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Y cómo no, acordarme de la persona con la que llevo compartiendo más de los
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Education is the passport to the future, for tomorrow
belongs to those who prepare for it today.

Malcolm X

1
Introduction

This Thesis proposes novel methods for mining time series with the aim to automa-

tically solve different real-world problems. In this way, this chapter introduces the context

of this work. The main topics which have been considered in the present research are:

machine learning (ML), metaheuristics (MHs), artificial neural networks (ANNs), time se-

ries, extreme value theory (EVT) for fitting the statistical distribution of a set of values,

and several applications in real-world problems, such as, detection of tipping points (TP),

analysis of stock market indexes, preprocessing, segmentation and prediction in wave

height problems, and fog prediction in airports.

1.1. Machine learning

Nowadays, the big amount of data which is present in any field of science and in the

daily life can have different ways of representations, such as databases or time series. The

exponential growth of this data makes us using automatic techniques to extract knowledge

from them, due to the impossibility to process and analyse these data conveniently in

a manual way. In this work, the kind of data which is analysed, preprocessed, and, in

general, mined, is in the form of time series. A time series can be defined as temporal data

which are collected chronologically or as a function that varies during time.

The extraction of knowledge is commonly referred to by the term data science,

1



2 1. Introduction

which involves a wide range of theories derived from mathematics, statistics or ML, among

others. In this way, ML is one of the most important fields of the artificial intelligence,

whose primary objective is to make possible the automatic learning of the computers

(automatic extraction of knowledge) through examples of data.

ML methods can be divided depending on different criteria, among other things,

considering the type of reasoning applied, regarding the manner in which the training

data are presented to the learner or depending on the classification model itself. However,

for this work, we consider more important to divide according to the learning task itself,

that is, in supervised, unsupervised and semi-supervised learning [7]. Figure 1.1.1 shows

a representation of these paradigms.

a) b) c)

Figure 1.1.1: Paradigms of ML methods: a) Supervised learning with two labels b) Unsupervised lear-
ning c) Semisupervised Learning.

• Supervised learning: supervised learning is the most common learning problem in

ML. It is said that a problem can be solved with a supervised learning algorithm when

each example of data (normally presented as a vector of attributes X) is labelled to

a predefined membership class Y . For this reason, the main task is to design an

automatic algorithm that learns a classification rule in a set of data called training

data, which then produces the ideal output for each example of the test data. In other

words, the algorithm learns decision rules from known data to predict the label of

the unknown data. In this group of algorithms, we can distinguish a subdivision

depending on the kind of label to predict.

◦ Regression: the output variable Y is a real value. An example of an algorithm

inside this group is linear regression [62].

◦ Classification: the output variable Y is a discrete or nominal value. Classifica-

tion methods are the most well-known ones in ML. There is a wide range of

classification techniques, e.g. decision trees (DTs) [75], logistic regression (LR)

[16], ANNs [79], or support vector machines (SVM) [31].
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◦ Ordinal classification: when the classification of patterns is done into naturally

ordered discrete labels, the paradigm is called ordinal classification or ordinal

regression [83]. As can be seen, it is a mixture between the two previous kinds

of algorithms given that the label to be predicted is discrete but there is also an

order between the categories. However, this order is not quantified: for exam-

ple, if we consider a problem where we have to classify a database of humans

into child, teenager, adult or ancient labels, it is obvious that classifying a child
as an ancient should be more penalised than classifying the same pattern as a

teenager. Nevertheless, we cannot quantify the distance between classes, that

is, we are sure that the distance between child and teenager is less than the

distance between child and adult, but we do not know if the distance between

child and adult is, for example, twice the distance between child and teenager.
This a novel paradigm which is receiving a lot of attention, and in the Thesis is

presented in one of the last publications.

• Unsupervised learning: in this case, the data is unlabelled [34], so the task differs

from supervised learning. Unsupervised learning tries to discover several groups of

data which present a similar structure, to determine the data distribution, or to

project the data into a smaller dimensional space to visualise them. This paradigm

includes the so-called clustering algorithms whose main objective is to make groups

of patterns depending on the similarities of the input characteristics. Clustering met-

hods are usually divided into partitional, hierarchical, and density-based algorithms.

Partitional algorithms, such as K-means [53], need to know how many clusters are

going to be discovered. Initially, the centre (centroid) of each cluster is chosen ran-

domly, and during every iteration, it is moved in order to have more compact groups,

well separated from other. Hierarchical algorithms can be agglomerative (each pat-

tern is considered a cluster, and in each iteration, the nearest clusters are merged),

or divisive (all patterns are considering into the same cluster, and in each iteration,

the most different pattern is separated from its cluster). Finally, density based algo-

rithms, such as DBSCAN [21], form their clusters using the density of the data in the

space.

• Semi-supervised learning: when the problem presents a set of data which is labelled

and a big set which is unlabelled, the paradigm is called semi-supervised learning.

Sometimes labelled data is not accessible, or the labels depend on an expert in the

area of the problem to solve. However, it can be affordable to label a subset of the

dataset. Semi-supervised algorithms try to explore the unlabelled data structure with

the aim to generate predictive models that work better than those which only use

the labelled data.
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ML includes a wide variety of algorithms with different goals depending on the

problem to solve. However, all of them have a common characteristic which is to extract

relevant information and knowledge from raw data. ML is used in many applications,

e.g. in biomedicine, mathematics, weather forecasting, biometry, handwriting recognition,

facial recognition, etc. In this Thesis, we made use of several ML algorithms, such as LR,

SVM, or ANNs, among others. These algorithms have been used to improve them or merely

to compare our results with those obtained in previous researches.

1.2. Metaheuristics

The analysis and design of algorithms are limited by the complexity of them. In

the best case, an algorithm can be run in polynomial time (P-complexity). This kind of

algorithms are used to solve easy problems and can be executed in a deterministic way

on a computer. However, the most challenging issues are those involving NP-complexity,

i.e. more complex problems with a much higher computational cost. For NP algorithms, it

is not easy to find the best global solution, but it is possible to find good solutions close

to the global one. In this context, we should define the meaning of heuristic and MH. On

the one hand, in [72], the author affirmed that a heuristic is a technique that looks for

good solutions (that is, almost optimal or effective) at a reasonable computational cost

(efficient), although without guaranteeing feasibility or optimality of it. In some cases,

you can not even determine how close to the optimum a particular feasible solution is. On

the other hand, an MH is a method which includes heuristics and high-level procedures

to solve a variety of general problems, able to escape for local optima, with incomplete

information or limited computation capacity [6].

MHs are usually applied to solve combinatorial optimisation problems (COPs). A

COP consists in optimising the values of some variables, i.e. maximising or minimising an

objective function (sometimes with constraints). Formally, a maximisation problem could

be defined as:

maxx∈F⊆Sf(x), (1.1)

where x is a vector of decision variables, f(x) is the objective function, S is the search

space, and F is the subset of feasible solutions. The variables can be integer or real values.

MHs are classified depending on their inspiration (natural or not), the kind of objec-

tive functions (statics or dynamics), the number of neighbourhoods (one or more), the use

of the memory, and more commonly, depending on the number of the solutions employed

to guide the search. Attending to the last criterion, we can divide MHs in:

• Single solution MHs: the search is guided using one solution. Local search (LS) is
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one of the main algorithms in this group. LS methods find the optimal solutions in

a surrounding area. However, if the initialisation is not correct, the algorithm can

reach a locally optimal solution. Simulated annealing (SA) [43] and tabú search

(TS) [27] are examples of algorithms which try to avoid this problem.

• Population-based MHs: the search is guided by a set of solutions. They are conside-

red robust because they perform a global search which quickly converges to high-

quality areas. They are prepared to solve complex problems, and they can avoid local

optima. There are many options for this kind of MHs. In this Thesis, we have focu-

sed on genetic algorithms (GA) [35], coral reef optimisation algorithms (CRO) [77],

and particle swarm optimisation algorithms (PSO) [41], considering their improved

variations.

1.2.1. Genetic algorithms

GAs are bioinspired MHs which simulate the evolution of the species [35]. They

are one of the most extended types of MHs due to their properties and their capability

of adaptation in new problems. The flowchart of a standard GA is summarised in Figure

1.2.1.

Initialization P EvaluationSTART Selection

Crossover

Mutation

Offspring

Evaluation

Replacement

Stop 
Condition

no yes
Best 

Solution
END

Figure 1.2.1: Flowchart of a standard GA.

In GAs, each solution is codified using a chromosome which is formed by binary,

integer or real values, depending on the problem to solve. The algorithm starts initialising

a population of solutions, which can be done by using different strategies, e.g. random or

predefined ones.

Then, GA simulates the evolution for some generations. A selection process is ap-

plied to the whole population. This is done to choose some individuals as possible parents
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to generate the offspring. There are many options in the literature, e.g. the parents can

be randomly chosen, they can be selected as pairs of parents without repetition, or their

objective function value can be used to select the more suitable solutions.

Once the parents are selected, for each parent, a given probability Pc (crossover

probability) is used to decide whether the parent will be involved in a crossover process.

Usually, when a parent c1 is selected to be crossed, the other parent c2 is randomly chosen

from the set of parents, although this procedure could change depending on the algorithm.

The crossover is usually applied to two parents, and it consists of an operation to create

offspring solutions which preserve characteristics of both parents. This operator is essential

for the convergence of GAs, and its main objective is to exploit the set of current solutions.

GAs are also endowed with mutation operations whose main objective is to guaran-

tee the exploration of the search space during the evolution. After applying the crossover,

each intermediate offspring solution ci is selected to be mutated under a given probability

Pm (mutation probability). This mutation usually consists in changing one or more ele-

ments of the chromosome by using different operations (e.g. adding white noise for real

coding, performing a permutation for integer coding or flipping a bit for binary arrays). As

can be seen, with these two operators, the algorithm is able to control the exploration (di-

versity) and the exploitation, with the purpose of maintaining an adequate convergence.

Some versions of GAs adapt the probability during the evolution in order to have a greater

exploration at the beginning and more exploitation at the end.

When the offspring, given by the mutation operator, is obtained, the algorithm crea-

tes the final offspring population by processing infeasible solutions, i.e. those which do

not satisfy the constraints of the problem. Then, the GA evaluates the new solutions using

the objective or fitness function, in order to give a score to each solution. The objecti-

ve function is associated with the problem to solve. It is normalised in the interval [0, 1],

resulting in what is usually known as the fitness function of the GA.

GA simulates the natural selection principle by the selection operator and by the

specific strategy used for the replacement of the new population in the next generation.

During replacement, parent and offspring populations are merged into a new population.

From it, a set of P individuals are considered to survive for the next generation. There are

different strategies, but all of them need to reach a good compromise between fitted and

diverse solutions. With this philosophy, in each iteration, the GA simulates the survival of

the individuals in the current environment.

Finally, once the GA is finished, the best solution is returned.
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1.2.2. Coral reefs optimisation algorithms

A novel evolutionary bioinspired strategy for search and optimisation is called CRO

algorithm [77, 76]. It simulates the behaviour of the processes occurring in a real coral

reef, which are summarised in Figure 1.2.2.

Initialization P EvaluationSTART Coral reef

Broadcast 
spawning

Asexual 
reproduction

Brooding

Settlement

Stop 
Condition

no yes
Best 

Solution
END

Coral pool

Depredation

Figure 1.2.2: Flowchart of the standard CRO algorithm.

Given a coral reef with a size of P possible candidates, organized in a P1 × P2

grid, each position (i, j) is able to allocate a coral ci,j , that is, a feasible solution for the

optimisation problem to solve.

Firstly, CRO initialises the coral reef with random corals (solutions), maintaining

some unfilled positions. These unoccupied positions represent holes to settle new corals

in later phases of the evolution, allowing their growth. Typically, the percentage of free

positions is predefined by a parameter ρ ∈ [0, 1].

Once the initialisation is performed, the main block of the algorithm simulates the

processes of reproduction and reef formation, which are recreated using different opera-

tors. There are two types of reproduction in the natural processes of coral reefs. The first

one is called asexual reproduction, in which corals reproduce asexually by budding or

fragmentation. In CRO, all corals are sorted according to their health (i.e. the fitness value

in the optimisation problem). A fraction of them, Fa, are duplicated and mutated under

a Pa probability to promote diversity. The new corals are settled in a pool of candidates

solutions.

Secondly, the algorithm mimics the sexual reproduction, which includes the exter-

nal sexual reproduction or broadcast spawning, and the internal sexual reproduction or

brooding. On the one hand, broadcast spawning consists in selecting a uniform random

fraction Fb of existing corals to be broadcast spawners. The main objective here is to ge-

nerate new larvae. This procedure is carried out selecting two broadcast spawners and
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applying any exploitation strategy, e.g. a crossover operator. The selection of the corals

can be done uniformly, randomly or using any selection approach, but it is important to

mention that any coral is selected only once. On the other hand, brooding represents the

reproduction in hermaphrodite corals, which has been represented by considering the re-

maining 1−Fb percentage of individuals. This kind of reproduction is modelled using any

type of mutation mechanism depending on the problem to solve. New larvae become part

of the pool of candidates solutions.

When the reproduction is finished, the new larvae in the pool try to settle and grow

in the reef. For each larva, a random position is (i, j) of the reef is randomly chosen. If this

location is free, the new larva will settle. However, if this position is occupied, the new

larva survives if it is healthier than the existing coral. In each iteration, each larva tries to

look for a position for a maximum of η attempts.

Finally, CRO introduces a depredation procedure that simulates the death of the

corals during the reef’s formation. The depredation operator is applied to a Fd percentage

of the worst corals under a given probability Pd. The operation consists in liberating the

position for the next coral generation.

1.2.3. Particle swarm optimisation algorithms

The last important optimisation algorithm that have been taken into account in this

Thesis is the PSO algorithms [41]. This kind of algorithm imitates the behaviour of a

swarm of particles when they are looking for food (e.g. a bird flocking or a fish school).

Figure 1.2.3 shows the main steps of PSO.

Initialization P EvaluationSTART
Update 

velocities

Update 
positions

Evaluation

Update 
best 

positions

Stop 
Condition

no yes
Best 

Solution
END

Figure 1.2.3: Flowchart of the PSO algorithm.

In PSO, a swarm corresponds with a set of P particles moving in a dimensional space

of length D. Each particle i is a candidate solution of the studied problem, represented

by an array xi. Also, there are other characteristics of the particles that the algorithm

need to save to guarantee its correct performance. The direction and the rate of change

in the movement are represented by the velocity of the particle vi, while the best position
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found by the particle during the evolution is pi, that is, that position which has reached

the higher value in the fitness function. The fitness function is represented by f(xi), and it

evaluates the quality of the solutions (as in other evolutionary algorithms, EAs). Moreover,

an array with the best global solution (pg) is also stored. It represents the best solution

found by the whole swarm. In a maximisation problem, at iteration t of the algorithm, the

solution ptg is defined as:

ptg = arg maxp
{
f(pt−1g ), f(pt1), f(pt2), . . . , f(ptP )

}
. (1.2)

The evolution is done using the cooperation of the particles, considering what is

called the cognitive component, i.e. the information of the given particle (pi), and the

social component, which includes the knowledge of the whole swarm (pg). In this way, in

each iteration t, PSO updates the velocities vi using the expression:

vti = w · vt−1i + ρt1 · C1 ·
(
pt−1i − xt−1i

)
+ ρt2 · C2 ·

(
pt−1g − xt−1i

)
, (1.3)

where w is the inertia weight for controlling the effect of the previous velocities (a para-

meter used for velocity reduction, i.e. particles roaming), ρ1, ρ2 ∼ U(0, 1) are uniform

random values obtained at iteration t, and C1, C2 are the acceleration constants. (pi−xi)

and (pg−xi) represent the experience of the particle with respect to its best local solution

and best global solution, respectively. Then, with the update velocity, vti, the new position

of the particle is calculated as:

xti = xt−1i + vti. (1.4)

At the end, the best local position is pti = arg max
{
f(pt−1i ), f(xti)

}
, and the best

global position is updated using Equation 1.2.

As can be seen, the current positions are calculated updating previous velocities.

Two improved versions do not take into account these velocities. The first one is the ba-

rebones PSO (BBPSO) [40] where Equations 1.3 and 1.4 are replaced with the following

expression:

xti,j = N

(
pt−1i,j + pt−1g,j

2
, |pt−1i,j − pt−1g,j |

)
, (1.5)

where j is the dimension to update, and N(µ, σ) is a normal random distribution with µ

mean and σ standard deviation. Each position is generated with a Gaussian distribution,

where µ is the mean value between the best global and best local position, while σ is the

absolute difference between them. This expression is based on the theoretical studies of

Clerc and Kennedy [11], who confirmed that particles converge to a weighted average of

the global and personal best positions.
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The second one is called exploiting barebones PSO (BBePSO), where the position

updates are reformulated as:

xti,j =

N
(
pt−1
i,j +pt−1

g,j

2 , |pt−1i,j − pt−1g,j |
)

if a < 0,5,

pt−1i,j otherwise,
(1.6)

where a is a random number generated from a uniform distribution U(0, 1). The main

difference concerning the BBPSO is that BBePSO searches solutions with a higher exploi-

tation, that is, with a 0.5 probability, the j-th dimension of the particle i takes a value

corresponding to the best local position. It is shown that this exploiting version outper-

forms other variants of PSO in many applications [65].

1.2.4. Hybrid algorithms

In previous sections, we have defined some EAs. In general, they are able to find

high-quality areas (those which contain solutions with a high value of fitness) in a lot

of problems. For this reason, they are considered robust MHs. However, their principal

disadvantage is that they are not good at finding the precise optimum in that area [36]. On

the contrary case, LSs are stronger when they are looking for optima in one area, but a bad

initialisation makes them very poor searching good solutions. Hybrid algorithms (HAs)

were born for these reasons. The application of LSs in different parts of the evolutionary

process is a way to prevent this problem. The idea is to combine the advantages of both

kind of algorithms, that is, to use EAs (as global explorers) in order to reach high-quality

areas, and then to apply LSs (local exploiters) to improve the solutions in that area.

There are different decisions that we have to take into account when the application

of the LS in an EA is needed. The first one is referred to the kind of LS to apply, which

usually depends on the studied problem and the ability of the LS to correctly solve it.

Another important aspect is to decide when we want to apply the LS, i.e. in the begin-

ning, in the end, or during the evolution. And finally, which individuals are going to be

optimised, e.g. the best ones, the most representative ones, etc. These aspects affect the

computational cost and the quality of the solutions. For example, the application of an LS

in different parts of the evolution over a large set of solutions normally produces high-

quality results, but the computational cost is huge. By contrast, the application of the LS

to the best solution obtained by the EA will be faster but usually less robust. In this way,

we have to establish a compromise between both extremes.

There exist different strategies previously used as the multistart approach, the La-

marckian learning, the Baldwinian learning, the partial Lamarckianism or the process of

random linkage [44, 38, 87]. A special kind of hybridisation is produced when the hybrid
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solutions obtained during the evolution are also included in the process of evolution for

the following generations. In those cases, the combination is commonly known as me-

metic hybridisation. This procedure usually gets good results but is slower than standard

hybridisation.

1.2.5. Multiobjective algorithms

A special kind of problems are those which need to be optimised considering mo-

re than one objective. These problems are called multiobjective optimisation problems

(MOPs) [12], and they are formally defined using the following definitions (when consi-

dering minimisation problems):

1. MOP: the problem consists in find the vector x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T, which satis-

fies the m inequality restrictions gi(x) ≥ for i = 1, 2, . . . ,m, the p equality res-

trictions hi(x) = 0 for i = 1, 2, . . . , p, and optimises the function vector f(x) =

[f1(x), f2(x), . . . , fk(x)]T. The problem has k objectives and the functions f(·) : Ω→
A represent the relation between the search space Ω and the objective function space

A. Given that there are multiple objectives in MOPs, the notion of optimum changes,

and it is necessary to find a good compromise between them rather than obtaining

a single solution (as in global optimization).

2. Pareto optimality: a solution x∗ ∈ Ω is said to be a Pareto optimal if there is no x ∈ Ω

whose function f(x) dominates f(x∗).

3. Pareto dominance: a vector u = (u1, u2, . . . , uk) ∈ A dominates another vector v =

(v1, v2, . . . , vk) ∈ A (denoted by u � v), if and only if ∀i ∈ {1, 2, . . . , k}, ui ≤ vi∧∃i ∈
{1, 2, . . . , k} : ui < vi.

4. Pareto optimal set: for a given MOP to optimise f(x), the Pareto optimal set (P∗) is

defined as:

P∗ := {x∗ ∈ Ω | @x ∈ Ω, f(x) � f(x∗)} . (1.7)

5. Pareto front: for a given MOP f(x), and a Pareto optimal set P∗, the Pareto front

(PF∗) is defined as:

PF∗ := {u = f(x)|x ∈ P∗} . (1.8)

6. Global minimum of a MOP: given a vector of functions f(·) : Ω ⊆ Rk → Rn, Ω 6= 0,

and k ≥ 2, the set PF∗ : f(x∗) is called global minimum, if and only if ∀x ∈ Ω :

f(x∗) � f(x).

7. Weak Pareto optimality: a solution x∗ ∈ Ω is a weakly nondominated solution if

there is no x ∈ Ω such that fi(x) < fi(x
∗), for i = 1, 2, . . . , k.
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8. Strict Pareto optimality: a point x∗ ∈ Ω is strictly Pareto optimal if there is no x ∈ Ω,

x 6= x∗, such that fi(x) ≤ fi(x∗), for i = 1, 2, . . . , k.

From these definitions, for example, if we consider a bidimensional problem f(x) ∈
A ⊆ R2, the Figure1.2.4 shows a Pareto front with seven points. In this way, we cannot

conclude which is the best solution, but the seven solutions are better than those that are

not in this Pareto front.

f1

f2

Figure 1.2.4: Example of a Pareto front in a bidimensional minimisation MOP. Blue points represent
the Pareto front, while the pink ones are the dominated solutions.

An essential evolutionary algorithm for solving MOPs is the nondominated sorting

GA (NSGA-II) [17], which is able to preserve the good solutions during the generations to

guarantee the elitism. NSGA-II is one of the most extended algorithms in this field due to

the application of two procedures.

On the one hand, NSGA-II sorts the population of solutions in different levels of

fronts based on the dominance concept previously defined. The first front is formed by

all nondominated solutions, while those solutions only dominated by solutions in the first

front are in the second front. This procedure is extended to all solutions, and it is called

fast nondominated sorting.

On the other hand, the crowding-distance is applied to sort the solutions inside

each front. This procedure consists of sorting the population based on ascending order of

magnitude of all objective functions. For each solution, the crowding distance is calculated,

that is the sum of distances between its adjacent solutions in every objective function,

taking into account that the best and the worst solution in each objective have a value

equal to infinite. The solutions are ordered in descending order according to this distance.
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1.3. Artificial neural networks

An ANN [7] is a modelling technique which simulates the biological nervous sys-

tems. Due to its powerful properties and characteristics, ANNs are commonly used in se-

veral complex real-world problems. Feed-forward neural networks (FNNs), with a hidden

layer, are the most basic type of ANN, but also the most generally used. A representation

of a FNN is shown in Figure 1.3.1.

bias

.

.

.

.

.

.

bias

Input Layer Hidden Layer Output Layer

Figure 1.3.1: Example of a feed-forward neural network.

More formally, FNNs are a generalisation of a standard regression model with the

following expression:

y(x, θ) = β0 +
M∑
j=1

βjBj(x,wj), (1.9)

whereM is the number of neurons in the hidden layer, Bj(x,wj) is the basis function used

for the j-th hidden neuron, x represents the input independent variables, wj connects the

input layer with the j-th neuron, while βj represents the connection between neuron j

of hidden layer and the output layer, and y(x, θ) is the function to optimise. Bj(x,wj) is

formed by an activation function which calculates the base value or total input arriving

at the node and a transfer function which is the output of the neuron activation. The

learning procedure in ANNs consists in estimating the values of θ and the architecture

of the neural network, that is, the number of nodes in hidden layer M and the number

of connections between nodes (the network in Figure 1.3.1 is completely connected).

Assuming an invariable predefined architecture, the learning is commonly performed by a
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gradient descent algorithm, such as the backpropagation algorithm (BP) [74].

