Dual-Loop Control Strategy Optimised by the CRO-SL Algorithm

    No full text
    Friction-induced stick-slip vibrations are one of the major causes for down-hole drill-string failures. Consequently, several nonlinear models and control approaches have been proposed to solve this problem. This work proposes a dual-loop control strategy. The inner loop damps the vibration of the system, eliminating the limit cycle due to nonlinear friction. The outer loop achieves the desired velocity with a fast time response. The optimal tuning of the control parameters is carried out with a multi-method ensemble meta-heuristic, the Coral Reefs Optimisation algorithm with Substrate Layer (CRO-SL). It is an evolutionary-type algorithm that combines different search strategies within a single population, obtaining a robust, high-performance algorithm to tackle hard optimisation problems. An application example based on a real nonlinear dynamics model of a drill-string illustrates that the controller optimised by the CRO-SL achieves excellent performance in terms of stick-slip vibrations cancellation, fast time response, robustness to system parameter uncertainties and chattering phenomenon prevention
    corecore