Generally, we can consider two types of activation functions for neurons:

• The additive model is the most common, and its output function is:

Bj(x,xj) = h(w0,j + w1,jx1 + w2,jx2 + · · ·+ wK,jxK), (1.10)

being wj = {w0,j , w1,j , . . . , wK,j} the input weights for the connections to the node j,

h(·) the transfer function, and w0,j the node bias. There are several kinds of additive

nodes: for instance, the perceptron [59] uses a step function, the sigmoidal units

(SUs) can be based on logistic sigmoid, hyperbolic tangent or arctangent functions,

and finally, the identity function is employed for linear nodes.

• The multiplicative model is a more recent strategy used for those cases in which

there is a strong interaction between the input variables, and decision regions are

not separable in hyperplanes [80]. The most general expression corresponds with

the product unit (PU):

Bj(x,wj) = x
w1,j

1 · xw2,j

2 · · · · · xwK,jK , (1.11)

where the bias w0,j term does not make sense. PUs generalise other kinds of multi-

plicative units, due that the weights are real numbers.

Furthermore, considering the input characteristic space of the basis functions, we

can classify them into:

• Local or kernel functions, such as radial basis functions (RBFs), present a higher value

over a specific region of the input space. They are good at approximating isolated

data but poorer in global environments and when the number of inputs is high.

• Global or projection functions, such as SUs or PUs, are better on the opposite case,

that is, they behave better for global environments, but worse in the approximation

of isolated data.

There are three well-known FNN types depending on the basis functions used in the

hidden layer:

• SU neural networks (SUNNs) [49]: neural networks of SUs are also known as multila-

yer perceptrons (MLPs) and their nodes present and additive projection model. This

family of units can approximate any given function with enough precision provided
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that the number of hidden neurons is appropriately selected. An SU is defined as:

Bj(x,wj) =
1

1 + e−(w0,j+w1,jx1+w2,jx2+···+wK,jxK)
=

1

1 + e−(w0,j+
∑K
i=1 wi,jxi)

. (1.12)

• PU neural networks (PUNNs) [18]: they were introduced in an effort to learn appro-

priate high-order statistics for a given task. PUs enable a neural network to form high

order combinations of inputs, with the advantages of increased information capacity

and smaller network architectures when these interactions are present in the input

variables. Also, they are considered universal approximators and they have been

used in classification [55] and regression problems [54]. PUNNs use PU nodes in the

hidden layer, following a multiplicative projection model with the output function:

Bj(x,wj) = x
w1,j

1 · xw2,j

2 · · · · · xwK,jK =

K∏
i=1

x
wi,j
i . (1.13)

• RBF neural networks (RBFNNs): they consider kernel transfer functions, i.e. RBFNNs

are those presenting RBFs in the hidden layer [7]. Each RBF makes an independent

local approximation of the input space, normally using a Gaussian function. Then,

the linear output layer combines the effect of the hidden nodes. The idea is that each

node is placed in a region of the input space (centre of the region) with a specific

radius, and the learning is made by moving the nodes through this space, varying

the centre and this radius, in order to adjust the training data.

The activation function is similar to the Euclidean distance between the input pat-

tern x and the centre of the RBF (wj), while the transfer function is generally the

Gaussian function. In this way, the RBF function is:

Bj(x,wj) = e
− 1

2

(
d(x,wj)

rj

)2

, (1.14)

where d(x,wj) is the Euclidean distance defined as:

d(x,wj) =‖ x−wj ‖=

√√√√ K∑
i=1

(xi − wi,j)2. (1.15)

1.3.1. Evolutionary artificial neural networks

As we stated before, the most common algorithm used for training ANNs is BP,

which only optimises the values of the connections. However, there are other ways to

train ANNs that also take the architecture into account. In this work, we make use of evo-
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lutionary programming (EPs) which are similar to the GAs previously defined. The main

difference with respect to GAs is that EPs do not use crossover operators. The conside-

red evolutionary ANN (EANN) was proposed in [33] under the name of neural network

evolutionary programming (NNEP) algorithm. The general structure of NNEP algorithm

is:

EANN:

Input: Database.

Output: ANN model.

1: Population initialisation.

2: while stopping criterion is not fulfilled do

3: Calculate the fitness value for every individual (neural network).

4: Rank the individuals according to their fitness.

5: The best individual survive for the next generation.

6: The best 10 % of individuals are replicated and substitute the worst 10 % of indivi-

duals.

7: The best 10 % of individuals are parametrically mutated.

8: The rest of the individuals (90 %) are structurally mutated.

9: end while

10: return The best individual at the end of the evolution.

The individuals represent ANN models. As can be seen, there are two mutation ope-

rators, but the crossover does not exist. The first one is called parametric mutator which

can optimise the values of the network weights. If an ANN model is selected to be para-

metrically mutated, a Gaussian noise is added to its connections, that is, each weight is

modified adding a value of a normal distribution N(0, α ·T ), where α is a dynamic parame-

ter differently specified for every kind of connection: α1 for the connections between the

input layer and the hidden layer, and α2 for the connections between the hidden layer and

output layer. T = 1−f(x), where f(x) is the fitness function for network x. The change is

always accepted if it results in an improvement of the model. However, when the change

causes a decrease of the fitness value, it is only allowed under a probability which is given

by a simulated annealing procedure. On the other hand, the structural mutator is a more

complicated procedure which implies a modification of the structure of the ANN model.

When an ANN model is selected to be structurally mutated, a mutation is selected from

the following five ones: node addition (add one or more neurons to the ANN model), no-

de deletion (delete existing neurons of the ANN), connection addition (insert one or more

connections between input and hidden layer, or between hidden layer and output layer),

connection deletion, and node fusion. The node fusion mutation is performed over two

neurons taking into account the following rules:

1. If a connection is present in both neurons, it will be present in the node resulting
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from the fusion with a value equal to the average of the two original values.

2. If a connection is present in only one neuron, it will have the same value in the

resulting neuron with a 0.5 probability.

3. If a connection is not present in any neuron, it will not be considered for the resulting

neuron.

1.4. Time series

As stated in previous sections, a time series could be defined as temporal data which

is collected chronologically, or simplifying, a function that varies across time. Time series

data mining (TSDM) consists of several tasks, such as indexing of contents [23], anomaly

detection [90], classification [91], analysis and preprocessing [29], segmentation [42],

clustering [48], and prediction [89], among others.

In this work, we focus on time series analysis and preprocessing, which is used as

a preceding step for multiple tasks, on time series segmentation (where clustering algo-

rithms are also used) and, finally, on the time series prediction. The following subsection

summarises the state-of-the-art of the main TSDM tasks considered in this Thesis.

1.4.1. Traditional prediction models

In general, given a time series Y = {yn}Nn=1, the prediction consists in the estimation

of the value yN+l. Traditional prediction models depend of the concept of stationarity. A

time series Y is stationary if the distribution of {y1, y2, . . . , yk} is the same as the distri-

bution of {y1+h, y2+h, . . . , yk+h}, that is, there are no systematic changes in the mean and

variance. Furthermore, a time series is called weakly stationary if it satisfies two condi-

tions: E[yn] = µ and Corr(yn, yn+h) = σ(h). A white noise time series (U = {un}Nn=1),

which is a set of identically distributed and independent random variables with common

zero mean and constant variance, σ2, is a simple example of stationary time series.

From these definitions, we present the following time series models: moving average

(MA) model, autoregressive (AR) model, mixed autoregressive moving average (ARMA)

model and autoregressive integrated moving average (ARIMA) model.
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Moving Average models

Given a U white noise time series with mean zero and σ2 variance, Y is an MA(q)

(MA process of order q), if:

yn = µ+ α0un + α1un−1 + α2un−2 + · · ·+ αqun−q, (1.16)

where µ is the mean of the time series, α = (α0, α1, . . . , αq) are the model parameters,

and the u’s are scaled in order to have α0 = 1.

It is shown that E[yn] = µ, and the autocorrelation function does not depend on the

time n, so the MA process is weakly stationary. Also, if U is a white noise, the process will

be stationary. MA(∞) is a special case:

yn = µ+ α0un + α1un−1 + α2un−2 + . . . (1.17)

In order to simplify the formulation of these processes, the backshift operator (B),

which is defined by Bkyn = yn−k, provides another way to represent MA(q) models. In

this way, Equations 1.16 and 1.17 can be reformulated as:

yn = µ+ α(B)un, (1.18)

yn = µ+ θ(B)un, (1.19)

respectively. α(B) = I + α1B + · · ·+ αqB
q and θ(B) = I + θ1B + θ2B

2 + . . . .

Autoregressive models

Given a U white noise time series with zero mean and σ2 variance, Y is an AR(p)

(AR process of order p), if:

yn = δ + β1yn−1 + β2yn−2 + · · ·+ βpyn−p + un, (1.20)

where δ is a constant, and β = (β0, β1, . . . , βp) are the model parameters. Using the backs-

hift operator, this expression can be reformulated as:

β(B)yn = δ + un, (1.21)

where β(B) = I − β1B − · · · − βpBp.
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Autoregressive Moving Average models

When a time series Y is formed by a combination of an AR(p) term and an MA(q)

term, it is called ARMA process of order (p, q), and it is given by:

yn = δ+ β1yn−1 + β2yn−2 + · · ·+ βpyn−p + un +α1un−1 +α2un−2 + · · ·+αqun−q, (1.22)

which can be easily rewritten using the backshift operator B as:

β(B)yn = δ + α(B)un. (1.23)

Autoregressive Integrated Moving Average models

Despite the big amount of time series that can be modelled with ARMA processes,

there are a lot of non-stationary time series. This kind of time series is usually transformed

into stationary time series by differencing the values. Taking into account the d-th diffe-

rence, denoted by ∇dyn = yn − yn−d, a Y time series is modelled with an ARIMA(p, d, q)

model if:

∇dyn = δ+β1yn−1+β2yn−2+ · · ·+βpyn−p+un+α1un−1+α2un−2+ · · ·+αqun−q, (1.24)

which can be rewritten in the same way that Equation 1.23:

β(B)∇dyn = δ + α(B)un. (1.25)

Estimation and forecasting for ARMA models

Because all the models previously defined can be represented as an ARMA model

(AR and MA models are incomplete ARMA models, and ARIMA models can be transfor-

med into an ARMA model using differentiation), it is enough to describe the parameter

estimation and the forecasting processes for ARMA models.

From the notation of the ARMA model (see Equation 1.22), there are p + q + 1

parameters to be estimated. The most common method to estimate these parameters is

the maximum likelihood estimation (MLE), which is based on the likelihood function L. It
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can be defined by:

L(β,α, δ, σ2|Y ) = f(y1, y2, . . . , yN ;β,α, δ, σ2) (1.26)

= f(u1, u2, . . . , uN ;β,α, δ, σ2) (1.27)

= 2π−
N
2 σ−N exp

{
− 1

2σ2

N∑
n=1

u2n(β,α, δ, σ2)

}
. (1.28)

From it, we can derive the log-likelihood function:

Ln(L)(β,α, δ, σ2) = −
(
N

2
ln(2π) +

N

2
ln(σ2) +

1

2σ2

N∑
n=1

u2n(β,α, δ, σ2)

)
, (1.29)

whose maximisation is performed by iterative numerical procedures.

Once all the parameters are obtained for a set ofN observations of Y , the forecasting

can be immediately performed. To predict ŷN (l) = yN+l which is a conditional expectation

E(yN+l|yN , yN−1, . . . , yN−p), we have to consider that ŷN (l) = yN+l and ûn(l) = un+l if

l ≤ 0; and ûn(l) = 0 if l > 0.

Taking into account these considerations the prediction could be made using the

difference equation:

ŷN (l) = (1 + β1)ŷN (l − 1)− β2ŷN (l − 2) + ûN (l) + α1ûN (l − 1) + α2ûN (l − 2), (1.30)

where the computation of un is based on un = yn − ŷn−1(1) (given y0(1) = µ).

1.4.2. Segmentation

The main contributions of this Thesis are in the field of time series segmentation.

Time series segmentation consists in dividing the time series into a set of consecutive

segments, in order to satisfy some objectives. Formally, given a time series Y = {yn}Nn=1,

the procedure is to divide the values of yn into m consecutive segments. For that, the time

indexes, which are represented by n = 1, . . . , N are separated into subsequences, that

is, s1 = {y1, . . . , yt1}, s2 = {yt1 , . . . , yt2}, . . . , sm = {ytm−1 , . . . , yN}, where the cut points

(denoted by t1 < t2 < . . . < tm−1) are arranged in ascending order. Normally, each cut

point belongs to the previous and the next segment, which allows analysing consistently

the transition from one segment to the next. The Figure 1.4.1 graphically represents a

example of segmentation.

There exist two main objectives which time series segmentation tries to satisfy. On

the one hand, this procedure is applied to discover similarities between segments. For that,

the methodology tries to group the segments into k clusters. Each segment will be associa-
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Figure 1.4.1: Example of time series segmentation with a time series of length N = 35 and 6 cut
points (t1 = 4, t2 = 11, t3 = 18, t4 = 22, t5 = 28, t6 = 32), represented by dashed lines.
The resulting segments are: s1 = {y1, y2, y3, y4}, s2 = {y4, y5, y6, y7, y8, y9, y10, y11}, . . . , s7 =
{y32, y33, y34, y35}.

ted to a class label, with k possible values, {C1, . . . , Ck}. Initially, in [2], authors affirmed

that all points of a time series which belongs to the same cluster come from contiguous

time instants. Then, methods to group segments instead simply points are proposed by

many authors. In this way, Tseng et al. [86] created an algorithm where the segmentation

is performed regarding the similarities between segments in a wavelet space. Segments

of different length are compared and grouped by using a wavelet representation. Also, a

meaningful clustering of subsequences from time series was tackled by using two efficient

methods in [70]. All these methods are based on the idea of clustering the segments, so the

use of clustering methods is required. In the last years, several algorithms have been pro-

posed for time series clustering [3], with the aim of obtaining groups of time series with

similar features. The most homogeneous clusters should be found while being as different

as possible from the other clusters. In other words, the clustering process should look for

the maximisation of the intercluster variance and the minimisation of the intracluster va-

riance [48]. In fact, time series clustering is a very important task within TSDM, although,

in this work, we only consider clustering for segmentation of a single time series.

On the other hand, time series segmentation is also applied with the objective of

simplifying the time series, that is, replacing segments by simple model descriptions. This

group of algorithms aims to reduce the number of points of the time series with minimum

information loss, with the goal of alleviating the difficulty of processing and memory re-

quirements. In this context, the authors in [63, 64] proposed the replacement of some of
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the segments located by suitable approximations using bayesian approaches to financial

time series data. Other well-known approaches follow the piecewise linear approximation

(PLA), where linear regressions or interpolations are used for modelling each segment.

The main contributions in this context have been made by Keogh [42]. The Top-Down

procedure starts with one segment and recursively divides this segment into subsequen-

ces, based on the approximation error. On the contrary case, Bottom-Up starts considering

each point as a segment and iteratively merges the two segments resulting in the mini-

mum error of approximation. Sliding Window algorithm considers a fixed-length window,

which is moved across the time series, and, when a new point is included in the segment

and increases the cost over a threshold, the algorithm considers it as a cut point. The last

algorithm, called SWAB, is a combination of the latter two, where a Bottom-up is run insi-

de each Sliding Window. More recently, Fu [25] published a review where segmentation is

presented as an optimisation problem, suitable to be solved by different techniques, such

as EAs. In this context, new techniques related to the approximation of time series were

proposed in [92], where authors developed a novel approach based on segmenting time

series with connected lines under a predefined maximum error bound.

It is important to mention that both objectives are conflicting, that is, segmentations

with low high approximation quality are usually related to a high number of segments,

which are more difficult to be grouped. In this Thesis, we will also approach this multiob-

jective problem.

1.5. Extreme value theory

The last contributions in this Thesis are related to the determination of the distribu-

tion of a given time series, to use it for other posterior tasks, such as prediction or clas-

sification. This is motivated by a specific problem treated in this work, the determination

of the distribution of values in Wave height time series (see section 1.6.3). This distribu-

tion is related to the EVT, being interesting to introduce this theory. EVT is associated to

the maximum sample Mn = max(X1, . . . , Xn), where (X1, . . . , Xn) is a set of independent

random variables with common distribution function F . In this way, Pr(Mn < x) = Fn(x)

is the distribution of the maximum observations. The assumption of independence when

X represent the wave height over a threshold is a hypothesis very acceptable because, for

oceanographic data, a peak-over-threshold (POT) scheme is commonly used. POT selects

extreme wave height events that are approximately independent [39]. Furthermore, Mac-

kay and Johanning [52] stated that “The maximum wave heights in successive sea states

can be considered independent, in the sense that the maximum height is dependent only

on the sea state parameters and not on the maximum height in adjacent sea states”. This

Mn variable is usually described with one of the three following distributions: Gumbel,
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Frechet, or Weibull.

Annual maximum approach (AM) is a methodology within the EVT, where X re-

presents the wave height collected in regular yearly periods, and Mn is formed by the

maximum values per year. The statistical behaviour of AM can be described by the distribu-

tion of the maximum wave height regarding generalised extreme value (GEV) distribution

[51]:

G(x) =

exp

{
−
[
1 + ξ

(x−µ
σ

)] 1
ξ

}
, ξ 6= 0,

exp
{
− exp

(
−
(x−µ

σ

))}
, ξ = 0,

(1.31)

where 0 < x < 1+ξ
(x−µ

σ

)
,−∞ < µ <∞, σ > 0 and−∞ < ξ <∞. From these equations,

it is easy to see that the model has three parameters: location (µ), scale (σ), and shape

(ξ).

The estimation of the return values, corresponding to the return period Tp, is per-

formed by inverting Eq. 1.31:

zp =

{
µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
, ξ 6= 0,

µ− σ log {−log(1− p)} , ξ = 0,
(1.32)

where G(zp) = 1− p. Then, zp will be exceeded once per 1/p years, which corresponds to

Tp.

POT is another method contained in the EVT, where, instead of the maximum values

per year, the statistical description is made with the values over a predefined threshold

[15, 24]. Basic POT method has become a standard approach [57, 24, 9], which have

been improved by several authors in recent years [68, 39].

The POT method considers that, if the AM approach uses a GEV distribution (Eq.

1.31), the peaks over a high threshold should result in the generalised Pareto distribution

(GPD). The GPD fitted to the tail of the distribution gives the conditional non-exceedance

probability P (Hmax ≤ x|Hmax > u), where u is the threshold level. The conditional distri-

bution function can be calculated as:

P (X ≤ x|X > u) =

{
1−

(
1 + ξ∗

(
x−u
σ∗

)) 1
ξ∗ , ξ∗ 6= 0,

1− exp
(
−
(
x−u
σ∗

))
, ξ∗ = 0.

(1.33)

There is consistency between the GEV and GPD models, meaning that the parame-

ters can be related as ξ∗ = ε and σ∗ = σ + ξ(u− µ). If ξ ≥ 0 the distribution is referred to

as long-tailed, and the distribution is referred to as short-tailed on the contrary case.

The use of the GPD for modelling the tail of the distribution is also justified by asym-
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ptotic arguments in [13]. In this paper, the author confirms that it is usually more conve-

nient to interpret extreme value models in terms of return levels, rather than individual

parameters. In order to obtain these return levels, the exceedance rates of thresholds have

to be determined as P (X > u). In this way, using Eq. 1.33 (P (X > x|X > u) = P (X >

x)/P (X > u)) and considering that zN is exceeded on average every N observations, we

have:

P (X > u)
[
1 + ξ∗

(
zN−u
σ∗

)]− 1
ξ∗ = 1

N . (1.34)

Then, the N -year return level zN is obtained as:

zN = u+ σ∗

ξ∗

[
(N ∗ P (X > u))ξ

∗ − 1
]
. (1.35)

There are several methods for the estimation of the GEV and GPD parameters. In

[13], the author describes the MLE methodology which was then used in [68] for the

estimation of the parameters. However, it has an important drawback for two parameter

distributions (for instance Weibull or Gamma): these distributions are very sensitive to

the distance between the high threshold (u2) and the first peak [58]. For this reason, MLE

could be used with two-parameter distribution when u2 reaches a peak. As this peak is

excluded, the first value of the exceedance is as far from u2 as possible. A solution would

be to use the three-parameter Weibull and Gamma distributions. However, MLE estima-

tion of such distributions is complicated, and the algorithms usually fit two-parameter

distributions inside a discrete range of location parameters [67].

1.6. Applications in real-world problems

Several real-world problems are considered in this Thesis to validate the methodo-

logies proposed and solve some significant difficulties which have been found for these

applications. Those which have more importance are the detection of TPs in paleoclimate

time series, the analysis of stock indexes in financial problems, the detection, prediction

and recovery of missing values in oceanographic data and, finally, the prediction of fog in

the airport of Valladolid (Spain).

1.6.1. Tipping points

Palaeoclimatology studies the climate characteristics of the earth during its history,

and it is a part of Palaeogeography science. Specifically, important climate variations and

their causes are studied, at the same time that this science tries to give a description as

accurate as possible of the characteristics of the climate for a specific moment in the his-
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tory of the earth. The geological scale variation of the factors which determine the current

climate, such as the energy of solar radiation, the astronomical and cosmic situations, the

distribution of continents and oceans and the composition and dynamics of the atmosphe-

re, constitute the most used factors in the deduction and explanation of paleoclimates.

Recently, some researches about dynamical systems, i.e. climate systems, affirm that

they present critical transition points, called TPs. More formally, a climate TP consists of a

small change which produces a strongly nonlinear response in the internal dynamics of the

climate system, which changes its future state. In this way, the great climate changes in the

history of the earth are characterised by turning points in the time series that represents

the temperature (or one of its proxies, such as the concentration of the oxygen isotope

in glaciers). These inflexion points cause the time series to pass from one stable state to

another. An example of a climate time series with 18 TPs is shown in Figure 1.6.1, referred

to as the Greenland ice sheet project two (GISP2) δ18O ice core data [5].

Figure 1.6.1: GISP2 time series.

The study of the causes of a TP and the characterisation of what happens before

them is one of the most attractive areas in Paleoclimatology. An active scientific community

is working on finding early warning signals of TP because climate TPs can affect millions

of lives. Lenton [46] proposed a differentiation of many types of TPs and presented some

indicators that can help to detect them, such as the increase of autocorrelation of the

series values. Also, Dakos et al. [14] presented more particular techniques regarding data

processing and indicators. They studied a set of methods using simulated data, concluding

that there does not exist a unique best indicator for detecting a transition, and all the

methods require a specific data-treatment.

Up to our knowledge, all previous works tackle the TP detection with statistical

methods trying to select (by trial and error) the method more suitable to detect those

transitions. They require an intensive data preprocessing that include, for instance, the use

of Gaussian filters or rolling windows that introduces extra parameters (such as the width
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of the Gaussian function or size of the window) which need to be optimised [46, 14]. The

main limitation behind these methods is that different TPs and different statistical descrip-

tors require different and specific treatments. For these reasons, in this Thesis, we solve

this problem using new time series segmentation algorithms with a higher abstraction

level.

1.6.2. Stock indexes

Regarding financial time series, the segmentation of stock market time series can be

used for trend analysis. Recent studies have determined the movement of a stock based

on a selection of some points of a given time series [69]. Gonzalez et al. [28] affirmed

that the relevance of identifying phases in the stock market evolution consists in the fact

that few economic phenomena attract more attention than the bullish and bearish mar-

kets (cycles) do. Bull markets are associated with persistently rising share prices, strong

investor interest and expectation, and enhanced financial well-being.

Concerning the theoretical bases of the analysis of stock prices by experts found

in the economic literature, there are three major theories for answering the questions of

what and when to buy or sell. The first school believes that no investor can achieve above-

average trading advantages based on historical and present information (the random walk

hypothesis and the efficient market hypothesis). The second view is fundamental analysis

in which analysts have undertaken in-depth studies into the various macroeconomic fac-

tors and have looked into the financial conditions and results of the industry concerned to

discover the extent of correlation that might exist with the changes in the stock prices. The

technical analysis presents the third view on market price prediction. They claim that the-

re are recurring patterns in the market behaviour that can be identified and predicted. In

such a process, they use some statistical parameters called technical indicators and char-

ting patterns from historical data. Technical analysis is the science of recording, usually

in graphic form, the actual history of trading (price changes, the volume of transactions,

etc.) in a specific stock and then deducing from that pictured history the probable future

trend [20]. Consequently, technical indicators are numerical values calculated by past pri-

ces, volumes, and other market statistics and are used to forecast future price movements.

Recently, a fourth approach, known as cyclical, has made rapid progress and promises to

contribute a great deal to our understanding of economic trends.

In this Thesis, we move between the cyclical and the technical analysis approaches,

as our analysis is based on charts and figures (chartist analysis and financial patterns), but

we search for characteristic phases or cycles in a long time series and identify the main

financial patterns in each phase to analyse the behaviour of the European stock markets

(see Figure 1.6.2 which shows the IBEX35 time series). Trend analysis studies also include
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the well-known Elliott wave principle, Dow theory and related vocabulary, as primary

or secondary trends. We investigate the characteristics of the resultant segments from a

segmentation algorithm after a clustering phase following the analysis of the behaviour of

bearish, bullish and sluggish markets [66], and cycles, booms, and crashes [47].
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Figure 1.6.2: IBEX35 time series.

1.6.3. Wave height time series

Extreme ocean waves can cause significant risks in offshore structures. The develop-

ment of these structures for oil extraction requires knowledge about the waves and their

changes. Also, wave height time series are present in many real-world applications, such

as the determination of energy power or for civil protection.

The oceanographic data that we use here is the significant wave height (SWH), and

there are different statistical and mathematical methods to calculate it. We use the generic

term Hs or simply SWH defined as the average trough to crest height in meters of the

highest one-third of all the wave heights during a 20-minute sampling period [37]. This

definition is given by the National Data Buoy Center (NDBC) and the National Oceanic

and Atmospheric Administration (NOAA), which uses ocean buoys with special sensors to

collect data. Figure 1.6.3 represents a time series of SWH collected in the Gulf of Alaska

with identification number 46001.

One of the problems that has been tackled in this Thesis is the reconstruction of this

kind of data. It is usually associated to a number of unexpected events, such as storms,

which can make buoys break down [71], resulting in data gaps and, therefore, discon-

tinuities in the buoys data time series, lasting from the causing event until the buoy is

repaired/maintained. Some data analysis methods may allow data with gaps [50], but

most statistical methods require all data recorded [85]. Due to this, the reconstruction of

missing wave values has become an interesting topic in marine research.
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Figure 1.6.3: SWH time series collected from buoy 46001 in the Gulf of Alaska.

In the literature, there are different techniques to tackle this reconstruction. Firstly,

authors used simple methods by generating random data [84] or used Monte Carlo met-

hods to recover data in monthly mean sea level time series [82]. Other approaches are

related with the use of ANN models, which is the case of the works of Haykin [30] and

more recently, by including ANN in combination with the rough set theory [81]. Evolutio-

nary computation is also applied in this context in the works of [61] and [4].

The remaining problem associated with this application is the detection and predic-

tion of very large SWHs. For that, we consider extreme SWH as those with a substantial

higher height in relation to other waves close in time. The goal of the detection is to deter-

mine intervals or segments in the time series which contains these waves and differentiate

them from the rest. This step is completed with the prediction phase, that uses the seg-

ments to estimate a predictive model able to determine if a very large SWH event will be

produced (or not) after a given subsequence of a time series. This methodology differs

from the state-of-the-art methodologies which consider the prediction using the statisti-

cal distribution obtained with the EVT defined in Section 1.5. For example, Davison [15]

introduced the POT methods that have been used then by other authors [9, 88].

Related with the last point, we propose a new way to determine the threshold in the

POT approaches, in SWH time series.

1.6.4. Fog prediction

The last real-world problem that has been considered in this Thesis is the prediction

of fog presence for the airport of Valladolid. Aviation is one of the transport systems most

affected by weather conditions. Considering airport operations, many factors reduce the

visibility, and the most frequent one is fog formation. Fog is a collection of crystals sus-

pended in the air, produced by low-level cloud over the ground. Foggy conditions have a
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significant impact on the operation of taxiing, take-off and landing, and they have pro-

duced several accidents. Nowadays, the airport operation decisions are made using data

collected from airports, but the runway visual range (RVR) is the most significant one. The

RVR is a meteorological variable defined as the range over which the pilot of an aircraft on

the central line of a runway can see the runway surface markings or the lights delineating

the runway or identifying its centre line [1]. If RVR is low enough, the airport activates

the low visibility procedures. In this way, it is interesting to predict this variable.

For this reason, to ensure safety conditions, all the employers need the most precise

and reliable meteorological information to tackle the problems that involve low visibility

conditions. So the continuous improvement of the prediction is a challenging problem.

The most common approaches are associated with the use of numerical weather predic-

tion (NWP) models, which have been considered by several authors. For instance, recent

works evaluate the performance of high-resolution NWP models to forecast fog events

[73]. Also, other research lines rely on the probabilistic forecasting given the uncertainty

in weather [93]. The intrinsic limitations of NWP models paved the way for a new li-

ne of work focused on the post-processing of outputs from dynamical models [32], the

application of the model output statistics [26] being, perhaps, the most widely used post-

processing technique.

The main problem of these accurate NWP models is their computational cost, and

that not all the meteorological service providers have the resources needed to access NWP

models. Thus, other models can reach the same accuracy with economic solutions. In

this sense, statistical approaches have been applied in fog formation prediction. Linear

regression techniques have been used in [45]. Then, ANN models have acquired more

importance, what can be seen in the works of Fabian et al. [22], which used an MLP, and

Marzban et al. [56], which forecasted visibility at 39 airports with an MLP trained with

information from different sources. Also, Dutta and Chaudhuri [19] obtained good results

by using an MLP with back-propagation learning technique to forecast 3-hourly visibility

during winter time at Kolkata airport (India).

Finally, some researchers have used new artificial intelligence techniques. For exam-

ple, Miao et al. [60] developed a fuzzy logic fog forecasting model for the cold season at

Perth Airport, and Boneh et al. [8] proposed a Bayesian decision network based on data

from the previous 34 years at Melbourne airport.

In this Thesis, we tackled this problem with a multiobjective evolutionary algorithm

(MOEA) for training ANNs to improve the prediction of fog events without losing accuracy

in the prediction of non-fog events.





When you do what you fear most, then you can do
anything.

Stephen Richards

2
Motivation and objectives

This chapter introduces the motivation and objectives of this work, and the main

publications derived from the Thesis.

2.1. Motivation and challenges

From the previous chapter, four main concerns can be taken into account for TSDM.

Firstly, the need to develop new preprocessing and analysis techniques to be used in or-

der to alleviate the subsequent tasks. Secondly, the improvement of the state-of-the-art

methods for time series segmentation when optimising both main objectives (clustering

quality and approximation quality). Thirdly, the creation of time series prediction models

which take into account not only the values of the time series but also higher levels of

representation, such as the segments obtained in the segmentation. And finally, the use of

statistical distributions to guide different time series methodologies.

Considering the ahead comments, we can synthesise the following open challenges:

• Preprocessing techniques: to improve the performance of subsequent tasks, we should

generate methods for extracting the core information from time series. Given that

time series are extracted from different sources of continuous data, they can lead to

incorrect values or incomplete information. For example, when we focus on SWH

31
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time series, the information is collected from buoys which are situated in different

parts of the sea and oceans. As stated before, these buoys can be broken resulting

in gaps across the time series. Consequently, we consider that an adequate method

is needed to recover this kind of information. State-of-the-art approaches include

ANNs models, but, up to author knowledge, there is no work which includes an EA

to train ANNs of PUs. The resulting PUNN model could improve the estimation of

the reconstructed values.

• Time series segmentation: as commented above, the main contributions of this The-

sis will be made in the field of time series segmentation. Time series segmentation

aims to find a set of ordered points with the objective of simplifying the time se-

ries or discovering useful patterns. State-of-the-art algorithms are mainly focused

on the first objective using standard techniques. We consider that the application of

different ML algorithms in combination with different MHs could improve the per-

formance of the previous ones. In this way, a challenge is the improvement in terms

of accuracy without resulting in too high computational cost. Regarding the second

objective, the discovery of useful patterns, few works can be found in the literature,

where the paper of Tseng et al. [86] is one of the most important. In this work, the

authors proposed a GA where the representation of the chromosome is based on a

wavelet transformation. We think that the representation could be improved using

other information of the time series and, also, that the application and development

of new MHs will lead to better patterns. Finally, a priori, both objectives (the opti-

misation of the clustering quality of the segments and the approximation of them)

are in conflict, that is, the optimisation of one lead to a decrease of the quality of the

other. This problem has not been previously solved in the literature, and we consider

that the optimisation of both objectives in a multiobjective algorithm could result in

an interesting challenge.

• Prediction: the prediction of future values of a time series implies the study of past

values and, usually, in the literature, authors aim to predict the next value. We con-

sider that transforming the prediction model into a classification model could be

attractive, to determine not only the next value but also the next event in the time

series. For that, a higher level of representation is needed. For example, the set of

segments resulting in the segmentation procedure can be taken to construct a da-

tabase (which maintains the temporal dimension) for predicting the next segment

given a set of subsequences. In this way, the application and adaptation of different

ML algorithms for classification in combination with MHs for the optimisation of the

parameters will result in a better performance of traditional algorithms.

• Distribution-based learning: the POT approaches in the EVT need a threshold that is
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usually fixed by trial and error procedures. Then, the distribution of the points over

this threshold is fitted. However, in time series which contains extreme values (those

which differs from a large set of points close to the average value), the analysis could

be made taking into account the raw and complete time series. For that, we suppose

that the determination of the statistical distribution of the whole time series would

be able to determine the threshold used for this theoretical distribution. Also, using

the statistical distribution of the whole time series, we could discretise its value.

Then, this discretisation will be used to perform ordinal classification of the resulting

segments, using this theoretical distribution instead of the histogram of time series,

because the statistical distribution will be more stable than the observed values.

• Last, it should be highlighted that we consider necessary not the only the proposal

of new methods but also the application of the developed models and algorithms to

real-world problems. As discussed in the previous chapter, the problems considered

include paleoclimate data, financial problems, SWH time series and fog formation.

2.2. Objectives

The present Thesis addresses the discussed open challenges in the previous section.

All of them result in the following formal objectives:

1. To study and develop preprocessing and analysis techniques for time series with the

aim of alleviating the difficulty of posterior tasks.

2. To develop and improve the state-of-the-art ANN models for missing values in SWH

time series using EANNs based on PUs.

3. To study, adapt and create bioinspired algorithms for time series segmentation with

the goal of discovering useful patterns in time series.

4. To adapt and develop bioinspired algorithms for time series segmentation with the

aim of improving the accuracy of the solution obtained by the state-of-the-art algo-

rithms.

5. To design a new multiobjective algorithm that takes into account both objectives

during the optimisation, given that they are conflicting objectives, that is, an impro-

vement of one means a deterioration in the quality of the other.

6. To use a high level of representation of subsequences of the time series for predicting

future events: types of segments (using clustering) or intervals of values (using a

standard discretisation).
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7. To theoretically develop a method to determine the statistical distribution of SWH

time series, for fitting the threshold needed for POT approaches.

8. To apply the proposed methods to the following real-world problems:

a) Detection of TPs in paleoclimate data.

b) Analysis of trends and phases in stock market indexes (financial data).

c) Reconstruction of massive missing data values in SWH time series.

d) Detection of largest wave height in oceanographic data.

e) Prediction of segments containing largest wave height in oceanographic data.

f) Predicting fog formation in airports.

g) Fitting statistical distribution for establishing the threshold of the POT method

when applied to oceanographic data.

2.3. Summary of the Thesis

Currently, the amount of data which is produced for any information system is in-

creasing exponentially. This motivates the development of automatic techniques to process

and mine these data correctly. Specifically, in this Thesis, we tackled these problems for

time series data, that is, temporal data which is collected chronologically. This kind of da-

ta can be found in many fields of science, such as palaeoclimatology, hydrology, financial

problems, etc.

TSDM consists of several tasks which try to achieve different objectives, such as,

classification, segmentation, clustering, prediction, analysis, etc. However, in this Thesis,

we focus on time series preprocessing, segmentation and prediction.

Time series preprocessing is a prerequisite for other posterior tasks: for example, the

reconstruction of missing values in incomplete parts of time series can be essential for clus-

tering them. In this Thesis, we tackled the problem of massive missing data reconstruction

in SWH time series from the Gulf of Alaska. It is very common that buoys stop working for

different periods, what it is usually related to malfunctioning or bad weather conditions.

The relation of the time series of each buoy is analysed and exploited to reconstruct the

whole missing time series. In this context, EANNs with PUs are trained, showing that the

resulting models are simple and able to recover these values with high precision.

In the case of time series segmentation, the procedure consists in dividing the time

series into different subsequences to achieve different purposes. This segmentation can be

done trying to find useful patterns in the time series. In this Thesis, we have developed

novel bioinspired algorithms in this context. For instance, for paleoclimate data, an initial
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genetic algorithm was proposed to discover early warning signals of TPs, whose detection

was supported by expert opinions. However, given that the expert had to individually

evaluate every solution given by the algorithm, the evaluation of the results was very

tedious. This led to an improvement in the body of the GA to evaluate the procedure

automatically. For significant wave height time series, the objective was the detection of

groups which contains extreme waves, i.e. those which are relatively large with respect

other waves close in time. The main motivation is to design alert systems. This was done

using an HA, where an LS process was included by using a likelihood-based segmentation,

assuming that the points follow a beta distribution. Finally, the analysis of similarities in

different periods of European stock markets was also tackled with the aim of evaluating

the influence of different markets in Europe.

When segmenting time series with the aim of reducing the number of points, diffe-

rent techniques have been proposed. However, it is an open challenge given the difficulty

to operate with large amounts of data in different applications. In this work, we propose a

novel statistically-driven CRO algorithm (SCRO), which automatically adapts its parame-

ters during the evolution, taking into account the statistical distribution of the population

fitness. This algorithm improves the state-of-the-art with respect to accuracy and robust-

ness. Also, this problem has been tackled using an improvement of the BBPSO algorithm,

which includes a dynamical update of the cognitive and social components in the evo-

lution, combined with mathematical tricks to obtain the fitness of the solutions, which

significantly reduces the computational cost of previously proposed coral reef methods.

Also, the optimisation of both objectives (clustering quality and approximation qua-

lity), which are in conflict, could be an interesting open challenge, which will be tackled

in this Thesis. For that, an MOEA for time series segmentation is developed, improving the

clustering quality of the solutions and their approximation.

The prediction in time series is the estimation of future values by observing and

studying the previous ones. In this context, we solve this task by applying prediction over

high-order representations of the elements of the time series, i.e. the segments obtained by

time series segmentation. This is applied to two challenging problems, i.e. the prediction of

extreme wave height and fog prediction. On the one hand, the number of extreme values

in SWH time series is less with respect to the number of standard values. In this way,

the prediction of these values cannot be done using standard algorithms without taking

into account the imbalanced ratio of the dataset. For that, an algorithm that automatically

finds the set of segments and then applies EANNs is developed, showing the high ability of

the algorithm to detect and predict these special events. On the other hand, fog prediction

is affected by the same problem, that is, the number of fog events is much lower than

that of non-fog events, requiring a special treatment too. A preprocessing of different

data coming from sensors situated in different parts of the Valladolid airport are used for
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making a simple ANN model, which is physically corroborated and discussed.

The last challenge which opens new horizons is the estimation of the statistical

distribution of time series to guide different methodologies. For this, the estimation of

a mixed distribution for SWH time series is then used for fixing the threshold of POT

approaches. Also, the determination of the fittest distribution for the time series is used for

discretising it and making a prediction which treats the problem as ordinal classification.

The work developed in this Thesis is supported by twelve papers in international

journals, seven papers in international conferences, and four papers in national conferen-

ces.

2.4. Publications

The following papers have been published in international journals:

• A. Nikolaou, P. A. Gutiérrez, A. M. Durán-Rosal, I. Dicaire, F. Fernandez-Navarro,

and C. Hervás-Mart́ınez. “Detection of early warning signals in paleoclimate data

using a genetic time series segmentation algorithm”, Climate Dynamics, Vol. 44,

April, 2015, pp. 1919-1933. JCR (2015): 4.708 Position: 8/84 (Q1). DOI: 10.1007/s00382-

014-2405-0

• A. M. Durán-Rosal, C. Hervás-Mart́ınez, A. J. Tallón-Ballesteros, A. C. Mart́ınez-

Estudillo, and S. Salcedo-Sanz. “Massive missing data reconstruction in ocean buoys

with evolutionary product unit neural networks”, Ocean Engineering, Vol. 117, May,

2016, pp. 292 - 301. JCR(2016): 1.894 Position: 2/14 (Q1).

DOI: 10.1016/j.oceaneng.2016.03.053

• A. M. Durán-Rosal, M. Dorado-Moreno, P. A. Gutiérrez, and C. Hervás-Mart́ınez.

“Identification of extreme wave heights with an evolutionary algorithm in combina-

tion with a likelihood-based segmentation”, Progress in Artificial Intelligence, Vol. 6,

March, 2017, pp. 59-66. DOI: 10.1007/s13748-016-0105-1

• A. M. Durán-Rosal, J. C. Fernández, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “De-

tection and prediction of segments containing extreme significant wave heights”,

Ocean Engineering, Vol. 142, September, 2017, pp. 268-279. JCR(2017): 2.214 Po-

sition: 2/14 (Q1). DOI: 10.1016/j.oceaneng.2017.07.009

• A. M. Durán-Rosal, M. de la Paz Maŕın, P. A. Gutiérrez, and C. Hervás-Mart́ınez.

“Identifying market behaviours using European Stock Index time series by a hy-

brid segmentation algorithm”, Neural Processing Letters, Vol. 46, December, 2017,
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9592-8
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series segmentation”, Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.

JCR(2017): 4.305 Position: 12/148 (Q1). DOI: 10.1016/j.ins.2018.02.041

• A. M. Durán-Rosal, J. C. Fernandez, C. Casanova-Mateo, J. Sanz-Justo, S. Salcedo-
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tionary Neural Networks”, Applied Soft Computing, Vol. 70, September, 2018, pp.

347-358. JCR(2017): 3.907 Position: 17/132 (Q1). DOI: 10.1016/j.asoc.2018.05.035

• M. Pérez-Ortiz, A. M. Durán-Rosal, P. A. Gutiérrez, J. Sánchez-Monedero, A. Niko-

laou, F. Fernández-Navarro, and C. Hervás-Mart́ınez. “On the use of evolutionary

time series analysis for segmenting paleoclimate data”, Neurocomputing, Vol. 326-

327, January, 2019, pp. 3-14. JCR(2017): 3.241 Position: 27/132 (Q1).

DOI: 10.1016/j.neucom.2016.11.101

• A. M. Durán-Rosal, P. A. Gutiérrez, Á. Carmona-Poyato, and C. Hervás-Mart́ınez.

“A hybrid dynamic exploitation barebones particle swarm optimisation algorithm

for time series segmentation”, Neurocomputing, 2018. JCR(2017): 3.241 Position:

27/132 (Q1). Accepted.

• A. M. Durán-Rosal, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-Mart́ınez. “Dyna-

mical Memetization in Coral Reef Optimization Algorithms for Optimal Time Series

Approximation”, Progress in Artificial Intelligence. Accepted. DOI: 10.1007/s13748-

019-00176-0

• A. M. Durán-Rosal, M. Carbonero, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “On the
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“Time Series Representation by a Novel Hybrid Segmentation Algorithm”. 11th In-

ternational Conference on Hybrid Artificial Intelligent Systems (HAIS2016). 2016.

pp. 163-173. DOI: 10.1007/978-3-319-32034-2 14

• A. M. Durán-Rosal, J. C. Fernández, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “Hy-

bridization of neural network models for the prediction of extreme significant wa-

ve height segments”. 2016 IEEE Symposium Series on Computational Intelligence

(IEEE SSCI2016). 2016. pp. 1-8. DOI: 10.1109/SSCI.2016.7850144

• A. M. Durán-Rosal, D. Guijo-Rubio, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-

Mart́ınez. “A coral reef optimization algorithm for wave height time series segmen-

tation problems”. International Work-Conference on Artificial and Natural Neural

Networks (IWANN2017). 2017. pp. 673-684. DOI: 10.1007/978-3-319-59153-7 58
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• A. Nikolaou, P. A. Gutiérrez, A. M. Durán-Rosal, F. Fernandez-Navarro, C. Hervás-
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“Data! Data! Data!... I can’t make bricks without clay.”

Arthur Conan Doyle

3
Preprocessing: missing data reconstruction

This chapter presents a new method to reconstruct massive missing data in SWH

time series, as preprocessing for following tasks such as segmentation or prediction. As

we stated in previous sections, this kind of time series are collected from buoys situated

in different parts of the sea and oceans, so when a buoy is broken, the information that

cannot be saved needs to be recovered.

Main publication associated to this chapter:

• A. M. Durán-Rosal, C. Hervás-Mart́ınez, A. J. Tallón-Ballesteros, A. C. Mart́ınez-

Estudillo, and S. Salcedo-Sanz. “Massive missing data reconstruction in ocean buoys

with evolutionary product unit neural networks”, Ocean Engineering, Vol. 117, May,

2016, pp. 292 - 301. JCR(2016): 1.894 Position: 2/14 (Q1).

DOI: 10.1016/j.oceaneng.2016.03.053

3.1. Massive missing data reconstruction in ocean buoys with

evolutionary product unit neural networks

The following paper presents the problem of massive missing data reconstruction in

ocean buoys. These buoys are collecting data in very variable conditions, such as major

storms, low temperatures, etc. Sometimes, it is difficult to obtain complete time series of

41



42 3. Preprocessing: missing data reconstruction

the measured variables due to malfunctioning. When considering a large number of buoys,

it can be very hard to find a period of completeness (without missing data on it) in the

data to form a proper training or test set. The reconstruction models in the state-of-the-art

are complex to be interpreted in terms of the number of predictive variables.

In this paper, we tackle the problem of massive missing data reconstruction in ocean

buoys, with an evolutionary PUNN (EPUNN). The method can reconstruct a massive

amount of data. To do this, the method consists of two stages.

The first stage is associated with the reconstruction by the application of well-known

linear models, i.e. transfer function and neighbour correlation. Firstly, the transfer function

consists of analysing the correlation and estimate a linear function between an incomple-

te time series of wave height with other complete ones (without gaps). In this way, for

each incomplete time series, the reconstruction is made using a complete one, when the

correlation between both is higher than a given threshold. Secondly, the neighbour met-

hod is able to estimate missing values of the time series, adding the information of the

correlation coefficient between this series and a complete one. This method is faster than

the transfer function, given that it only needs one iteration.

Once the time series are reconstructed by linear models, the best series for each

model is selected for the next stage. This second stage consists of an EPUNN algorithm

that uses the outputs of the linear models as inputs for the net. For each time series, the

reconstruction is made using the two more correlated inputs. The complete methodology

is applied to six buoys located at the Gulf of Alaska (which forms a geographical grid)

with identification numbers 46001, 46061, 46076, 46078, 46082 and 46085, with data

from 2008 to 2013.

Some conclusions are extracted from the results obtained in this paper. Firstly, the

EPUNN models get better results than sigmoid ones, and, also, they can be represented

as linear models when a natural logarithm is applied to the input variables, resulting in

very interpretable models. Secondly, this approach obtains lower approximation errors in

coastal buoys, which is evident given that the range of values of offshore buoys is much

higher. Finally, we notice the difficulty of the estimation of extreme values which is the

main drawback of the proposed method. Consequently, we can conclude that the proposed

approach is valid for a large number of applications for which an accurate estimation of

extreme wave height is not an issue.



Massive missing data reconstruction in ocean buoys with evolutionary
product unit neural networks

A.M. Durán-Rosal a,n, C. Hervás-Martínez a, A.J. Tallón-Ballesteros b,
A.C. Martínez-Estudillo c, S. Salcedo-Sanz d

a Department of Computer Science and Numerical Analysis, Universidad de Córdoba, Rabanales Campus, 14071 Córdoba, Spain
b Department of Languages and Computer Systems, Universidad de Sevilla, 41012 Seville, Spain
c Department of Management and Quantitative Methods, Universidad Loyola Andalucía, 41014 Seville, Spain
d Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 15 May 2015
Received in revised form
23 February 2016
Accepted 22 March 2016

Keywords:
Significant wave height
Missing values reconstruction
Product unit neural networks
Evolutionary algorithm

a b s t r a c t

In this paper we tackle the problem of massive missing data reconstruction in ocean buoys, with an
evolutionary product unit neural network (EPUNN). When considering a large number of buoys to re-
construct missing data, it is sometimes difficult to find a common period of completeness (without
missing data on it) in the data to form a proper training and test set. In this paper we solve this issue by
using partial reconstruction, which are then used as inputs of the EPUNN, with linear models. Missing
data reconstruction in several phases or steps is then proposed. In this work we also show the potential
of EPUNN to obtain simple, interpretable models in spite of the non-linear characteristic of the neural
network, much simpler than the commonly used sigmoid-based neural systems. In the experimental
section of the paper we show the performance of the proposed approach in a real case of massive
missing data reconstruction in 6 wave-rider buoys at the Gulf of Alaska.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Oceanographic buoys are measuring instruments used, among
other purposes, to characterize wind-generated wave properties.
The availability and accuracy of buoys data is crucial in very dif-
ferent problems and applications such as the design and main-
tenance of marine/coastal structures, wave height forecasting for
safe ship navigation, or the design and operation of wave energy
converters, etc. (López et al., 2013). There are different agencies
such as the National Data Buoy Centre (NDBC) of the USA that
maintain a large network of OBs to collect wave data on a regular
basis (Londhe, 2008). A number of unexpected events can make
buoys break down (such as storms, Rao and Mandal, 2005, navi-
gation accidents, maintenance periods, etc.), causing data gaps,
and therefore discontinuities in the buoys data time series, lasting
from the causing event until the buoy is repaired/maintained.
Some data analysis methods may allow gappy data (Liu and Wis-
berg, 2005), while most statistical methods require data to be gaps
free (Thomson and Emery, 2014). Due to this point, the re-
construction of missing wave values has become a key topic in
oceanic research.

Very different techniques for recovering of lost/missing OB data
have been proposed in the last three decades, with prevalence of
techniques focused on reconstruction of wave height data. The
first approaches were quite naive, such as random sampling of
data points suggested in Thompson (1971), or Monte Carlo
methods applied to fill up gaps at random in a known time series
of monthly mean sea level in Sturges (1983). In more recent works
such as Soares and Cunha (2000) and Agrawal and Deo (2002),
auto-regressive, auto-regressive moving average (ARMA) or auto-
regressive integrated moving average (ARIMA) have been suc-
cessfully applied to reconstruction of wave heights time series.
Other constructive techniques such as cubic splines or fractal
methods have been recently tested in wave height reconstruction
problems (Liu et al., 2014).

In recent years, the number of works applying data machine
learning (ML) techniques has been massive. Among ML techni-
ques, neural networks (NNs) (Haykin, 1998) may have been the
most used prediction methods. In Bhattacharya et al. (2003), NNs
have been used to compute missing wave data in time series,
measured at Europlatform station, in the North Sea. NNs have
been found to be specially reliable to reach accurate estimations of
missing wave data (Balas et al., 2004). In that work, feedforward
multi-layer perceptrons (MLPs) and recurrent neural networks
were trained by the steepest descent with momentum algorithm
and the conjugate gradient algorithm, and their estimations were
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Divide the difficulties you examine in as many parts as
possible for your best solution.

René Descartes

4
Time series segmentation

This chapter presents the main block of this Thesis, which is time series segmenta-

tion research works. The chapter is divided in the different objectives that can be tackled

with this task, which are the discovery of useful patterns when optimising the clustering

quality of the segments, the simplification of the time series by reducing their number of

points and the optimisation of both objectives with a multiobjective algorithm.

4.1. Discovery of useful patterns

Main publications associated to this section:

• A. Nikolaou, P. A. Gutiérrez, A. M. Durán-Rosal, I. Dicaire, F. Fernandez-Navarro,

and C. Hervás-Mart́ınez. “Detection of early warning signals in paleoclimate data

using a genetic time series segmentation algorithm”, Climate Dynamics, Vol. 44,

April, 2015, pp. 1919-1933. JCR (2015): 4.708 Position: 8/84 (Q1). DOI: 10.1007/s00382-

014-2405-0

• A. M. Durán-Rosal, M. Dorado-Moreno, P. A. Gutiérrez, and C. Hervás-Mart́ınez.

“Identification of extreme wave heights with an evolutionary algorithm in combina-

tion with a likelihood-based segmentation”, Progress in Artificial Intelligence, Vol. 6,

March, 2017, pp. 59-66. DOI: 10.1007/s13748-016-0105-1
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• A. M. Durán-Rosal, M. de la Paz Maŕın, P. A. Gutiérrez, and C. Hervás-Mart́ınez.

“Identifying market behaviours using European Stock Index time series by a hy-

brid segmentation algorithm”, Neural Processing Letters, Vol. 46, December, 2017,

pp. 767–790. JCR(2017): 1.787 Position: 63/132 (Q2). DOI: 10.1007/s11063-017-

9592-8

• M. Pérez-Ortiz, A. M. Durán-Rosal, P. A. Gutiérrez, J. Sánchez-Monedero, A. Niko-

laou, F. Fernández-Navarro, and C. Hervás-Mart́ınez. “On the use of evolutionary

time series analysis for segmenting paleoclimate data”, Neurocomputing, Vol. 326-

327, January, 2019, pp. 3-14. JCR(2017): 3.241 Position: 27/132 (Q1).

DOI: 10.1016/j.neucom.2016.11.101

Other publications associated to this section:

• A. M. Durán-Rosal, M. de la Paz Maŕın, P. A. Gutiérrez, and C. Hervás-Mart́ınez.

“Applying a Hybrid Algorithm to the Segmentation of the Spanish Stock Market In-

dex Time Series”. 13th International Work-Conference on Artificial Neural Networks

(IWANN2015). 2015. pp. 69-79. DOI: 10.1007/978-3-319-19222-2 6

• A. M. Durán-Rosal, M. Dorado-Moreno, P. A. Gutiérrez, and C. Hervás-Mart́ınez.

“On the use of the beta distribution for a hybrid time series segmentation algorithm”.

Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016).

2016. pp. 418-427. DOI: 10.1007/978-3-319-44636-3 39

• A. M. Durán-Rosal, D. Guijo-Rubio, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-

Mart́ınez. “A coral reef optimization algorithm for wave height time series segmen-

tation problems”. International Work-Conference on Artificial and Natural Neural

Networks (IWANN2017). 2017. pp. 673-684. DOI: 10.1007/978-3-319-59153-7 58

• A. Nikolaou, P. A. Gutiérrez, A. M. Durán-Rosal, F. Fernandez-Navarro, C. Hervás-

Mart́ınez, and M. Pérez-Ortiz. “Detection of early warning signals in paleoclimate

data using a genetic time series segmentation algorithm”. European Planetary Scien-

ce Congress (EPSC2018). 2018.

URL: https://meetingorganizer.copernicus.org/EPSC2018/EPSC2018-829-1.pdf

As can be seen, four main papers have been published in international journals.

These papers are based on the idea of using GAs with a fitness function obtained by a

clustering technique. In this way, the segmentation is done considering some statistical

characteristics of the segments, such as the variance, the kurtosis, the skewness, the slope

of a linear regression or the autocorrelation coefficient over the points belonging to a

segment. This clustering is performed using a new deterministic k-means algorithm, where
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the clustering results are always the same, that is, for a given segmentation, the clustering

algorithm guarantees that the same fitness value will be obtained. The algorithm was then

improved using a statistical likelihood-based segmentation over the segments obtained in

the best segmentation of the GA. For detection in wave height time series, the hypothesis

was that the points of time series are sampled from a beta distribution, which is specifically

used in the presence of extreme values. In the case of financial time series, the assumption

was made considering a normal distribution.

The conference papers show the initial validation of the algorithms and some expe-

rimental procedures using other alternatives of MHs, such as the CRO algorithm. The four

main publications are now presented in the different subsections of this section.

4.1.1. Detection of early warning signals in paleoclimate data using a gene-
tic time series segmentation algorithm

In this paper, we tackle the problem of detection of early warning signals before TPs

in climate time series. As we stated, in previous chapters (see Section 1.6.1), a TP is a little

change that produces a big consequence, that is, an inflexion point which makes that the

dynamic of time series changes sharply.

For that, we propose a new segmentation algorithm consisting of a GA whose fit-

ness function is provided by a clustering technique, i.e. it is a metric which measures the

clustering quality of the time series segments. The algorithm starts with a random division

of segments, and the evolutionary process modifies these cut points trying to optimise the

clustering quality of them. The clustering is made according to the similarities in their

statistical parameters: variance, skewness, kurtosis, the slope of a linear regression over

the points of the segment, the mean squared error of the approximation of the segment,

and lag-1 autocorrelation coefficient. All segments metrics are scaled to the range [0, 1]

given that the differences from those metrics with larger ranges would disrupt others with

smaller ranges.

The methodology is tested with two paleoclimate datasets: the GISP2 and the NGRIP

(North Greenland ice core project) δ18O time series with a 20-year resolution. A 5-point

average is made to reduce short-term fluctuations. In addition, synthetic datasets obtained

from well-known dynamical systems are also studied. These time series are used to detect

early warning signals of Dansgaard-Oeschger (DO) events, which are considered TPs in

this kind of data.

Results agree that the GA can effectively analyse these DO events and discover si-

milarities and differences in their statistical and dynamical characterisation. Specifically,

warning signals, such as the increase in autocorrelation, variance and mean square error,
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are robustly found in the GISP2 δ18O dataset for DO 0, 1, 2, 4, 7, 8, 11, 12, and the NGRIP

δ18O for DO 0, 1, 4, 8, 10, 11, 12. The increase in mean square error, suggesting nonlinear

behaviour, has been found to correspond with an increase in variance prior to several DO

events for ∼90 % of the algorithm runs for the GISP2 δ18O dataset and for ∼100 % of the

algorithm runs for the NGRIP δ18O dataset. The proposed approach applied to both synt-

hetic data and paleoclimate datasets provides a novel visualisation tool of climate time

series analysis.
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DO 1, 4, 8 and 12) in the form of an order of magnitude 
increase in variance, autocorrelation and mean square dis-
tance from a linear approximation (i.e. the mean square 
error). The increase in mean square error, suggesting non-
linear behaviour, has been found to correspond with an 
increase in variance prior to several DO events for ∼90 % 
of the algorithm runs for the GISP2 δ18O dataset and for  

∼100 % of the algorithm runs for the NGRIP δ18O dataset. 
The proposed approach applied to  well-known dynamical 
systems and paleoclimate datasets provides a novel visuali-
sation tool in the field of climate time series analysis.

Keywords  Warning signals · Time series segmentation · 
Tipping points · Abrupt climate change · Genetic 
algorithms · Clustering

1  Introduction

The statistical tools used to extract knowledge from time series 
analysis have undergone considerable development during the 
past decade (see Livina and Lenton 2007; Livina et al. 2011; 
Lenton et  al. 2012; Scheffer et  al. 2009; Dakos et  al. 2008; 
Held and Kleinen 2004; Cimatoribus et al. 2013). Driven by 
the ultimate aim of understanding past climate variability, the 
above studies focused on statistical analysis of time series that 
demonstrate threshold behaviour as used in Alley et al. (2003). 
Candidate explanations for transitions of a system over thresh-
olds link to dynamical systems analysis, which is used for 
gaining insight into internal variability modes and response to 
external forcing on both simple and complex systems (Saltz-
man 2001). Adopting the notation from Ashwin et al. (2012) 
the abrupt shift from a stable state to another stable state could 
be e.g. due to B-tipping or N-tipping. In B-tipping the system 
is driven past bifurcation points, where equilibrium solutions 

Abstract  This paper proposes a time series segmentation 
algorithm combining a clustering technique and a genetic 
algorithm to automatically find segments sharing com-
mon statistical characteristics in paleoclimate time series. 
The segments are transformed into a six-dimensional space 
composed of six statistical measures, most of which have 
been previously considered in the detection of warning sig-
nals of critical transitions. Experimental results show that 
the proposed approach applied to paleoclimate data could 
effectively analyse Dansgaard–Oeschger (DO) events and 
uncover commonalities and differences in their statistical 
and possibly their dynamical characterisation. In particu-
lar, warning signals were robustly detected in the GISP2 
and NGRIP δ18O ice core data for several DO events (e.g. 
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4.1.2. Identification of extreme wave heights with an evolutionary algo-
rithm in combination with a likelihood-based segmentation

As we discussed in previous sections, the determination and clustering of events

which contains larger wave heights in relation with other close in time is a challenge for

the design of offshore structures. In this paper, we solve this problem by using a hybrid

algorithm consisting of a GA in combination with a likelihood-based segmentation.

The GA is able to find the extreme events in a cluster, but the application of LS

in different parts of the evolution improves the quality of the solutions obtained by this

GA. The LS consists of a likelihood-based segmentation assuming that the points of the

segments follow a beta distribution1. In this way, considering as main hypothesis that a

segment s is a random sample from a Xt distribution, we have:

H0 ≡ Xt ∈ B(α, β), (4.1)

and,

H1 ≡

XtL ∈ B(αL, βL),

XtR ∈ B(αR, βR).
(4.2)

where B(α, β) is the beta distribution, α and β are the parameters, XtL are the values

at the left of the cut point t, and XtR are those which are at the right. The segmentation

scheme is fundamentally based on the likelihood ratio test under these hypotheses.

Empirically, we validate the hybridisation following four strategies. The first one

does not apply the LS. In the second one, the best solution of the last generation of the

GA is improved by the application of the LS. The third one consists of the application of

the LS to the best solution in 1/3, 2/3 and 3/3 of the total number of generations. And

finally, in the last one, the algorithm applies the LS to the best 20 % individuals of the last

generation.

The method is applied to three time series collected from buoys situated in Puerto

Rico and the Gulf of Alaska. Results agree that the best methodology is the application of

the LS to the best 20 % of the individuals in the last generation. Furthermore, the algo-

rithm provides a well-defined cluster of segments which contains extreme values, allowing

the study of the characteristics of this type of events.

1the beta distribution is a distribution specifically designed for correctly representing extreme values
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Abstract This paper presents four configurations of a
genetic algorithm (GA) combined with a local search (LS)
method for time series segmentation with the purpose of cor-
rectly recognising extremevalues. TheLSmethod is based on
likelihood maximisation of a beta distribution. The proposal
is tested on three real ocean wave height time series, where
extreme values are frequently found. Concretely, the time
series are taken from two oceanographic buoys in the Gulf of
Alaska, and another one from Puerto Rico. The results show
that the different combinations of LS improve the results of
the GA. Furthermore, the algorithm provides segmentations
where extreme values are grouped in a well-defined cluster,
which allows the study of the characteristics of this type of
events.
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1 Introduction

Nowadays, the importance of time series data mining and
machine learning has increased resulting in severalworks and
studies. Time series can be defined as temporal data collected
chronologically and they can be easily obtained from several
applications. Their numerical and continuous nature and their
difficulty to be processed, analysed and mined often leads
to a discretisation of the continuous values into significant
symbols [3,24]. This process, called “numeric-to-symbolic”
(N/S) conversion, is considered as one of the best preprocess-
ing techniques before mining time series. Other approaches
[16,17] suggest dividing the time series using previously
identified change points and substituting the segments with
suitable functions.

Furthermore, it is well known that time series segmen-
tation is one of the most important keys of time series
representation andmining. Themain objective of this process
is to provide a more compact representation of the data by
dividing the entire time series into a set of consecutive tem-
poral periods, called segments. There are twomain proposals
to represent the time series into a high-level representation
by segmenting them. On the one hand, this can be done
using simple descriptions of the segments, i.e., using lin-
ear interpolations or linear regressions, with the objective
of minimising their approximation error [4,12,23]. On the
other hand, useful patterns can be found in the time series
leading to segments, where two main tasks have to be con-
sidered [13]: matching of sequence patterns and recognition
of periodical patterns.

Clustering methods, such as k-means, hierarchical clus-
tering and expectation maximisation, has been used by many
researchers for clustering time series [18,21]. Clustering
can also be applied as part of the segmentation procedure
to improve the conversion to symbols by finding similar-

123
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4.1.3. Identifying market behaviours using European stock index time series
by a hybrid segmentation algorithm

The discovery of useful patterns embodied in a time series is of fundamental rele-

vance in many real applications. Repetitive structures and common type of segments can

also provide very useful information of patterns in financial time series. Time series seg-

mentation is often used for trend analysis and the analysis of the movement of a stock

market. Given that there are several important methodologies to answer the questions of

what and when buying or selling, we focus on the cyclical and technical analysis approa-

ches, due to our analysis is chartist, and it is based on the found financial patterns, i.e. we

search for characteristic phases in a time series and identify the main financial patterns in

each phase to analyse the behaviour of the stock market.

Specifically, we propose a new GA which is combined with an LS procedure based

on the likelihood ratio optimisation, assuming that the values of the financial time series

are normally distributed. In this sense, considering that a segment s is a random sample

from a Xt distribution, the hypotheses are:

H0 ≡ Xt ∈ N(µ, σ), (4.3)

and,

H1 ≡

XtL ∈ B(αL, βL),

XtR ∈ B(αR, βR).
(4.4)

where N(µ, σ) is the normal distribution with mean µ and standard deviation σ, XtL

are the values at the left of a cut point t, and XtR are those which are at the right. The

characteristics of the segments are analysed following the behaviour of bearish, bullish

and sluggish markets, and cycles, booms and crashes.

In our experiments, we apply the methodology to two stock market index time se-

ries: IBEX35 Spanish index (closing prices) and a weighted average (AVG) time series

compound by the IBEX35 (Spanish), BEL20 (Belgian), CAC40 (French) and DAX (Ger-

man) indexes. The algorithm maps the segments into a five-dimensional space including

variance, skewness, kurtosis, slope of a linear regression over the points of the segment,

and autocorrelation coefficient, with the aim of grouping them. Experimental results show

that it is possible to discover similar patterns in both time series.
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Abstract The discovery of useful patterns embodied in a time series is of fundamental rel-
evance in many real applications. Repetitive structures and common type of segments can
also provide very useful information of patterns in financial time series. In this paper, we
introduce a time series segmentation and characterization methodology combining a hybrid
genetic algorithm and a clustering technique to automatically group common patterns from
this kind of financial time series and address the problem of identifying stock market prices
trends. This hybrid genetic algorithm includes a local search method aimed to improve the
quality of the final solution. The local search algorithm is based on maximizing a likeli-
hood ratio, assuming normality for the series and the subseries in which the original one is
segmented. To do so, we select two stock market index time series: IBEX35 Spanish index
(closing prices) and a weighted average time series of the IBEX35 (Spanish), BEL20 (Bel-
gian), CAC40 (French) and DAX (German) indexes. These are processed to obtain segments
that are mapped into a five dimensional space composed of five statistical measures, with
the purpose of grouping them according to their statistical properties. Experimental results
show that it is possible to discover homogeneous patterns in both time series.
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4.1.4. On the use of evolutionary time series analysis for segmenting paleo-
climate data

The following paper presents an extension of those presented in previous sections

for detecting early warning signals in paleoclimate data. The paper involves the following

contributions:

• The evaluation of the segmentation is automated using two criteria. The first one

is related to the comparison of the segmentation to an ideal segmentation given by

experts in the area. The second one measures the stability of the algorithm.

• The fitness function of the algorithm is selected from a set of 10 clustering validity

indexes, considering the best one from a battery of experiments.

• Some improvements in the algorithm are also included, such as binary coding, mu-

tation and a constraint for the minimum segment size.

• Finally, a simple model of prediction is derived from the obtained segments.

These contributions improve the results of the paper presented in Section 4.1.1. The

experiments performed and the results obtained agree that Calisńky and Harabasz index,

which has been found to be one of the best-performing ones for adjusting the number of

clusters, is the best cluster validity index for the evolutionary algorithm. With this index,

the algorithm is capable of detecting all the DO events except number 9 and 13 in the

GISP2 dataset, while in the NGRIP time series, four events are not detected: 2, 9, 13 and

16.
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a b s t r a c t 

Recent studies propose that different dynamical systems, such as climate, ecological and financial sys- 

tems, among others, present critical transition points named to as tipping points (TPs). Climate TPs can 

severely affect millions of lives on Earth so that an active scientific community is working on finding 

early warning signals. This paper deals with the development of a time series segmentation algorithm 

for paleoclimate data in order to find segments sharing common statistical patterns. The proposed al- 

gorithm uses a clustering-based approach for evaluating the solutions and six statistical features, most 

of which have been previously considered in the detection of early warning signals in paleoclimate TPs. 

Due to the limitations of classical statistical methods, we propose the use of a genetic algorithm to auto- 

matically segment the series, together with a method to compare the segmentations. The final segments 

provided by the algorithm are used to construct a prediction model, whose promising results show the 

importance of segmentation for improving the understanding of a time series. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

In contrast to the famous statement of Linnaeus “natura non 

facit saltus ” (or nature makes no leaps), it has been proven that 

some points of no return, thresholds and phase changes are 

widespread in nature and these are often non linear [1] . Such 

events can be rarely anticipated and some of them can have detri- 

mental consequences on Earth’s climate and large-scale impacts on 

human and ecological systems. This increases the imperious neces- 

sity of studying, analysing and developing techniques for character- 

ising them in order to construct reliable early warning systems. Al- 

though the human being have influenced their local environment 

for millennia, e.g. reducing biodiversity, it is now, since the indus- 

trial revolution, that truly global changes are being noticed [2,3] . 

Examples that are currently receiving attention include the poten- 

tial collapse of the Atlantic thermohaline circulation, the dieback of 

the Amazon rainforest or the decay of the Greenland ice sheet [1] . 

Formally, a climate “tipping point” (TP, also known as “little things 

can make a big difference”) occurs when a small change in forcing 
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E-mail address: i82perom@uco.es (M. Pérez-Ortiz). 
1 This paper has been invited to be included in the “Special Issue 

Neurocomputing-HAIS2014”. 

triggers a strongly nonlinear response in the internal dynamics of 

part of the climate system, qualitatively changing its future state. 

The critical relevance of early TPs detection has produced a 

growing attention of the scientific community. Lenton differenti- 

ates between several types of TPs, and presents some indicators 

that can help to detect them, such as the increase of autocorrela- 

tion of the series values [4] . In [5] , more concrete techniques re- 

garding data processing and indicators are presented. They study a 

bank of methods using only simulated ecological data, concluding 

in concordance with the literature that there is no unique best in- 

dicator for identifying an upcoming transition. They also conclude 

that all the methods require specific data-treatment. Up to our 

knowledge, all previous works tackle the TP detection with statis- 

tical methods trying to select (by trial and error) the method (and 

the time-window) most suitable to detect those transitions. They 

require an intensive data preprocessing that includes, for instance, 

the use of Gaussian filters or rolling windows that introduce extra 

parameters (such as the width of the Gaussian function or size of 

the window) that need to be optimised [4,5] . The main limitation 

behind these methods is that different TPs require specific treat- 

ment, which is the specific objective that this paper tries to tackle. 

Although one of the main areas of research for time series is 

their modelling [6] , time series segmentation is emerging as a very 

interesting field, aiming to provide a compact representation of the 

https://doi.org/10.1016/j.neucom.2016.11.101 

0925-2312/© 2017 Published by Elsevier B.V. 
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4.2. Time series size reduction
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• A. M. Durán-Rosal, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-Mart́ınez. “A

statistically-driven Coral Reef Optimization algorithm for optimal size reduction of

time series”, Applied Soft Computing, Vol. 63. 2018, pp. 139-153. JCR(2017): 3.907

Position: 17/132 (Q1). DOI: 10.1016/j.asoc.2017.11.037

• A. M. Durán-Rosal, P. A. Gutiérrez, Á. Carmona-Poyato, and C. Hervás-Mart́ınez.

“A hybrid dynamic exploitation barebones particle swarm optimisation algorithm

for time series segmentation”, Neurocomputing, 2018. JCR(2017): 3.241 Position:

27/132 (Q1). Accepted.

Other publications associated to this section:

• A. M. Durán-Rosal, P. A. Gutiérrez, F. J. Mart́ınez-Estudillo, and C. Hervás-Mart́ınez.

“Time Series Representation by a Novel Hybrid Segmentation Algorithm”. 11th In-

ternational Conference on Hybrid Artificial Intelligent Systems (HAIS2016). 2016.

pp. 163-173. DOI: 10.1007/978-3-319-32034-2 14

• A. M. Durán-Rosal, D. Guijo-Rubio, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “Hy-

brid Weighted Barebones Exploiting Particle Swarm Optimization Algorithm for Ti-

me Series Representation”. Bioinspired Optimization Methods and their Applications

(BIOMA2018). 2018. pp. 126-137. DOI: 10.1007/978-3-319-91641-5 11

• A. M. Durán-Rosal, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-Mart́ınez. “An

empirical validation of a new memetic CRO algorithm for the approximation of time

series”. XIII Congreso Español de Metaheuŕısticas, Algoritmos Evolutivos y Bioinspi-

rados (MAEB 2018), 2018. pp. 209-218. DOI: 10.1007/978-3-030-00374-6 20

• A. M. Durán-Rosal, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-Mart́ınez. “Dyna-

mical Memetization in Coral Reef Optimization Algorithms for Optimal Time Series

Approximation”, Progress in Artificial Intelligence. Accepted. DOI: 10.1007/s13748-

019-00176-0

Generally, the contributions in this part are focused on developing new MHs for the

problem of time series size reduction. Firstly, to alleviate a problem of the CRO algorithm,

which is the large amount of parameters that need to be defined, a new SCRO algorithm

is proposed, where the parameters of the algorithm are dynamically updated during the

evolution. In this way, the operators are applied based on the statistics of centralisation
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and dispersion of the fitness function of the population in each iteration. Secondly, the idea

is to improve the statistical BBPSO, considering a modification of the Gaussian function

for having a better exploration at the beginning of the evolution and better exploitation

at the end. These two main publications are now presented in the different subsections of

this section.

4.2.1. A statistically-driven coral reef optimisation algorithm for optimal si-
ze reduction of time series

Segmenting time series with the aim of reducing the number of points is an interes-

ting challenge for simplifying the data without losing important information. In this work,

we proposed a new variant of the standard CRO algorithm for this purpose. The main

problem of the CRO is its configuration, due to the large amount of parameters which

need to be defined. We propose a new version, where the parameters are updated dyna-

mically throughout the iterations of the algorithm, depending on the fitness distribution

of the population. The best solution obtained by this algorithm, which is called SCRO, is

then applied a local optimisation using two well-known LS methods, Bottom-Up and Top-

Down, which are able to improve the quality of the solution in terms of the approximation

error.

Let fij be the fitness function of the solution i in iteration j, and let f̄j and S2
fj

be

the mean value and the variance of the corals at iteration j. The SCRO algorithm modifies

the parameters of CRO in the following way:

1. Free positions: at the beginning, those corals whose fitness verifies fi1 6∈ (f̄1−Sf1 , 1]

are deleted.

2. Asexual reproduction: a random coral from the set of corals whose fitness verifies

fij ∈ (f̄j + Sfj , 1] is mutated and considered candidate solution.

3. External sexual reproduction: those corals with a fitness function verifying fij ∈
(f̄j − Sfj , 1] are externally sexually reproduced.

4. Internal sexual reproduction: the remaining corals (fij ∈ [0, f̄j − Sfj ]) are mutated

in each generation with internal sexual mutation.

5. Depredation: at the end of each iteration, the algorithm eliminates those corals who-

se fitness verifies fij ∈ [0, f̄j − 2Sfj ].

As can be seen, the parameters are updated in each iteration, and the user does

not need to specify them in the configuration. The methodology is tested in 16 time se-

ries collected from different sources, including financial time series, SWH time series and
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benchmark time series. SCRO is compared against other state-of-the-art methods, which

are Bottom-Up, Top-Down, GA, PSO and standard CRO, showing that our algorithm out-

performs the rest of methods and that it has the same performance than the standard CRO,

but without the need of specifying the parameters.
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This  paper  is  focused  on  reducing  the number  of  elements  in  time  series  with  minimum  information
loss, with  specific  applications  on  time  series  segmentation.  A  modification  of  the coral  reefs  optimiza-
tion  metaheuristic  (CRO)  is  proposed  for this  purpose,  which  is  called  statistical  CRO  (SCRO),  where  the
main  parameters  of  the algorithm  are  adjusted  based  on  the  mean  and  standard  deviation  associated
with the  fitness  distribution.  Moreover,  the algorithm  is  combined  with  the  Bottom-Up  and  Top-Down
methodologies  (traditional  local  search  methods  for time  series  segmentation),  resulting  in  a  hybrid
methodology  (HSCRO).  We  evaluate  the  performance  of these  algorithms  using  16  time  series  from  dif-
ferent  application  areas.  The  statistically-driven  version  of CRO  is  shown  to  improve  the  results  of the
standard  CRO,  eliminating  the  necessity  of manually  adjusting  the  main  parameters  of  the  algorithm  and
dynamically  adjusting  these  parameters  throughout  the  evolution.  Moreover,  when  compared  with  other
local  search  methods  and metaheuristics  from  the state  of the  art, HSCRO  shows  robust  segmentation
results,  consistently  obtaining  lower  approximation  errors.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Time series data mining is currently an important area of
research in different fields of science and engineering. In this way,
time series can be easily obtained from different source areas,
including biology, financial problems, climate-related applications,
renewable energy, hydrology, etc. They are used with the objective
of solving different problems, such as clustering, indexing, classifi-
cation, structure discovery or anomalies detection, among others.

A very important task within time series data mining is the prob-
lem of time series segmentation [1]. It consists of dividing the time
series into different non-overlapping segments, based on series of
cut points. Depending on the application tackled, the specific objec-
tive of time series segmentation can be different: A first group of
methods tries to discover useful patterns of the time series, based

∗ Corresponding author at: Department of Computer Science and Numerical Anal-
ysis, University of Córdoba, Rabanales Campus, Albert Einstein Building 3rd Floor,
14071 Córdoba, Spain.
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(C. Hervás-Martínez).

on the similarities between the segments. In [2], a genetic algorithm
was proposed for this purpose, where the cut points are opti-
mized in terms of the similarities between the different segments
obtained. The method proposed in [3] achieves indirect sequence
clustering by using an online recursive fuzzy clustering, which is
found to be stable in the presence of outliers. Fuzzy segmentation of
multivariate time-series has been also tackled in [4], using a mod-
ified Gath-Geva clustering. Another work in this direction is [5],
where a fixed-length window was  used for representing the time
series using simple patterns obtained by a segmentation procedure.
A closely related topic is the segmentation for anomaly detection.
It has been intensively studied in signal processing to locate abrupt
changes along the time series [6–9]. Finally, the characterization of
Tipping Points can also be approached by using this type of time
series segmentation [10], where common patterns which occur
before these events are found and used as early warning signals
in paleoclimate time series.

On the other hand, a second group of segmentation methods aim
to reduce the number of points (amount of data) in the time series
without losing the essential information. In other words, these algo-
rithms try to simplify the time series, alleviating the difficulty of
processing, analysing or mining complete time series databases.

https://doi.org/10.1016/j.asoc.2017.11.037
1568-4946/© 2017 Elsevier B.V. All rights reserved.



60 4. Time series segmentation

4.2.2. A hybrid dynamic exploitation barebones particle swarm optimisa-
tion algorithm for time series segmentation

Another work proposed in this Thesis for applying segmentation to reduce the num-

ber of points of time series is presented in this section. From the previous work, we ob-

served that the computational cost of time series segmentation could be reduced using

properly adapted PSO algorithms. The quality of the solutions seemed to be improved too.

Consequently, in this work, we propose a new variant of the BBPSO, which automa-

tically adapts the parameters of the normal distribution to update the positions in each

iteration (see Equation 1.6). In this way, the proposed algorithm, which is called DBBeP-

SO, updates the importance of the social and cognitive components during the iterations,

with the aim of having a better exploration at the beginning and better exploitation at the

end of the evolution. For that, we propose a modified Gaussian distribution with a new

parameter λ:

xti,j =

N
(
pt−1
i,j +pt−1

g,j

2 , λ|pt−1i,j − pt−1g,j |
)

if U(0, 1) < 0.5,

pt−1i,j otherwise,
(4.5)

where λ is updated dynamically over the generations from an initial value of 1 to a final

value of 0.1:

λ =
0.9(L− l)

L
+ 0.1, (4.6)

where L is the maximum number of evaluations allowed to the algorithm (stop criterion),

and l is the current number of evaluations.

The stop criterion is the number of evaluations which is established based on the

length of each time series. Also, the hybridisation (which consists in modifying the cut

points using Bottom-Up and Top-Down procedures in their iterative versions) is made

using a different strategy, i.e. in the beginning, the 50 % of the total of particles are applied

a local search, and, at the end, the best solution after the evolutionary process is also

optimised.

All of these modifications and adaptations of PSO are tested in 15 datasets collected

from different sources. The experimental validation confirms that the DBBePSO and its

hybrid version, called HDBBePSO, lead to better results when compared to other state-of-

the-art algorithms, such as traditional methods, GA, PSO, BBePSO, and an optimal method

called Salotti. Moreover, the computational cost is drastically reduced.
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Abstract

Large time series are difficult to be mined and preprocessed, hence reducing their number of points with minimum information loss
is an active field of study. This paper proposes new methods based on time series segmentation, including the adaptation of the
particle swarm optimisation algorithm (PSO) to this problem, and more advanced PSO versions, such as barebones PSO (BBPSO)
and its exploitation version (BBePSO). Moreover, a novel algorithm is derived, referred to as dynamic exploitation barebones PSO
(DBBePSO), which updates the importance of the social and cognitive components throughout the generations. All these algorithms
are further improved by considering a final local search step based on the combination of two well-known standard segmentation
algorithms (Bottom-Up and Top-Down). The performance of the different methods is evaluated using 15 time series from various
application fields, and the results show that the novel algorithm (DBBePSO) and its hybrid version (HDBBePSO) outperform the
rest of segmentation techniques.
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1. Introduction

Recently, time series data mining (TSDM) has become an
important field of research in science and engineering [1, 2].
Time series can be obtained from different areas, such as cli-
mate [3], hydrology [4], finances [5], satellite images [6], etc.
They are used for different tasks depending on the objective
of the researchers and the application areas, e.g. classifica-
tion [7, 8], forecasting [9, 10], tipping point detection [11],
clustering [12], similarity assessment [13, 14] or segmentation
[15]. Specifically, time series segmentation is an important task,
which consists of cutting the time series in some specific points
trying to achieve different objectives, which are generally re-
lated to two points of view.

Firstly, time series segmentation can be used to discover
useful patterns or segments in time series. Chung et al. [16]
proposed a genetic algorithm for this purpose, using the sim-
ilarities between the segments for optimising the cut points.
Tseng et al. [17] combined a genetic algorithm with a clustering
procedure and considered the discrete wavelet transformation
(DWT) for the representation of the segments. The genetic al-
gorithm proposed in [11] is aimed to characterise tipping points
(TPs) and analyse the common patterns which occur before
them, in order to create early warning signals in paleoclimate
time series. Furthermore, a full analysis of different metrics

∗Corresponding author at: Department of Computer Science and Numerical
Analysis, University of Córdoba, Rabanales Campus, Albert Einstein Build-
ing 3rd Floor, 14071 Córdoba, Spain. Tel.: +34 957 218 349; Fax: +34
957 218 630. E-mail addresses: i92duroa@uco.es, pagutierrez@uco.es, cher-
vas@uco.es

for clustering evaluation and a first approximation to forecast
TPs using the patterns previously identified were made in [3].
Fuzzy segmentation of multivariate time series was approached
by a modified Gath-Geva clustering algorithm in [18], and an
online recursive fuzzy clustering for indirect sequence cluster-
ing was proposed in [19]. Anomaly detection has been widely
analysed for signal processing with the aim of locating abrupt
changes along the time series [20]. There are many more ap-
plications of this kind of time series segmentation, such as the
detection of important events in stock price time series [9, 21]
or the detection and prediction of wave height extreme events
combining a genetic algorithm with artificial neural networks
[22].

On the other hand, the second group of time series segmen-
tation algorithms tries to tackle the difficulty of processing and
mining large time series. Their large amount of data (i.e. their
high dimensionality) makes them very difficult to analyse. Be-
cause of this reason, and considering the fact that data mining
is constrained by three types of limited resources (time, mem-
ory and sample size), different algorithms have been proposed
with the aim of reducing the dimensionality or the number of
points of time series. In the literature, time series segmentation
techniques are also called time series representation procedures.
These methods reduce the dimension of a given time-series by
transforming it into a new representation space [23]. In gen-
eral, TSDM tasks can be classified as first-hand processing (i.e.
dimensionality reduction) or second-hand processing (further
analysis of time series). Time series representation methods are
first-hand processing algorithms, being useful for reducing the
number of points of the time series while keeping their fun-
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damental characteristics [24]. In this context, the authors in
[25, 26] proposed a method based on dividing the time series
using previously identified change points and represented the
segments with suitable approximations. Piecewise linear ap-
proximation (PLA) is a global term referring to all the algo-
rithms which reduce the number of points in the time series with
a minimum information loss, based on linear interpolations or
regressions [27]. Top-Down and Bottom-Up approaches pro-
posed by Keogh et al. [27] are two simple PLA algorithms,
based on iteratively reducing the approximation error. There
are some other representations algorithms, such as adaptative
piecewise constant approximation (APCA) [28] or symbolic ag-
gregate approximation (SAX) [29].

The work presented in this paper is focused on the second
group, specifically on PLA representation methods, whose ob-
jective is to reduce the number of elements in time series with
minimum information loss. For this purpose, we use a modi-
fication of a particle swarm optimisation algorithm (PSO) [30]
for segmenting time series, considering also two different re-
lated versions, barebones PSO (BBPSO) and exploiting bare-
bones PSO (BBePSO). PSO is an evolutionary algorithm which
simulates the social and cognitive behaviour of a set of parti-
cles, such as birds of fish when looking for food. In this way,
PSO optimises problems considering a set of candidate solu-
tions, denoted as particles (in our case, segmented time series),
which move along the search space. In PSO, the social compo-
nent refers to the best global position found by the algorithm,
while the cognitive one is the best solution found by the indi-
vidual particle. In general, PSO can be more easily adapted to
the specific problem being tackled, as fewer parameters have to
be configured when compared to other metaheuristics, such as
genetic algorithms or ant colony systems. On the other hand,
BBPSO avoids the use of velocities and, instead, considers a
normal distribution to decide whether the update should take
the best global position into account or the best local one [31].
Finally, BBePSO adds an exploting component to BBPSO, im-
proving convergence [31]. PSO has been applied in many real
problems, including hydrology prediction [32], video tracking
[33], power system state estimation [34], etc.

In standard PSO, and also in BBPSO, and BBePSO, the im-
portances of the social component (exploration) and the cogni-
tive component (exploitation) are not updated during the gener-
ations. In this paper, we propose a new formulation, where the
social component is more important at the beginning of the evo-
lution, while the cognitive component is more important at the
end, resulting in that we call dynamic BBePSO (DBBePSO).

On the other hand, evolutionary algorithms (EAs) are able
to perform a global multi-point search, converging to high qual-
ity areas. In this sense, they are considered robust heuristics that
can be applied in different problems. The main problem with
EAs is that they are not good at finding the precise optimum
in these high-quality areas [35]. To solve this issue, several
authors combine EAs with a local search (LS) procedure to im-
prove the best solutions. The idea is to combine the advantages
of the EA (global explorer) and the advantages of the LS (local
exploiter), resulting in hybrid algorithms. The hybridisation can
be made in different ways, which are very important in terms of

accuracy and computational cost. Some of the strategies pre-
viously used include the multi-start approach, the Lamarckian
learning, the Baldwinian learning, the partial Lamarckianism
and the process of random linkage [36, 37, 38]. In this way,
we combine the previously presented algorithms with a LS pro-
cedure, consisting in removing a number of cut points with a
Bottom-Up methodology and, then, adding the same number
of cut points using the Top-Down procedure [27]. All the al-
gorithms are applied to the segmentation of several time series
in the experimental section of the paper, and hybrid DBBePSO
obtains very good results which outperform the state of the art
algorithms considered.

The rest of the paper is organised as follows: Section 2
briefly presents the main parts of the PSO, BBPSO, and BBePSO
algorithms. Section 3 describes the new PSO proposal, while
Section 4 includes the different considerations needed for adapt-
ing all the algorithms for time series segmentation. Section 5
shows the considered time series, which are extracted from real-
world applications and different public repositories, the experi-
mental setting and the statistical analysis of the results obtained.
Finally, the paper is concluded in Section 6.

2. Particle Swarm Optimisation algorithm and its advanced
versions

The particle swarm optimisation (PSO) [30] is an evolutio-
nary-type algorithm for search and optimisation, based on the
simulation of a swarm of particles, i.e., birds or fish, looking
for food. In PSO, a swarm is formed by a set of P particles
in a D-dimensional space, being D the length of the particles.
Each particle i is a candidate solution of the studied problem,
and it is represented by the following characteristics at iteration
t: the current position of the particle xt

i, the current velocity of
the particle vt

i and the best position found by the particle pt
i.

The fitness function evaluates the quality of a particle xi and is
presented by f (xi). The velocity of the particle represents the
direction and the rate of change in the movement of the particle
at iteration t, while the best position pt

i is the value of the xi

visited by the particle resulting in the best fitness. Moreover,
an array with the best global solution (pt

g) is also stored, which
is defined as pt

g = arg maxp
{
f (pt−1

g ), f (pt
1), f (pt

2), . . . , f (pt
P)

}

(considering a maximisation problem). Thus, the evolution is
possible due to the cooperation of the particles, considering the
local best position pi (cognitive component) and the global best
position pg (social component).

For each iteration of a PSO algorithm, the velocity vi is up-
dated in the following way:

vt
i = w · vt−1

i +ρt
1 ·C1 ·

(
pt−1

i − xt−1
i

)
+ ρt

2 ·C2 ·
(
pt−1

g − xt−1
i

)
,

(1)

where w is the inertia weight, ρt
1, ρt

2 are uniform random values
obtained at iteration t, ρ1, ρ2 ∼ U(0, 1), and C1, C2 are the ac-
celeration constants. The w parameter controls the impact of the
memory with respect previous velocities. The cognitive com-
ponent (pi − xi) represents the experience of the particle with
respect to its best-found solution, while the social component
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(pg − xi), represents the experience with respect to the global
best solution. The position of the particles is then updated us-
ing the expression:

xt
i = xt−1

i + vt
i. (2)

Finally, the individual best position pi and the global best
position pg are also updated in each iteration. pi is updated as:

pt
i =


pt−1

i if f (xt
i) ≤ f (pt−1

i ),
xt

i if f (xt
i) > f (pt−1

i ),
(3)

while, for the global best position, we have:

pt
g = arg max

p

{
f (pt−1

g ), f (pt
1), f (pt

2), . . . , f (pt
P)

}
. (4)

The PSO algorithm is repeated during a predefined number
of iterations or until velocity updates are near zero. The quality
of the solutions (particles) is measured by a fitness function (in
this section we have considered maximisation problems). Algo-
rithm 1 illustrates the flowchart diagram of the PSO algorithm,
which summarises the previously defined steps.

Algorithm 1 Pseudo-code for the PSO algorithm
Input: Valid values for the parameters controlling the PSO al-

gorithm
Output: A solution with the best fitness value found by the

algorithm
1: Initialise the swarm randomly
2: Evaluate the initial swarm
3: while not stop condition do
4: Update velocities (Eq. 1)
5: Update positions (Eq. 2)
6: Evaluate the new swarm
7: Update personal best positions (Eq. 3)
8: Update global best positions (Eq. 4)
9: end while

10: Return the best individual (final solution) from the swarm

2.1. Barebones PSO
One of the improved versions of PSO is the barebones PSO

(BBPSO) [31]. This algorithm does not take into account the
velocities to update the current position of the particles in the
swarm. Instead, BBPSO replaces Equations 1 and 2 with the
following expression for the j-th dimension:

xt
i, j = N


pt−1

i, j + pt−1
g, j

2
, |pt−1

i, j − pt−1
g, j |

 , (5)

where N(µ, σ) is a normal random distribution with µ mean and
σ standard deviation, and i = 1, . . . , P, j = 1, . . . ,D. This
equation is based on theoretical studies confirming that parti-
cles converge to a weighted average of the global and personal
best positions [39]. In this way, each dimension of each par-
ticle is selected from a Gaussian distribution where the mean
is the average value of the global and local best positions, and
the difference between them is used as the standard deviation.
This procedure allows taking large steps when the personal best
positions are far away from the global best positions.

2.2. Exploiting barebones PSO
In [31], Kennedy also proposed an alternative version of the

BBPSO, called exploiting barebones PSO (BBePSO), where
the velocity and position updates are replaced with:

xt
i, j =


N

(
pt−1

i, j +pt−1
g, j

2 , |pt−1
i, j − pt−1

g, j |
)

if U(0, 1) < 0.5,

pt−1
i, j otherwise.

(6)

This equation establishes a 0.5 probability that the j-th di-
mension of the particle i changes to the corresponding personal
best position. In this way, the BBePSO searches with a higher
degree of exploitation than BBPSO. In general, this exploiting
version outperforms other variants of PSO [40]. Unlike stan-
dard PSO, the barebones variants (BBPSO and BBePSO) do not
need a value for the weight and the acceleration coefficients, so
they are more suitable for those application problems where the
value of the these parameters is difficult to be estimated.

3. Dynamic exploiting barebones PSO

In this work, a dynamic BBePSO (DBBePSO) algorithm is
proposed, where the importance of the social and the cognitive
components are updated along the generations.

As we mentioned before, DBBePSO updates the current po-
sitions of each particle (xi) in a similar way that BBePSO. How-
ever, in our proposal, the importance of the exploration and the
exploitation are dynamically updated over the generations using
a modified Gaussian distribution:

xt
i, j =


N

(
pt−1

i, j +pt−1
g, j

2 , λ|pt−1
i, j − pt−1

g, j |
)

if U(0, 1) < 0.5,

pt−1
i, j otherwise.

(7)

The novelty is the multiplicative parameter λ in the standard
deviation of the distribution. It is known that evolutionary algo-
rithms work better when the exploration is higher at the begin-
ning but lower at the end [41]. To do so, λ is updated dynam-
ically over the generations from an initial value of 1 to a final
value of 0.1:

λ =
0.9(L − l)

L
+ 0.1, (8)

where L is the maximum number of evaluations allowed to the
algorithm (stop criterion), and l is the current number of evalu-
ations. As can be observed, when the number of evaluations is
0, then λ is 1.0; and it decreases to 0.1 when l is close to L. It is
important to mention that the λ update is done at the beginning
of each iteration t of the algorithm.

4. Adapting the algorithms for time series segmentation

4.1. Problem definition
Given a time series Y = {yn}Nn=1, the main goal is to split the

time series by dividing the values into m consecutive segments,
taking into account that the error approximation of these seg-
ments needs to be as lower as possible. In other words, from all
the time indexes (n = 1, . . . ,N), a set of m − 1 cut points are
selected, being presented in ascending order (t1 < t2 < · · · <
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tm−1). In this way, the set of the resulting segments is composed
by s1 = {y1, . . . , yt1 }, s2 = {yt1 , . . . , yt2 }, . . . , sm = {ytm−1 , . . . , yN},
and the algorithm has to determine the values of the m − 1 cut
points. Note that the cut points are part of two segments, the
precedent segment and the posterior one, while the rest of points
belong to a single segment. In order to reduce the amount of in-
formation, each segment is approximated using linear interpo-
lation between the initial and the final points (i.e. the cut points
delimiting the segment).

It is important to mention that the search space is very large.
Consequently, the use of evolutionary algorithms is proposed in
this paper.

4.2. Particle representation
The position of a particle is represented by an array (chro-

mosome) of real values (xi), where the length of the chromo-
some is the same that the number of segments minus one (m−1),
i.e. the number of cut points. Each chromosome element xi, j

stores a real value, which is rounded to the closest integer in
order to obtain the value of the j-th cut point (ti, j). For example,
the chromosome of length 5, xi = {1.68, 5.76, 12.12, 15.30, 20.10}
corresponds to the following cut points, ti = {2, 6, 12, 15, 20}.
An example of a particle for this problem is shown in Figure 1.
It is important to note that the values of the chromosome need
to be presented in ascending order (see section 4.5).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1.68 5.76 12.12 15.30 20.10

1 2

2 3 4 5 6

6 7 8 9 10 11 12

12 13 14 15

15 16 17 18 19 20

20 21 22

Chromosome representation

Corresponding cut points

Resulting segments

2 6 12 15 20

Figure 1: Chromosome representation: xi = {1.68, 5.76, 12.12, 15.30, 20.10}.

4.3. Initialisation of the swarm
The population of the swarm is a set of P arrays of real

values with a length of m − 1. In the initial population, the cut
points are randomly selected taking into account that they must
be subscripted in ascending order, and each cut point has to be
unique (it is not possible to have two cut points with the same
value). Note that the initial population is formed by integer
values, but, during the generations, these positions are updated
with real values.

4.4. Fitness evaluation
As we stated before, the main goal of this type of time series

segmentation is to reduce the number of points without losing
important information. For that, we optimise the error produced
by the approximation with respect to the original time series
values. Thus, the fitness function is defined as minimising the
difference between each real value of the time series and its
corresponding approximation. The approximation error of the
n-th point of the time series in the swarm is defined as:

en(xi) = (yn − ŷn(xi)), (9)

where yn is the real value of the n-th point in the time series,
and ŷn(xi) is the PLA approximation value obtained by a linear
interpolation in the chromosome xi. The fitness function con-
sidered for the complete chromosome is the root mean square
of the en(xi) (RMSE), which is formally defined as:

RMS E(xi) =

√√√
1
N

N∑

n=1

e2
n(xi). (10)

Due to the fact that this metric needs to be minimised, the fi-
nal fitness function is f = 1

1+RMS E(xi)
, which is bounded in the

interval [0, 1]. Figure 2 shows the evaluation process of the
chromosome used in Figure 1.

RMSE = 7.1818 
e
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e
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e
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e
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4
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Figure 2: Example of evaluation.

4.5. Repair solutions
In time series segmentation, there are certain constraints

that have to be satisfied to ensure proper solutions:

1. The first one is that the time index n must be presented
in ascending order, and therefore the values of the chro-
mosome (xi,1 < xi,2 < · · · < xi,m−1). After applying
the position updates, it can be possible that a too large
step is taken for one of the dimensions, making the value
of the cut point to be higher than the next in the chro-
mosome (xi,k > xi,k+1) or lower than the previous one
(xi,k < xi,k−1). In order to avoid this problem, after updat-
ing the positions, the algorithm sorts the cut points of the
chromosomes (particles) in ascending order.
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2. The second constraint is related to the values of the first
and the last genes of the chromosome. The value of the
first gene should not be smaller than 1.5 (xi,1 ≥ 1.5), and
the value of the last one should not be higher than N−0.5
(xi,m−1 < N − 0.5). This is because the first and the last
point of the time series can not be cut points, and the
nearest integers of a value lower than 1.5 or a value higher
than N − 0.5 are 1 and N, respectively. If this constraint
is not satisfied, the chromosome is rescaled:

xt′
i =

xt
i −min{xt

i}
max{xt

i} −min{xt
i}

(max{xt−1
i } −min{xt−1

i }) + min{xt−1
i },

(11)

where the min(x) and max(x) represent the minimum and
the maximum value of the array x, respectively.

4.6. Hybridisation procedure

A local search strategy is used to further improve the qual-
ity of the solutions, based on the combination of Bottom-Up
and Top-Down algorithms [27]. Bottom-Up considers each el-
ement of the time series as a possible cut point, and, during
the iterations, the two adjacent segments incurring in a lowest
cost are merged, that is, those adjacent segments whose merg-
ing results in the minimum increase of error. Top-Down is the
complementary algorithm, which works with the opposite phi-
losophy. At the beginning, the complete time series is consid-
ered as a segment, and Top-Down recursively splits the segment
considering the point resulting in the maximum error decrease.
Both algorithms are run until some stopping criteria are met (re-
lated with the approximation error). Our proposed local search
methods consists in removing a percentage of the cut points of
the best solution using the Bottom-Up strategy and then adding
the same number of cut points using the Top-Down algorithm.

To use these algorithms, we have modified the implementa-
tions proposed in [27] in such a way that, for both, the stopping
criteria is the number of segments to merge or cut, respectively.
Note that the implementation of Top-Down presented in [27] is
recursive, so we have transformed it into an iterative method.

We have considered the following strategy for combining
this local search with the metaheuristics (GA, PSO and the dif-
ferent PSO variants): at the beginning of the evolution, a 50% of
the population is randomly selected, and these individuals are
improved by the local search. After that, the metaheuristic is
applied to the complete population, including standard random
individuals and the ones improved by the local search method.
Finally, the best solution obtained by the metaheuristic is also
applied a local search.

4.7. DBBePSO algorithm for time series segmentation

This section summarises the work-flow of the DBBePSO
presented in Section 3 for time series segmentation, including
all the considerations previously exposed. The main steps of the
algorithm are summarised in Algorithm 2. Very similar pseu-
docodes are used for adapting the rest of PSO variants.

Algorithm 2 Dynamic BBePSO for time series segmentation
Input: Time series.
Output: Segmented time series.

1: Initialise a random initial particle swarm (population).
2: Evaluate the initial population.
3: while not stop condition do
4: Update the importance of the social and cognitive com-

ponents.
5: Update the positions of the particles.
6: Repair solutions.
7: Evaluate the new population (particle swarm).
8: Update the best global and the best local positions.
9: end while

10: Apply the local search to the best solution obtained by the
DBBePSO.

11: return Best solution after the local search.

5. Experimental results and discussion

This section analyses the time series considered for vali-
dating the different methods, the experimental setting and the
results obtained.

5.1. Datasets used in our experiments

In this work, we evaluate the performance of the DBBePSO
algorithm in several synthetic and real-world time series col-
lected from public repositories, to test its robustness in different
scopes of application. The time series used are the following:

• Synthetic time series

– UCR time series: four datasets from the UCR Time
Series Classification Archive [42] has been selected.
Originally, these time series are divided into train-
ing and test, because it is a time series classification
repository. As we are facing time series segmenta-
tion, we have joined some of the training patterns in
order to have larger length time series. The time se-
ries selected are Hand Outlines, with a total of 8127
points, and Mallat, Phoneme and StarLightCurves,
all of them with 8192 observations.

– Donoho-Johnstone time series: this series is extracted
from a benchmark repository [43, 44, 45], which is
widely used in the neural net and machine learning
community. The Donoho-Johnstone benchmarks are
formed by four functions to which random noise
can be added to produce an infinite number of datasets.
In this work, we have considered the function Blocks
with medium noise, producing a total of 2048 ob-
servations1.

• Real-world application time series

1All these time series can be downloaded from https://sites.google.

com/site/icdmmdl/
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– Stock prices time series from financial applications:
five different indexes has been selected. The first
one is IBEX35 time series (called IBEX since this
moment for simplicity). It is one of the Spanish of-
ficial indexes of the Madrid stock market. The time
series consists of a total of 5730 observations con-
sidering daily values from 14 January 1992 to 26
September 2014. The rest of time series includes
market rates collected from four banks (BBVA, Deuts-
che Bank, Intesa San Paolo, and Société Genéralé).
These four series have a length of 4174 points, con-
sidering daily values from 1 January 1999 to 9 Febru-
ary 2015.

– Wave height time series (Hs): four time series of
significant wave height collected from buoys of the
National Data Buoy Center of the USA [46] have
been used. Two buoys are collecting data in the
Gulf of Alaska (with registration number 46001 and
46075), and the rest are from Puerto Rico (41043
and 41044). One value every six hours from 1st Jan-
uary 2008 to 31st December 2013 is considered for
buoy 46001 (8767 observations), while data from
1st January 2011 to 31st December 2015 are con-
sidered for the rest of buoys (7303 observations for
each one).

– Arrhythmia dataset contains cardiology data which
belongs to the PhysioBank ATM of the MIT BIH
Arrhythmia dataset [47, 48]. We used the MLII sig-
nal of the record 108 (9000 observations) to test the
algorithm in this dataset.

All time series considered are shown in Figures 3 and 4.

5.2. Experimental design
The experimental design for the time series under study is

presented in this subsection. We compare the following algo-
rithms:

• An optimal algorithm which is able to obtain the mini-
mum error segmentation for a given time series. We con-
sider the method proposed by Salotti [49]. This method
obtains optimal polygonal approximations of a digital cur-
ve when a prefixed starting point of the polygonal ap-
proximation is used. It is based on finding the shortest
path in a graph using the A∗-algorithm. Its computa-
tional complexity is close to O(N2). However, in closed
curves, in order to obtain the optimal polygonal approx-
imation, all the points of the curve should be considered
as starting points, and the computational complexity is
close to O(N3). We consider the improved version pro-
posed in [50], where the computational time is reduced
by a 16%. This improved version was originally pro-
posed for obtaining optimal polygonal approximations in
closed curves, which is similar to the problem of time
series segmentation, with two main differences: the first
and the last points are fixed, thus its computational com-
plexity is close to O(N2); and the error is calculated in

the vertical line, instead of in a line perpendicular to the
approximation. Both adaptations can be easily included
to perform optimal time series segmentation.

• Two iterative versions of the Bottom-Up and Top-Down
algorithms explained in Section 4.6 have been run, with
the aim of obtaining an approximation of the time series
with a predefined number of points or segments.

• A genetic algorithm (GA) has been run with crossover
and mutation probabilities set to pc = 0.8 and pm = 0.2,
respectively.

• A basic particle swarm optimisation algorithm (PSO) is
run with the following specific parameters: initial veloc-
ities of the particles are set to values close to zero [51],
the inertia coefficient (w) is set to 0.72, and the constant
parameters (C1 and C2) are fixed to 1.49, as previously
proposed in [39].

• The exploiter version of the barebones PSO (BBePSO)
proposed by [31] has also been tested. Note that this ver-
sion is better than BBPSO (see [31]), so we have not con-
sidered this last algorithm in our experiments.

• Finally, the DBBePSO proposed in this paper is also run,
and, as mentioned before, the λ parameter is set to 1 at
the beginning, and it linearly decreases to 0.1. No other
parameters have to be set.

According to [52], a 40% of the in the GA, BBePSO, and the
proposed DBBePSO are fine-tuned according to the method
presented in Section 4.6 resulting in the HGA, HBBePSO, and
HDBBePSO methods, respectively. For all algorithms, the pop-
ulation size is 100. The number of segments is set to a 2.5% of
the total number of points of the time series. The stop criterion
of all the algorithms is a maximum number of fitness evalu-
ations, which is established based on the length of each time
series, N, by considering the equation 3.5N. Given the stochas-
tic nature of the evolutionary algorithms, they have been run
30 times with different seeds. The error approximation results,
measured in RMSE, and the computational time in seconds are
analysed. Finally, some statistical tests are performed to de-
termine the existence of significant differences in the results,
which will be later detailed.

5.3. Discussion
RMSE results are shown in Table 1. For the deterministic

algorithms (Salotti, Bottom-Up and Top-Down), there is a sin-
gle result for each dataset-algorithm pair. In the case of the evo-
lutionary algorithms (GA, PSO, BBePSO, DBBePSO and their
hybrid versions), the table summarises the mean and the stan-
dard deviation of the 30 runs using different seeds. The mean
ranking of each algorithm is also included, considering a 1 for
the best method for each dataset and an 11 for the worst one.
Firstly, we can observe that the proposed local search method
improves the solutions of the evolutionary algorithms to a large
extent. That is, hybrid algorithms reduce the approximation
error of their corresponding standard evolutionary ones. In this
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Figure 3: Time series considered for the experiments (1/2).

way, the mean ranking of the GA is improved from 9.03 to 4.03,
the ranking of PSO decreases from 10.93 to 4.57, BBePSO im-
proves from 9.17 to 3.83, and the DBBePSO ranking is 7.53,
this ranking being 2.43 in the corresponding hybrid version
(HDBBePSO). Obviously, the best method in error terms for
all databases is the optimal algorithm of Salotti. In general, if
we do not consider the optimal algorithm, the best results are
obtained with the HDBBePSO algorithm, with the lowest er-
ror for 10 out of 15 time series, and the second-best RMSE in
the rest of series. HGA, HPSO and HBBePSO results seem to
be very similar in performance with a mean rank of 4.03, 4.57,
and 3.83, respectively. Furthermore, the standard deviations of

HDBBePSO are the lowest ones, showing the robustness of the
proposed method (the performance does not depend so much
on the initialisation).

If we only observe standard evolutionary algorithms with-
out considering hybrid versions, we can also conclude that the
novel DBBePSO outperforms the rest of methods. Bottom-
Up appear to be better finding low approximation error solu-
tions when compared with all evolutionary algorithms except
DBBePSO (again without considering hybrid versions). This
is due to the bad performance of evolutionary methods in find-
ing the precise optimum in high-quality areas, this reason mo-
tivating the use of hybrid algorithms. However, as can be seen,
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Figure 4: Time series considered for the experiments (2/2).

the dynamic adaptation of the exploration and exploitation of
DBBePSO reduces this problem, obtaining the same error ap-
proximation that Top-Down and a slightly worse error, but com-
parable, with respect to Bottom-Up. Moreover, this problem is
completely solved with the hybridisation proposed in this paper,
which results, in the experiments, in the lowest error approxi-
mations, improving Top-Down and Bottom-Up methods to a
great extent.

It is known that an important inconvenient of evolutionary
algorithms (based on populations of solutions) is their higher
computational cost when compared to algorithms based on a
single solution which are not optimal. Table 2 summarises

the runtime for the deterministic algorithms and the means and
standard deviations of the runtimes of 30 repetitions of the evo-
lutionary ones, measured in seconds2. As can be seen, the worst
computational times are obtained by the Salotti’s method show-
ing the necessity of using non optimal algorithms in order to de-
rive good solutions in acceptable computational time. Specif-
ically, when compared to HDBBePSO, the computational cost
of Salotti’s method is approximately nine times higher in the
worst case and twice in the best one. The rest of the results con-
firm that the fastest algorithms are Bottom-Up and Top-Down.

2All the experiments were run using an Intel(R) Xeon(R) CPU E5-2620 v3
at 2.40 GHz with 32 GB of RAM
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However, we should take into account that the approximation
error obtained by these methods is clearly worse than that ob-
tained by hybrid methodologies (specially, by HDBBePSO, see
Table 1). Obviously, the hybrid versions of the algorithms are
slightly costlier than their pure evolutionary alternatives. PSO
is faster than the rest of the evolutionary methods but the second
fastest method is DBBePSO, while being much better obtaining
lower RMSE.

In order to analyse the results from the point of view of sta-
tistical hypothesis contrasts, a set of statistical tests have been
used. Given that Salotti’s algorithm is the optimal method, it
does not make sense to include it in the statistical tests (it will be
always the best performing method, at the cost of much higher
computational resources). Also, the hybrid methods are always
better and slightly costlier than the pure evolutionary ones. For
these reasons, for the statistical tests, we only consider the de-
terministic methods and the hybrid versions of the algorithms,
that is, Top-Down, Bottom-Up, HGA, HPSO, HBBePSO and
HDBBePSO. Firstly, we analyse the RMSE results. To do so,
a Friedman test [53] has been considered using the different
RMSE rankings, which shows that, for a level of significance
α = 5%, the confidence interval is C0 = (0, F0.05 = 2.35), and
the F-distribution statistical value is F∗ = 22.19. Consequently,
the test rejects the null-hypothesis, which states that all algo-
rithms perform equally in mean ranking of RMSE, that is, the
algorithm effect is statistically significant. Due to this rejection,
we consider the best performing method in RMSE as control
method for a post-hoc test [54], comparing this algorithm with
the rest of methods. It has been noted that comparing all algo-
rithms to a given one (control method) is more sensitive than
comparing all algorithms to each other.

The Holm’s test compares the i-th and j-th algorithms with
the following statistic:

z =
r̄i − r̄ j√

k(k+1)
6N

,

where r̄i is the mean ranking of the i-algorithm, k is the number
of algorithms, and N is the number of datasets. With the value
of z, we find the probability of a normal distribution and com-
pared it with a level of significance α. Holm’s test adjusts the
value for α to compensate multiple comparisons, using a proce-
dure that sequentially tests the hypotheses ordered by their sig-
nificance. The ordered p-values are denoted by p1, p2, . . . , pk,
so that p1 < p2 < ... < pk. The test compares each pi with
α∗i = α/(k − i), starting with the most significant p-value. If
p1 is lower than α/(k − 1), the corresponding hypothesis is re-
jected, and then we compare p2 with α/(k−2), and so on. When
a certain null hypothesis is accepted the remaining ones are also
accepted.

The results of the Holm’s test are shown in Table 3. When
using HDBBePSO as control algorithm (CA), Holm’s test shows
that pi < α

∗
i in all cases, for α = 0.05, confirming that there are

statistically significant differences favouring HDBBePSO.
In the same way, to determine the existence of statistical

significance of the rank differences in runtime (seconds) for the
six algorithms and all databases, we perform another Friedman

test with their mean runtime rankings. We observe that, for a
level of significance of 5%, the F-distribution statistical value
is F∗ = 201.33 with a confidence interval of C0 = (0, F0.05 =

2.35), rejecting the null-hypothesis and concluding that the dif-
ferences are statistically significant. Then, we apply the Holm’s
test, considering HDBBePSO, again, as the control algorithm.
The results are shown in Table 4. Using HDBBePSO as CA,
Bottom-Up and Top-Down are significantly better in mean run
time than the proposed algorithm (marked with “(-)” in Table
4). This is because the optimisation of Bottom-Up and Top-
Down is based on a single solution and the methods are not
optimal, while the evolutionary approaches are based on pop-
ulations. Finally, with respect the remaining methods (HGA,
HPSO, and HBBePSO), there are no statistically significant dif-
ferences in runtime, but HDBBePSO outperforms them in qual-
ity of solutions.

6. Conclusions

This paper proposes a novel algorithm for time series seg-
mentation based on reducing the number of points of the time
series by minimising the approximation error of the linear inter-
polation of each segment. The contributions include the adapta-
tion of the particle swarm optimisation algorithm (PSO) and its
exploiter barebones variant (BBePSO) for time series segmen-
tation, along with the improvement of them using a dynamic
adaptation of the exploration and exploitation importances (dy-
namic BBePSO, DBBePSO). All algorithms are hybridised with
a local search which combines the Bottom-Up and Top-Down
strategies. The proposed method is then compared with other
state-of-the-art algorithms: a genetic algorithm (GA), a stan-
dard particle swarm optimisation (PSO), the exploiting bare-
bones PSO (BBePSO), all their hybrid versions, the traditional
Top-Down and Bottom-Up procedures, and Salotti’s optimal al-
gorithm.

The results conclude that the hybrid versions (HGA, HPSO,
HBBePSO, HDBBePSO) improve the solutions obtained by their
standard versions (GA, PSO, BBePSO, DBBePSO), showing
that the hybridisation proposed is suitable for this type of prob-
lems. Salotti’s algorithm is the best method in terms of RMSE,
but the computational cost is much higher than that of the rest of
algorithms. Furthermore, without considering Salotti’s method,
HDBBePSO results in the best results, obtaining the lowest ap-
proximation error, where the differences are found to be sta-
tistically significant. These results conclude that the dynamic
adaptation of the BBePSO allows the algorithm to escape the
initial local optima and converge to optimal solutions at the end
of the evolution. The algorithm proposed is statistically lower
than traditional approaches (Top-Down and Bottom-UP), but
their solutions are much worse.

For a future line of work, other distributions instead the
Gaussian distribution could be taken into account, for instance,
the Weibull distribution. We also plan to extend this work using
the original and the approximated time series in posterior tasks,
such as clustering or classification, observing if the method re-
duces the noise of the time series. Moreover, linear regression
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CA:HDBBePSO RMSE
i α∗0.05 Algorithm pi

1 0.010 Top-Down 0.000 (*)
2 0.013 Bottom-Up 0.000 (*)
3 0.017 HPSO 0.002 (*)
4 0.025 HGA 0.021 (*)
5 0.050 HBBePSO 0.045 (*)

Table 3: Results of the Holm test using HDBBePSO as control algorithm (CA)
when comparing its average RMSE to those of Top-Down, Bottom-Up, HGA,
HPSO, and HBBePSO: corrected α values, compared methods and p-values,
all of them ordered by the number of comparison (i). CA results statistically
better than the compared algorithm are marked with (*).

CA:HDBBePSO Run time (s)
i α∗0.05 Algorithm pi

1 0.010 Bottom-Up 0.000 (-)
2 0.013 Top-Down 0.000 (-)
3 0.017 HGA 0.032
4 0.025 HPSO 0.040
5 0.050 HBBePSO 0.626

Table 4: Results of the Holm test using HDBBePSO as control algorithm (CA)
when comparing its average runtime to those of Top-Down, Bottom-Up, HGA,
HPSO, and HBBePSO: corrected α values, compared methods and p-values, all
of them ordered by the number of comparison (i). CA results statistically worse
than the compared algorithm are marked with (−).

could be also considered instead of linear interpolation, or even
using polynomials with degree greater than one.
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4.3. Multiobjective time series segmentation

Main publication associated to this section:

• A. M. Durán-Rosal, P. A. Gutiérrez, F. J. Mart́ınez-Estudillo, and C. Hervás-Mart́ınez.

“Simultaneous optimisation of clustering quality and approximation error for time

series segmentation”, Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.

JCR(2017): 4.305 Position: 12/148 (Q1). DOI: 10.1016/j.ins.2018.02.041

Other publication associated to this section:

• A. M. Durán-Rosal, P. A. Gutiérrez, F. J. Mart́ınez-Estudillo, and C. Hervás-Mart́ınez.

“Multiobjective time series segmentation by improving clustering quality and re-

ducing approximation error”. XII Congreso Español de Metaheuŕısticas, Algoritmos

Evolutivos y Bioinspirados (MAEB 2017). 2017. pp. 920-922.

URL: http://mic2017.upf.edu/proceedings/

These works explore the optimisation of both the clustering quality and the error

approximation considering a novel multiobjective algorithm for segmenting time series.

4.3.1. Simultaneous optimisation of clustering quality and approximation
error for time series segmentation

Previous works of time series segmentation are aimed to optimise only one objective,

i.e. the segment clustering quality for discovering useful patterns or the reduction of the

number of points of the time series to simplify them. Our main hypothesis is that both

objectives are conflicting, that is, the optimisation of one harms the other. Up to the author

knowledge, there are no previous works optimising both objectives in the same algorithm.

In this work, we tackle the problem of the optimisation of both objectives by de-

veloping a novel evolutionary multiobjective time series segmentation algorithm called

GMOTSS. The algorithm is based on the NSGA-II, which was previously proposed to solve

MOPs. NSGA-II has been modified and adapted taking into account all the considerations

for time series segmentation. In this way, the GMOTSS algorithm is specifically designed to

find the cut points of the segmentation, taking into account both objectives. Then, the user

can choose the most appropriate solution from a Pareto front of different segmentations.

The algorithm is endowed with nine clustering validity indexes and an error fitness

function. Each clustering quality index is combined in the algorithm with the error fitness,

and an experimental validation is used to find the best clustering index based on Pareto
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front evaluation metrics. After that, the algorithm is tested in a synthetic time series and

four datasets with different scope and length.

The results obtained by GMOTSS are compared against other state-of-the-art met-

hods, such as a mono-objective version of the algorithm using a linear combination of

the objectives as fitness function, the algorithm proposed in Section 4.1.4, and the Gro-

wing Window, Bottom-Up and SWAB segmentation algorithms for reducing the number

of points. The resulting segmentations are a good approximation of the original time se-

ries, but they also show a good level of similarity according to the groups discovered by

the clustering. The main hypothesis of the work is also corroborated because it is clearly

shown that both objectives are conflicting. Finally, the proposed algorithm shows a good

trade-off for both objectives when compared with the previously cited algorithms.
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a b s t r a c t 

Time series segmentation is aimed at representing a time series by using a set of seg- 

ments. Some researchers perform segmentation by approximating each segment with a 

simple model (e.g. a linear interpolation), while others focus their efforts on obtaining ho- 

mogeneous groups of segments, so that common patterns or behaviours can be detected. 

The main hypothesis of this paper is that both objectives are conflicting, so time series seg- 

mentation is proposed to be tackled from a multiobjective perspective, where both objec- 

tives are simultaneously considered, and the expert can choose the desired solution from a 

Pareto Front of different segmentations. A specific multiobjective evolutionary algorithm is 

designed for the purpose of deciding the cut points of the segments, integrating a cluster- 

ing algorithm for fitness evaluation. The experimental validation of the methodology in- 

cludes three synthetic time series and three time series from real-world problems. Nine 

clustering quality assessment metrics are experimentally compared to decide the most 

suitable one for the algorithm. The proposed algorithm shows good performance for both 

clustering quality and reconstruction error, improving the results of other mono-objective 

alternatives of the state-of-the-art and showing better results than a simple weighted lin- 

ear combination of both corresponding fitness functions. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Time series are an important class of temporal data objects collected chronologically. The corresponding databases are of- 

ten large, high in dimensionality and require continuous updating. Thus, their intrinsic characteristics make them difficult to 

analyse. In this context, dimensionality reduction, similarity measurement, segmentation, visualisation and mining methods 

(such as hidden pattern discovery, clustering, classification or rule discovery) are part of time series research [16,25,35] . 

The segmentation task aims at creating an accurate approximation of the time series, by reducing its dimensionality 

while retaining the essential features. The objective of this task is to minimise the reconstruction error of a reduced rep- 

resentation with respect to the original time series. Segmentation tasks do not only reduce storage space but also increase 

the performance of data mining techniques. According to the literature review, current time series compression techniques 

require expert understanding of the time series, and appropriate threshold values need to be adjusted in order to reduce 
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Study the past if you would define the future.

Confucius

5
Prediction

This chapter includes some contributions of the Thesis related to the topic of pre-

diction in time series, including a two-stage algorithm for the detection and prediction of

extreme events in wave height time series and for the problem of the fog prediction in the

airport of Valladolid.

Main publications associated to this chapter:

• A. M. Durán-Rosal, J. C. Fernández, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “De-

tection and prediction of segments containing extreme significant wave heights”,

Ocean Engineering, Vol. 142, September, 2017, pp. 268-279. JCR(2017): 2.214 Po-

sition: 2/14 (Q1). DOI: 10.1016/j.oceaneng.2017.07.009

• A. M. Durán-Rosal, J. C. Fernandez, C. Casanova-Mateo, J. Sanz-Justo, S. Salcedo-

Sanz, and C. Hervás-Mart́ınez. “Efficient Fog Prediction with Multi-objective Evolu-

tionary Neural Networks”, Applied Soft Computing, Vol. 70, September, 2018, pp.

347-358. JCR(2017): 3.907 Position: 17/132 (Q1). DOI: 10.1016/j.asoc.2018.05.035

Other publications associated to this chapter:

• M. Dorado-Moreno, A. M. Durán-Rosal, D. Guijo-Rubio, P. A. Gutiérrez, L. Prieto, S.

Salcedo-Sanz, and C. Hervás-Mart́ınez. “Multiclass prediction of wind power ramp

events combining reservoir computing and support vector machines”. Conferencia
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de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016). 2016. pp.

300-309. DOI: 10.1007/978-3-319-44636-3 28

• A. M. Durán-Rosal, J. C. Fernández, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “Hy-

bridization of neural network models for the prediction of extreme significant wa-

ve height segments”. 2016 IEEE Symposium Series on Computational Intelligence

(IEEE SSCI2016). 2016. pp. 1-8. DOI: 10.1109/SSCI.2016.7850144

As stated before, the prediction in time series is usually accomplished by conside-

ring standard statistical procedures, such as AR models and their variants. We propose to

transform the prediction problems into ML classification tasks. For example, for the pre-

diction of extreme wave height, we develop a two-stage algorithm, where the first part

is the detection of extreme wave height (in a similar manner to the algorithm shown in

Section 4.1.2) and the second part consists in an MOEA for training ANN models. Also,

for the prediction of fog events in airports, we manually construct a database for a 6-hour

resolution prediction, using multiobjective algorithms. As can be seen, in both, we use

multiobjective optimisation, with the aim to optimise the global accuracy and the accu-

racy of the worst classified class, given the important imbalanced nature of the datasets.

The two main publications are now presented in the different sections of this chapter.

5.1. Detection and prediction of segments containing extreme

significant wave heights

The detection and prediction of extreme events in SWH time series is an essential

challenge for oceanographic purposes, e.g. for long-term future operational environment

of marine and coastal structures. The following paper presents a methodology which is

organised in two well-defined stages: detection and prediction of those periods which

contain wave heights which are very large with respect to other closer in time (segments

containing very high SWH, SSWH).

Firstly, the methodology is based on an HA (a combination of a GA and an LS based

on a likelihood ratio-test) with the purpose of detecting and defining the periods of time

corresponding to those events. The detection consists in finding time series subsequences

which present similar behaviour with the objective to determine a clustering able to group

together these extreme events. For that, this first stage includes a modified deterministic

k-means algorithm. This first stage allows us to study the nature of SSWH.

Secondly, once the detection (segmentation) is made, the algorithm automatically

transforms the segmented time series in a sequence of labels, and, then, a database for the

prediction stage is built. Each pattern of this dataset is formed by the characteristics of the
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three previous segments (a total of 15 inputs), and the output is a binary label reflecting

whether the next segment is an SSWH or not. We consider an MOEA for training ANNs

given that the resulting dataset is imbalanced. That is, the number of SSWH events is much

lower than the number of non SSWH events, in such a way that we can not only optimise

the global accuracy, but the accuracy per the minority class also needs to be optimised.

The methodology is tested in two real-world time series of SWH collected in the Gulf

of Alaska. This is compared against five state-of-the-art algorithms including LR, simple

LR, SVM, and two DTs, C4.5 and RandomForest. Also, the cost-sensitive versions of these

algorithms have been taken into account, which are able of considering the imbalanced

distribution of the dataset.

Results confirm that our methodology can make a reasonable prediction of SSWH

events without losing accuracy in the minority class. Although the cost-sensitive methods

consider the imbalanced distribution of the classes, our methodology outperforms them.

Also, the standard versions of the algorithms lead to the best global accuracy results, but

they behave poorly in the prediction of the minority class, which corresponds with the

SSWH events (i.e. the most important class).
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A B S T R A C T

This paper presents a methodology for the detection and prediction of Segments containing very high
Significant Wave Height (SSWH) values in oceans. This kind of prediction is needed in order to account for
potential changes in a long-term future operational environment of marine and coastal structures. The
methodology firstly characterizes the wave height time series by approximating it using a sequence of labeled
segments, and then a binary classifier is trained to predict the occurrence of SSWH periods based on past height
values. A genetic algorithm (GA) combined with a likelihood-based local search is proposed for the first stage
(detection), and the second stage (prediction) is tackled by an Artificial Neural Network (ANN) trained with a
Multiobjective Evolutionary Algorithm (MOEA). Given the unbalanced nature of the dataset (SSWH are rarer
than non SSWH), the MOEA is specifically designed to obtain a balance between global accuracy and individual
sensitivities for both classes. The results obtained show that the GA is able to group SSWH in a specific cluster of
segments and that the MOEA obtains ANN models able to perform an acceptable prediction of these SSWH.

1. Introduction

Large ocean waves pose significant risks to ships and offshore
structures. The development of offshore installations for oil and gas
extraction requires knowledge of the wave fields and any potential
changes in them. Moreover, in order to accurately predict the long-
term energy resource and performance of ocean wave energy con-
verters, long-term prediction of extreme wave heights is particularly
important. Additionally, high ocean waves represent significant risks in
ship movements and port activity, and a reliable measurement of these
extreme and critical events is crucial from the point of view of
navigation and civil protection.

In recent years, different statistical and mathematical methods have
been proposed for calculating and predicting Significant Wave Height
(SWH) Mahjoobi et al. (2008), Mahjoobi and Mosabbeb (2009). SWH
can be defined either in the temporal domain or in the frequency
domain. In the former case, it is noted H1/3 and is defined as the average
height of the highest one-third of wave heights, measured from the
time series of free surface by up or down-crossing. In the latter case, it
is noted Hm0 and is defined from the frequency spectrum. In deep
water, H1/3 andHm0 are quite close (less than 5% of difference) and they
are generally confused in the generic term Hs. For this reason, even if
the definitions of wave height are formally expressed, it is advisable to

use the generic termHs or simply SWH. According to the National Data
Buoy Center (NDBC) and the National Oceanic and Atmospheric
Administration (NOAA), SWH is the average trough to crest in meters
of the highest one-third of all the wave heights during a 20-min
sampling period (2016). NOAA uses hydrographic stations and ocean
buoys with special sensors to collect data, and this paper uses this
source of information. There are other statistical measures of the wave
height, such as the Root Mean Square (RMS) wave height, which is
defined as the squared root of the average of the squares of all wave
heights and is approximately equal to SWH divided by 1.4 Holthuijsen
(2007).

Recently, a more specific field, the determination and prediction of
Extreme SWH (ESWH), has gained significant attention. In general,
the previously proposed methods are based on considering the prob-
ability distributions of the Extreme Values (EV) of SWH. For example,
the work of Muraleedharan et al. Muraleedharan et al. (2016) proposes
the use of quantile regression to model the ESWH distribution, as an
alternative to fitting EV distributions based on the tails of data samples.
Another popular methodology is the Peaks Over Threshold (POT)
Davison and Smith (1990) (i.e. considering only those values of the
time series higher than a predefined threshold, that is, those values
which are a sample of exceedances), which has been used as a standard
approach for these predictions Caires and Sterl (2005), Viselli et al.
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5.2. Efficient fog prediction with multi-objective evolutionary

neural networks

As stated before, aviation is the transportation system most strongly impacted by the

adverse weather conditions. Concerning airport operations, there are some factors which

reduce visibility, and one of the most important ones is fog. This factor has a significant

impact on safety and efficiency of airport-related operations, such as taxiing, take-off and

landing.

In this work, we study, analyse and construct a model for fog prediction in the airport

of Valladolid. Given the location of this airport, fog formation is commonly produced in

the cold months of the year, resulting in the problems previously explained. Physical data

is collected from different sensors situated in many parts of the airport, considering as the

most important ones wind speed, wind direction, temperature, humidity and pressure. The

RVR is a meteorological variable defined as the range over which the pilot of an aircraft on

the central line of a runway can see the runway surface markings or the lights delineating

the runway or identifying its centre line. RVR is a critical parameter for several operations,

so our objective is to predict fog formation using the RVR as the decision variable with a

6-hour horizon with respect the data collected from the sensors.

In this way, we consider fog events when RVR is less than 1990 metres, so the

problem is cast into a binary classification where the output is a 1 when fog is present

(RVR<1990m), 0 otherwise. We use ANNs with SU, PU or RBF, to make a prediction

model, and given the imbalanced nature of the dataset (the number of fog events is much

lower), we decide to use an MOEA for optimising their parameters and structure. This

algorithm takes into account the traditional global accuracy and the minimum sensitivity

(the lowest percentage of patterns correctly classified as belonging to each class with

respect to the total number of examples in the corresponding class).

The best model is obtained when using PUs as basis functions showing that a simple

model with only two hidden neurons can predict this kind of events with a six-hour reso-

lution. This model is also discussed through the importance of each variable, confirming

that the model agrees with the physical properties of fog formation.
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a  b  s  t  r  a  c  t

This  paper  proposes  the  application  of  novel  artificial  neural  networks  with  evolutionary  training  and
different  basic  functions  (sigmoidal,  product  and  radial),  for  a real  problem  of  fog  events  classification
from  meteorological  input  variables.  Specifically,  a Multiobjective  Evolutionary  Algorithm  is  considered
as  artificial  neural  network  training  mechanism  in order  to  obtain  a  binary  classification  model  for  the
detection  of fog  events  at Valladolid  airport  (Spain).  The  evolutionary  neural  models  developed  are based
on two-dimensional  performance  measures:  traditional  accuracy  and  the  minimum  sensitivity,  as  the
lowest  percentage  of examples  correctly  predicted  as  belonging  to each  class  with  respect  to the  total
number  of  examples  in  the  corresponding  class.  These  performance  measures  are  directly  related  to
features  associated  with  any  classifier:  its global  performance  and  the  rate  of the worst  classified  class.
These  two  objectives  are  usually  in  conflict  when  the  optimization  process  tries  to  construct  models  with
a  high  classification  rate  level in the  generalization  dataset,  and  also  with  a  good  classification  level  for
each  class  or  minimum  sensitivity.  A  sensitivity  analysis  of  the  proposed  models  is carried  out,  and  thus
the  subjacent  relations  between  the  input  variables  and  the output  classification  target  can  be better
understood.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Aviation is perhaps the transportation system most strongly
impacted by adverse weather conditions. Severe weather phe-
nomena affect almost all phases of flight, inducing air traffic flow
disruptions, increasing the workload of air traffic controllers and
pilots and eventually resulting in flight delays, diversions and
cancellations. Regarding airport operations, there are some atmo-
spheric phenomena, such as sandstorms, duststorms, snowfall or
heavy rain that can degrade visibility. Nevertheless, fog forma-
tion is possibly the most important and frequent one [1]. Fog is
a hydrometeor defined as a collection of liquid water droplets or
ice crystals suspended in the air, forming a low level cloud with its
base very close or in contact with the ground. Foggy conditions at
airports can have a significant impact on both the safety and the

∗ Corresponding author at: Department of Computer Science and Numerical Anal-
ysis, University of Cordoba, Rabanales Campus, Albert Einstein Building, 3rd Floor,
14014, Córdoba, Spain.

E-mail address: i92duroa@uco.es (A.M. Durán-Rosal).

efficiency of airport-related operations (taxiing, take-off and land-
ing). It has an increasing impact on both high-demand airports and
local/regional airport networks [2]. Moreover, low visibility atmo-
spheric conditions have been unfortunately a crucial factor in some
historical accidents and incidents (e.g. on March 1977, fog was one
of the determining factors that caused the worst accident in avia-
tion history where two Boeing 747s collided at Los Rodeos airport
– Tenerife, Spain). Among all the meteorological data collected at
airports to support air navigation and airport operations in deal-
ing with low-visibility atmospheric conditions, the Runway Visual
Range (RVR) is the most significant one. The RVR is a meteorological
variable defined as the range over which the pilot of an aircraft on
the central line of a runway can see the runway surface markings
or the lights delineating the runway or identifying its centre line
[3]. RVR is a critical parameter for several operations. For example:
low-visibility approach procedures are dependent on whether RVR
falls within particular ranges: in fact, airports activate the so-called
Low Visibility Procedures (LVP) when the RVR value is low enough
so as to hamper safe operations [4]. Thus, an efficient methodology
to predict whether or not RVR value will fall within low-visibility
conditions is more than desirable.

https://doi.org/10.1016/j.asoc.2018.05.035
1568-4946/© 2018 Elsevier B.V. All rights reserved.



No human investigation can be called real science if it
cannot be demonstrated mathematically.

Leonardo da Vinci

6
Statistical distribution-based learning

This chapter presents two works related to the determination of the statistical dis-

tribution of time series to guide posterior operations.

Main publications associated to this chapter:

• A. M. Durán-Rosal, M. Carbonero, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “On the

use of a mixed distribution to fix the threshold for Peak-Over-Threshold wave height

estimation”, Coastal Engineering, 2019. JCR(2017): 2.674 Position: 21/128 (Q1).

Under Review.

• D. Guijo-Rubio, A. M. Durán-Rosal, A. M. Gómez-Orellana, P. A. Gutiérrez, and

C. Hervás-Mart́ınez. “Distribution-based discretisation and ordinal classification ap-

plied to wave height prediction”. 19th International Conference on Intelligence Da-

ta Engineering and Automated Learning (IDEAL2018). 2018. pp 171-179. DOI:

10.1007/978-3-030-03496-2 20

The first publication proposes a new theoretical distribution and the method to fit

the parameters of this distribution in SWH time series, while the second proposed a new

way to discretise the time series using the best-fitted statistical distribution selected using

objective criteria, for the posterior ordinal classification of the segments produced by this

discretisation. These proposals are now presented in the different sections of this chapter.
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6.1. On the use of a mixed distribution to fix the threshold for

peak-over-threshold wave height estimation

Modelling the distribution of SWH time series and, specifically, modelling extreme

distributions, where the higher waves are much less frequent than the lower ones, is an

open research studied by many authors, as we stated in the Introduction section. This has

been tackled from the point of view of the POT methodologies, where modelling is based

on those values higher than a threshold. The main problem is that the threshold is usually

predefined by the user, and the rest of the values are ignored.

In this paper, we propose a new methodology (showing the proposal and the asso-

ciated theoretical discussion) to estimate the distribution of the whole time series, that

is, taking into account both extreme and normal values. This methodology starts with the

main hypothesis that time series presenting extreme values can be modelled by a normal

distribution in combination with a uniform one. In this way, the assumption consists in

considering that extreme wave heights are normally distributed, and they are added as to

standard values from a uniform distribution, considering the values from this distribution

as part of the problem and never as noise. In the results, it is statistically shown that the

distribution of this kind of time series can be adjusted by the proposed methodology.

Once the whole distribution is determined, it is used to fix the threshold for the POT

approaches. For this, we use the percentiles 95 %, 97.5 % and 99 % as different values

for the threshold, and then, the distribution of those values which are over these per-

centiles are adjusted using the EVT distributions: GPD, Gamma distribution and Weibull

distribution. The best-fitted distribution is selected according to the values of AIC and BIC

objective criteria.

The methodology is tested in nine real-world time series collected from buoys situa-

ted in the Gulf of Alaska (id numbers 46001 and 46075), in Puerto Rico (41043, 41044,

41046, 41047, 41048 and 41049), and in Spain (SIMAR-44). The methodology can fit

the distribution of these time series, which is corroborated by a Kolmogorov-Smirnov test,

and the best fit distribution of the extreme values situated over the threshold fixed by this

methodology is the GPD.
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Abstract

Modelling extreme values distributions, such as wave height time series where the higher waves are much less frequent than the
lower ones, has been tackled from the point of view of the Peak-Over-Threshold (POT) methodologies, where modelling is based
on those values higher than a threshold. This threshold is usually predefined by the user, while the rest of values are ignored. In
this paper, we propose a new method to estimate the distribution of the complete time series, including both extreme and regular
values. This methodology assumes that extreme values time series can be modelled by a normal distribution in a combination of a
uniform one. The resulting theoretical distribution is then used to fix the threshold for the POT methodology. The methodology is
tested in nine real-world time series collected in the Gulf of Alaska, Puerto Rico and Gibraltar (Spain), which are provided by the
National Data Buoy Center (USA) and Puertos del Estado (Spain). By using the Kolmogorov-Smirnov statistical test, the results
confirm that the time series can be modelled with this type of mixed distribution. Based on this, the return values and the confidence
intervals for wave height in different periods of time are also calculated.

Keywords:
Wave height time series, modelling mixed distribution, forecasting, method of moments

1. Introduction

Significant wave height forecasting is an important task for
designing coastal and off-shore structures [1]. In this sense, the
incorporation of wave models into numerical weather predic-
tion models can improve atmospheric forecasts [2]. The de-
velopment of offshore installations for oil and gas extraction
and for renewable energy exploitation requires knowledge of
the wave fields and any potential changes in them. One of the
main problems is that the knowledge of the maximum peak-
to-trough wave height is not usually available although largest
waves have the greatest impact on ships and offshore structures
[3].

The importance of time series data mining has been increas-
ing exponentially in the last decade [4, 5]. They are present in
different fields of application, e.g. climate [6], hydrology [7],
GPU deep learning [8] and much more. In addition, they are
used for different research objectives, such as classification [9],
tipping point detection [10], forecasting [11], etc.

Basically, a time series can be defined as temporal data col-
lected in different periods of time. In this sense, the observation
of a random variable in regular periods of time can lead to the
introduction of noise. That is, if the period between two con-
secutive observations is much lower than the real cadence of the

∗Corresponding author at: Department of Computer Science and Numerical
Analysis, University of Córdoba, Rabanales Campus, Albert Einstein Building
3rd Floor, 14071 Córdoba, Spain. Tel.: +34 957 218 349; Fax: +34 957 218
630. E-mail addresses: i92duroa@uco.es, mcarbonero@uloyola.es, pagutier-
rez@uco.es, chervas@uco.es

phenomenon under investigation, a high number of observed
values will be very close to the average value of the character-
istic studied.

In the context of oceanography and specifically, in the de-
termination of extreme wave height values, if we consider a
buoy collecting the wave height value every four hours, then a
high proportion of values close to the average wave height will
be recorded. This results in the fact that extreme wave heights,
which are probably the most interesting ones, will be outnum-
bered by a set of very similar values without special interest.
These non-informative observations have a distorting effect on
the measures that could be taken to analyse the variable, be-
cause they do not significantly change the mean value but re-
duce the deviation, increasing the sample size.

Consequently, wave height extreme values will change from
being more or less infrequent to atypical or outliers, with the
drawbacks that this means for its analysis and prediction. The
presence of these extreme values produces a denaturalization of
the standard wave height probability distribution. For this rea-
son, it is necessary to define thresholds of wave height from
which the extreme wave distributions are considered, where
large time series are needed, given that the number of these
events every year is very low and depends on the oceanic posi-
tion of the buoy.

Statistical methods to determine extreme wave heights us-
ing the Peaks-Over-Threshold approach (POT) have been sig-
nificantly improved for several years. Mathiesen et al. [12] use
the POT method along with a Weibull distribution estimated by
a maximum likelihood procedure. This is applied to the pre-

Preprint submitted to Coastal Engineering February 19, 2019



diction of significant wave heights associated with high return
periods, considering that 100 years or more is enough for the
extensive use of ocean’s resources. In 2001, Coles [13] intro-
duced the GPD-Poisson by fitting a Generalized Pareto Distri-
bution (GPD), which was also used later on [14, 15].

In 2011, Mazas and Hamm [16] proposed the determination
of extreme wave heights using a POT approach, where a double
threshold (u1, u2) is presented. A low value u1 is set to select
both weak and strong storms. Then, a second higher threshold
(u2) has to be determined to decide which storms have a statis-
tically extreme behaviour. Tree probability distributions of ex-
treme values are used to determine u2: GPD-Poisson, Weibull
and Gamma distributions. To select the best-fitting distribution,
two objective criteria based on likelihood (Bayesian Informa-
tion Criterion [17], BIC, and Akaike Information Criterion [18],
AIC) are used.

More recently, Petrov et al. [19] presented a maximum en-
tropy (MaxEnt) method for the prediction of extreme significant
wave heights, comparing it with the state of the art method-
ologies of the Extreme Value Theory (EVT): the GPD and the
Generalized Extreme Value distribution (GEV). According to
the definition of the MaxEnt principle, the distribution that pro-
vides the highest entropy is selected to give more information
among all other possible distributions that satisfy the proposed
constraints.

As can be seen, all methods are based on selecting a thresh-
old and modelling the distribution of the wave heights over this
threshold. Thus, the main problem is how to select this thresh-
old in order to avoid information loss. For that, it could be
interesting to model the complete time series with both regu-
lar and extreme values and to use this theoretical distribution
to fix the threshold for the POT approach. In this paper, we
propose a new methodology to determine the distribution of the
extreme wave heights considering that the normally distributed
extreme wave heights are added as to regular values from a uni-
form distribution. The reason for choosing a uniform distribu-
tion is that, outside a range around the mean, all observations
of wave height should be assumed to be part of the problem
and never noise. This makes us discard the normal distribution
as a contamination distribution. After that, using the estimated
theoretical mixed distribution, we set the threshold for the POT
methodologies. In this way, we fit several distributions of the
values over this threshold and select the best-fitting distribution
according to the BIC and AIC criteria.

The novel contributions of this work to applied energy is-
sues are:

• In atmospheric time series, such as wave height [20],
wind power [21] or fog formation in airports [22, 23],
there are many values close to the average. This makes
that extreme values of time series, which are the most in-
teresting ones, are hidden by uninteresting values. For
this reason, these values have a distorting effect on ex-
treme values. In this paper, we show that regular values
do not significantly change the mean value of the time se-
ries, but they reduce the deviation by increasing the sam-
ple size.

• We propose a new methodology which, up to the author
knowledge, has not been applied before to energy time
series. This methodology is able to determine the distri-
bution of the complete time series, taking into account
that wave height time series distribution is a mixture of
a normal distribution of extreme values and noise from a
uniform distribution.

• For adjusting the four parameters needed to define the
mixed distribution, we used the method of moments [24],
given that our methodology uses the raw time series.

• When the mixed distribution is estimated, this methodol-
ogy is used to determine the threshold needed for POT
approaches. We assume that using the extreme values
situated over a percentile of the theoretical mixed dis-
tribution is more reliable than using a predefined value
adjusted by a trial and error process. In this way, our
methodology is applied to obtain return values for 1, 2,
5, 10, 20, 50 and 100 years for nine real-world wave
height time series, using three different percentiles from
the mixed distribution.

The rest of the paper is organized as follows: Section 2
briefly explains the Extreme Value Theory, while Section 3 in-
troduces the proposed methodology. In Section 4, the combina-
tion of both perspectives is presented. Section 5 shows the con-
sidered time series, the experimental setting and the statistical
analysis of the results obtained. Finally, the paper is concluded
in Section 6.

2. Extreme Value Theory

Extreme Value Theory (EVT) is associated to the maximum
sample Mn = max(X1, . . . , Xn), where (X1, . . . , Xn) is a set of in-
dependent random variables with common distribution function
F. In this case, the distribution of the maximum observation is
given by Pr(Mn < x) = Fn(x). The hypothesis of indepen-
dence when the X variables represent the wave height over a
determined threshold is quite acceptable, because, for oceano-
graphic data, it is common to adopt a POT scheme which selects
extreme wave height events that are approximately independent
[25]. Also, in [26], authors affirm that “The maximum wave
heights in successive sea states can be considered independent,
in the sense that the maximum height is dependent only on the
sea state parameters and not in the maximum height in adjacent
sea states”. This Mn variable is described with one of the three
following distributions: Gumbel, Frechet, and Weibull.

One methodology in EVT is to consider wave height time
series with the annual maximum approach (AM), where X rep-
resents the wave height collected on regular periods of time of
one year, and Mn is formed by the maximum values of each
year. The statistical behaviour of AM can be described by the
distribution of the maximum wave height in terms of General-
ized Extreme Value (GEV) distribution [27]:

G(x) =


exp

{
−

[
1 + ξ

(
x−µ
σ

)] 1
ξ

}
, ξ , 0,

exp
{
− exp

(
−

(
x−µ
σ

))}
, ξ = 0,

(1)
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where:

0 < x < 1 + ξ
( x − µ
σ

)
, (2)

where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. As can be
seen, the model has three parameters: location (µ), scale (σ),
and shape (ξ).

The estimation of the return values, corresponding to the
return period (Tp), are obtained by inverting Eq. 1:

zp =


µ − σ

ξ

[
1 − {− log(1 − p)

}−ξ] , ξ , 0,
µ − σ log {−log(1 − p)} , ξ = 0,

(3)

where G(zp) = 1 − p. Then, zp will be exceeded once per 1/p
years, which corresponds to Tp.

The alternative method in the EVT context is the Peak-
Over-Threshold (POT), where all values over a threshold prede-
fined by the user are selected to be statistically described instead
of only the maximum values [28, 29]. POT method has become
a standard approach for these predictions [12, 29, 30]. Further-
more, several improvements over the basic approach have been
proposed by various authors since then [31, 32, 33, 19, 25].

The POT method is based on the fact that if the AM ap-
proach uses a GEV distribution (Eq. 1), the peaks over a high
threshold should result in the related approximated distribution:
the Generalized Pareto Distribution (GPD). The GPD fitted to
the tail of the distribution gives the conditional non-exceedance
probability P(Hmax ≤ x|Hmax > u), where u is the threshold
level. The conditional distribution function can be calculated
as:

P(X ≤ x|X > u) =


1 −

(
1 + ξ∗

(
x−u
σ∗

)) 1
ξ∗ , ξ∗ , 0,

1 − exp
(
−

(
x−u
σ∗

))
, ξ∗ = 0.

(4)

There is consistency between the GEV and GPD models,
meaning that the parameters can be related to ξ∗ = ε and σ∗ =

σ+ξ(u−µ). The parameters σ and ξ are the scale and shape pa-
rameters, respectively. When ξ ≥ 0, the distribution is referred
to as long tailed. When ξ < 0, the distribution is referred to as
short tailed. The methods used to estimate the parameters of the
GPD and the selection of the threshold will be now discussed.

The use of the GPD for modelling the tail of the distribu-
tion is also justified by asymptotic arguments in [13]. In this
paper, author confirms that it is usually more convenient to in-
terpret extreme value models in terms of return levels, rather
than individual parameters. In order to obtain these return lev-
els, the exceedance rates of thresholds have to be determined as
P(X > u). In this way, using Eq. 4 (P(X > x|X > u) = P(X >
x)/P(X > u)) and considering that zN is exceeded on average
every N observations, we have:

P(X > u)
[
1 + ξ∗

( zN − u
σ∗

)]− 1
ξ∗

=
1
N
. (5)

Then, the N-year return level zN is obtained as:

zN = u +
σ∗

ξ∗
[
(N ∗ P(X > u))ξ

∗ − 1
]
. (6)

There are many techniques proposed for the estimation of
the parameters of GEV and GPD. In [19], authors applied the
maximum likelihood methodology (ML) described in [13]. How-
ever, the use of this methodology for two parameter distribu-
tions (i.e. Weibull or Gamma) has a very important drawback:
these distributions are very sensitive to the distance between
the high threshold (u2) and the first peak [16]. For this rea-
son, ML could be used with two-parameter distribution when
u2 reaches a peak. As this peak is excluded, the first value of
the exceedance is as far from u2 as possible. A solution would
be to use the three-parameter Weibull and Gamma distributions.
However, ML estimation of such distributions is very difficult,
and the algorithms usually fit two-parameter distributions inside
a discrete range of location parameters [34].

3. Methodology

As stated before, in this paper, we present a new method-
ology to model this kind of time series considering not only
extreme values but also the rest of observations. In this way,
instead of selecting the maximum values per a period (usually a
year) or defining thresholds in the distribution of these extreme
wave heights, we model the distribution of all wave heights,
considering that it is a mixture formed by a normal distribution
and a uniform distribution. The motivation is that the uniform
distribution is associated to regular wave height values and con-
taminate the normal distribution of extreme values. This theo-
retical mixed distribution is used then to fix the threshold for
the estimation of the POT distributions.

Let us consider as a sequence of independent random varia-
bles, (X1, . . . , Xn) of wave height data. These data follow an
unknown continuous distribution. We assume that this distribu-
tion is a mixture of two independent distributions: Y1 ∼ N(µ, σ)
and Y2 ∼ U(µ − δ, µ + δ), where N(µ, σ) is a Gaussian distribu-
tion, U(µ − δ, µ + δ) is a uniform distribution, µ is the common
mean of both distributions, σ is the standard deviation of Y1,
and δ is the radius of Y2. Then X = γY1 + (1 − γ)Y2, being
γ the probability that an observation comes from the normal
distribution.

For the estimation of the values of these four parameters
(µ, σ, δ, γ), the standard statistical theory considers the least squares
methods, the method of moments and the maximum likelihood
(ML) method. In this context, Mathiesen et al. [12] found
that the least squares methods are sensitive to outliers, although
Goda [35] recommended this method with modified plotting
position formulae. The author also proposed the method of
moments as first approximation, because this method gives too
much bias for the typical samples sizes using AM or POT mod-
els. However, it is not our case because our methodology uses
all the values of the wave height time series.

The ML method is commonly used in metocean applica-
tions [25], due to its asymptotic properties of being unbiased
and efficient. However, the ML estimators do not achieve these
asymptotic properties until they are applied to large sample
sizes. Hosking and Wallis [36] showed that the ML estimators
are non-optimal for sample sizes up to 500, with higher bias

3



and variance than other estimators, such as moments and prob-
ability weighted-moments estimators. Furthermore, the use of
ML estimation for two-parameter distributions such as Weibull
and Gamma distributions has the drawback [16] previously dis-
cussed. Besides, the ML estimation is known to provide poor
results when the maximum is at the limit of the interval of va-
lidity of one of the parameters. On the other hand, the esti-
mation of the GPD parameters is subject of ongoing research.
A quantitative comparison of recent methods for estimating the
parameters was presented by Kang and Song [37]. In our case,
having to estimate four parameters, we have decided to use the
method of moments, for its analytical simplicity.

Considering φ as the probability density function (pdf) of a
standard normal distribution N(0, 1), the pdf of Y1 is defined as:

f1(x) =
1
σ
φ(zx), zx =

x − µ
σ

, x ∈ R. (7)

The pdf of Y2 is:

f2(x) =
1
2δ
, x ∈ (µ − δ, µ + δ). (8)

Consequently, the pdf of X is:

f (x) = γ f1(x) + (1 − γ) f2(x), x ∈ R. (9)

To infer the values of the four parameters of the wave height
time series (µ, σ, δ, γ), we define, for any symmetric random
variable with respect to the mean µ with pdf g and finite mo-
ments, a set of functions in the form:

Uk(x) =

∫

|t−µ|≥x
|t − µ|kg(t)dt, x ≥ 0, k = 1, 2, 3, . . . , (10)

or because of its symmetry:

Uk(x) = 2
∫ ∞

x+µ

(t − µ)kg(t)dt, k = 1, 2, 3, . . . . (11)

These functions are well defined for the same moments of the
variable x, because:

Uk(x) <
∫ ∞

−∞
|t − µ|kg(t)dt < ∞, k = 1, 2, 3, . . . . (12)

Particularly, for the normal and uniform distributions, all
the moments are finite, and the same happens for all the Uk(x)
functions. This function measures, for each pair of values x and
k, the bilateral tail from the value x of the moment with respect
to the mean of order k of the variable. It is, therefore, a general-
ization of the concept of probability tail, which is obtained for
k = 0.

Now, if we denote the corresponding moments for the dis-
tributions Y1 and Y2 by Uk,1(x) and Uk,2(x), it is verified that:

Uk(x) = γUk,1(x) + (1 − γ)Uk,2(x). (13)

Then, to calculate the function Uk(x), we just need to calculate
the functions Uk,1(x) and Uk,2(x).

3.1. Calculation Uk for the uniform distribution (Uk,2)

From the definition of f2(x) and Uk(x), if x does not exceed
δ:

Uk,2(x) = 2
∫ µ+δ

µ+x
(t − µ)k 1

2δ
dt =

(t − µ)k+1

(k + 1)δ

∣∣∣∣∣∣
µ+δ

µ+x
=
δk+1 − xk+1

(k + 1)δ
,

(14)

then,

Uk,2(x) =


δk+1−xk+1

(k+1)δ 0 ≤ x ≤ δ,
0 x > δ.

(15)

3.2. Calculation Uk for the normal distribution (Uk,1)

From the definition of the f1(x) and Uk(x), we have:

Uk,1(x) =
2
σ

∫ ∞

µ+x
(t − µ)kφ

( t − µ
σ

)
dt. (16)

Let the variable u be in the form u =
t−µ
σ

, then:

Uk,1(x) = 2
∫ ∞

x
σ

(uσ)kφ(u)du = σkΥk

( x
σ

)
, (17)

where Υk = 2
∫ ∞

x (u)kφ(u)du. Υk(z) is the Uk function calcu-
lated for a N(0, 1) distribution, which will be then updated with
values of k = 1, 2, 3.

3.2.1. Proposition I
The following equations are verified:

Υ1(x) = 2
∫ ∞

x
uφ(u)du = 2φ(x), (18)

Υ2(x) = 2
∫ ∞

x
u2φ(u)du = 2(1 − Φ(x) + xφ(x)), (19)

Υ3(x) = 2
∫ ∞

x
u3φ(u)du = 2(2 + x2)φ(x), (20)

where Φ is the cumulative distribution function (CDF) of the
N(0, 1) distribution. See Appendix A for the demonstration of
proposition I.

3.3. Sample estimates of Uk

For each value of k and x ≥ 0, the sample estimator of Uk

obtained by the method of moments is:

uk(x) =
1
n

∑

|xi−µ|≥x

|xi − µ|k, (21)

which has the properties described in the following proposi-
tions.

3.3.1. Proposition II
The estimator uk(x) is an unbiased estimator of Uk(x). See

Appendix B for the demonstration of proposition II.
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3.3.2. Proposition III
The estimator uk(x) is a consistent estimator of Uk(x). See

Appendix C for the demonstration of propostition III.

3.4. Estimation of σ, δ, and γ parameters
Applying the method of moments, we have the following

three-equation system:

Uk(0) = uk(0), k = 1, 2, 3. (22)

The reason for choosing the origin is that it has the maximum
amount of information about the uk(x) functions defined in Eq.
21. If a nonzero x value is chosen, the estimate will discard all
observations in the interval (µ − x, µ + x). Substituting equa-
tions 15, A.11, A.12 and A.13 in Eq. 13, the resulting equation
system is:

γU1,1(0) + (1 − γ)U1,2(0) = γσ

√
2
π

+ (1 − γ)
δ

2
= u1(0),

(23)

γU2,1(0) + (1 − γ)U2,2(0) = γσ2 + (1 − γ)
δ2

3
= u2(0), (24)

γU3,1(0) + (1 − γ)U3,2(0) = γσ32

√
2
π

+ (1 − γ)
δ3

4
= u3(0),

(25)

where the solution must satisfy: σ̂, δ̂ > 0 and γ ∈ [0, 1].

3.5. Adjustment to the mixed distribution
To contrast if the obtained estimators are valid, we could

see if the set of observations {x1, . . . , xn} fit the pdf of the final
distribution:

f̂ (x) = γ̂ f̂1(x) + (1 − γ̂) f̂2(x), x ∈ R, (26)

where:

f̂1(x) =
1
σ̂
φ

(
x − µ̂
σ̂

)
, x ∈ R, (27)

and:

f̂2(x) =
1
2δ̂

, x ∈ (µ̂ − δ̂, µ̂ + δ̂). (28)

For this purpose, a test that can be used is the Kolmogorov-
Smirnov test. The one-sample Kolmogorov-Smirnov test [38]
is commonly used to examine whether samples come from a
specific distribution function by comparing the observed cumu-
lative distribution function with an assumed theoretical distri-
bution. The Kolmogorov-Smirnov statistic Z is computed from
the largest difference (in absolute value) between the observed
and theoretical cumulative distribution. In this way, Z is the
greatest vertical distance between empirical distribution func-
tion S (x) and the specified hypothesized distribution function
F∗(x), which can be calculated as:

Z = max
x
|F∗(x) − S (x)|, (29)

where the null hypothesis is H0 : F(x) = F∗(x) for all −∞ <
x < ∞, and the alternative hypothesis is H1 : F(x) , F∗(x) for
at least one value of x, F(x) being the true distribution. If Z
exceeds the 1-α quantile value (Q(1 − α)), then we reject H0 at
the level of significance of α. When the number of observations
n is large, the Q(1 − α) value can be approximated as [39]:

Q(1 − α) =

√−0.5 log (α2 )√
n

. (30)

4. Using the theoretical mixed distribution to fix the thres-
hold of the POT approaches

In this paper, when the mixed distribution is estimated, we
use it to set the threshold for estimating the POT distributions.
We assume that using the points which are situated over a per-
centile of the theoretical mixed distribution is more reliable than
using a threshold value predefined by a trial and error proce-
dures. In our work, we consider the 95%, 97.5% and 99% per-
centiles as possible thresholds.

In this way, a new sample of independent random variables
is defined by Z = (z1, z2, . . . , zM), where Z = X > u, u being
the threshold and M being the number of exceedances. In this
work, three distributions are fitted for the threshold exceedance
distribution:

• The first one is the GPD [40], whose cumulative function
is defined in Eq. 4.

• The second distribution is the Gamma distribution, with
the following cumulative function:

F(z; ξ, σ) =
γ(ξ, z

σ
)

Γ(ξ)
, (31)

where γ is the lower incomplete gamma function, and Γ

is the Gamma function.

• Finally, the Weibull distribution is also considered:

F(z; ξ, σ) = 1 − exp
[
−

( z
σ

)ξ]
. (32)

These three distributions are adjusted to the exceedances
using the Maximum Likelihood Estimator (MLE) [12]. After
that, we select the best fit based on two objective criteria: BIC
[17] and AIC [18]. On the one hand, BIC minimizes the bias
between the fitted model and the unknown true model:

BIC = −2 ln L + kp ln M, (33)

where L is the likelihood of the fit, M is the sample size (in our
case, the number of exceedances) and kp the number of parame-
ters of the distribution. On the other hand, AIC gives the model
providing the best compromise between bias and variance:

AIC = −2 ln L + 2kp. (34)

Both criteria need to be minimized.
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When the best-fitted distribution is obtained, the return pe-
riod T (HsT ) is calculated, and then the confidence intervals are
computed. As can be seen in the experimental section, the GPD
is the best distribution for all cases. The quantile for the GPD
is:

HsT = µ +
σ

ξ

[
1 − (λT )−ξ

]
, (35)

where λ is the number of exceedances per year.
Finally, confidence intervals are also computed. For that,

many authors use the classical asymptotic method [13]. How-
ever, Mathiesen et al. advocate the use of Monte-Carlo (MC)
simulation techniques. A robust way is to use parametric boot-
strap methods [15]. Also, Mackay and Johanning [26] proposed
a storm-based MC method for calculating return periods of in-
dividual wave and crest heights. In the MC method, a random
realisation of the maximum wave height in each sea state is sim-
ulated from the metocean parameter time series, and the GPD
is fitted to storm peak wave heights exceeding some threshold.
Mackay and Johanning [26] showed that using n = 1000 is suf-
ficient to obtain a stable estimation, although in our case, we
have considered n = 100000 following the work of [16]. In
[16], as in our work, authors used the MC simulation method,
and, after 100000 iterations, the 90% confidence interval is ob-
tained using the percentiles [HsT,5%; HsT,95%] of the 100000
HsT values obtained with the procedure.

5. Experimental results and discussion

This section describes the time series used in our work,
shows the experimental setting and presents the results validat-
ing the proposed methodology.

5.1. Wave height time series

As stated before, the objective of this work is to model wave
height time series where extreme values are present. For this
reason, we evaluate the performance of the proposed methodol-
ogy in several real-world wave height time series from different
locations:

• Gulf of Alaska: two time series of significant wave height
collected from the National Data Buoy Center of the USA
[41] in the Gulf of Alaska have been used. The buoys
have the registration numbers 46001 and 46075. For the
two buoys, one value every six hours is considered. The
buoy 46001 is an offshore buoy placed in the coordinates
56.23N 147.95W, and data from 1st January 2008 to 31st
December 2013 is considered, with a total of 8767 ob-
servations. On the other hand, 46075 is an offshore buoy
whose coordinates are 53.98N 160.82W and data from
1st January 2011 to 31st December 2015 are collected in
this buoy (7303 observations).

• Puerto Rico: a total of six offshore buoys from Puerto
Rico have been selected in our experiments to evaluate
the proposed methodology. These buoys also belong to
the NDBC of the USA, with registration ids 41043, 41044,
41046, 41047, 41048 and 41049. One value every six

hours is considered, and data from 1st January 2011 to
31st December 2015 are used (7303 observations for each
one). The geographical coordinates for each buoy are
21.13N 64.86W, 21.58N 58.63W, 23.83N 68.42W, 27.52N
71.53W, 31.86N 69.59W, and 27.54N 62.95W, respec-
tively.

• Spain: this dataset comes from the SIMAR-44 hindcast
database provided by Puertos del Estado (Spain). The
point is placed in the Strait of Gibraltar, whose coordi-
nates are 36N 6W. One value every three hours is consid-
ered in this dataset from 1st January 1959 to 31 Decem-
ber 2000, forming a set of 122278 observations. Note
that, it is the largest time series in our experiments. Given
that the time series includes 42 years, we can estimate
long return periods of wave height.

The summary of the information for each time series can be
seen in Table 1 which includes the type of buoy, the location,
the geographical coordinates, the number of observations, the
mean values of the time series (Hs), and the maximum values
of each one. The map location can be observed in Figure 1,
while the representation of the time series are shown in Figure
2.

5.2. Experimental design
The experimental design for the time series under study is

presented in this subsection. We divide the experiments in two
stages:

• Firstly, the methodology is tested on the raw time series
presented in the previous subsection. The algorithm esti-
mates the parameters of the mixed distribution (µ, σ, δ, γ)
for each wave height time series, and then, the Kolmogo-
rov-Smirnov test is applied to check if the estimated dis-
tribution corresponds to the empirical distribution of the
data. It is important to mention that the Kolmogorov-
Smirnov test is applied considering n = 50, which is an
acceptable value for the Eq. 30, that is, we calculate the
CDF of the estimated theoretical function and the empir-
ical one in 50 intervals. Graphically, in this paper, we
show the comparison between the theoretical distribution
(estimated) and the empirical one (Figure 3).

• Secondly, as we stated in previous sections, we use the
theoretical mixed distribution to establish the threshold.
In this sense, we delete the values below the threshold,
and we fit the GPD, Gamma and Weibull distributions
with the remaining values (those which are higher than
the threshold). Based on two objective criteria, BIC and
AIC, we select the best-fitted distribution and, finally, the
return values of this distribution for the following return
periods in years T = (1, 2, 5, 10, 20, 50, 100) are calcu-
lated.

5.3. Discussion
The estimates and the Kolmogorov-Smirnov test results are

shown in Table 2. As can be seen, the estimation of the µ pa-
rameter is the same than the mean value of the time series (see
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Gulf of Alaska Puerto Rico Spain

46075
46001

41044
41043

41049
41046

41048

41047

SIMAR-44

Figure 1: Locations of the different buoys considered for the experimentation.

Id Type Location Coordinates # Observations Average Hs (m) Max Hs (m)
46001 Offshore Alaska 56.23N 147.95W 8767 2.65 10.17
46075 Offshore Alaska 53.98N 160.82W 7303 2.72 13.39
41043 Offshore Puerto Rico 21.13N 64.86W 7303 1.76 6.12
41044 Offshore Puerto Rico 21.58N 58.63W 7303 1.84 8.98
41046 Offshore Puerto Rico 23.83N 68.42W 7303 1.71 7.85
41047 Offshore Puerto Rico 27.52N 71.53W 7303 1.63 8.51
41048 Offshore Puerto Rico 31.86N 69.59W 7303 1.85 12.07
41049 Offshore Puerto Rico 27.54N 62.95W 7303 1.78 10.96

SIMAR-44 Coastal Spain 36.00N 6.00W 122278 1.09 8.60

Table 1: Characteristics of the time series recorded for every buoy.

Table 1), because we have used the sample mean as estimator
(see Section 3). σ estimation seems to be very high with re-
spect to the mean. It makes sense given that the estimation is
made with approximately 7000 points, the variance needing to
be high. δ has values in the interval (0.74,1.80) because there is
wave height data that, although not very small, contaminates the
normal distribution (in intervals of three months, the parameter
value is lower). γ, which is the probability that an observation
comes from the normal distribution, is very low. Again, this
makes sense because of the high amount of data which are not

extreme values and represent regular waves (uniform distribu-
tion). The Kolmogorov-Smirnov test does not reject the null
hypothesis for all cases, Z < Q(1 − α), confirming that the es-
timated parameters of the mixed distribution correspond to the
empirical values. For this reason, we can accept the theory pro-
posed in this paper as a good method to estimate the theoretical
distribution in wave height time series. Note that the Z values
are lower in those time series whose mean value is higher, so the
wave height time series collected from buoys 46001 and 46075
are better adjusted with this distribution, while the Spanish time
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series results in a worse fit. The results of the Kolmogorov-
Smirnov test can be complementary analysed with the repre-
sentation of the empirical and theoretical distribution, as can be
observed in Figure 3. The graphs show how the estimated the-
oretical distributions are adapted to the empirical distributions
in each database.

For the second experiment, Table 3 shows the values of the
BIC and AIC criteria when the GPD, Gamma and Weibull dis-
tribution are fitted using the values over the threshold deter-
mined by the percentiles 95%, 97.5% and 99% of the theoreti-
cal mixed distribution. The number of POTs (M) and the num-
ber of peaks per year (λ) are also included. As can be seen,
the higher the percentile, the lesser number of peaks per year,
because the number of POTs will be much lower. The results
confirm that the best fitted distribution for all databases and for
all percentiles is the GPD.

There exist a perfect correlation between the values of BIC
and AIC for the three percentiles (0.977, 0.998 and 1.000, re-
spectively), for the three distributions and the nine time series.
For this reason, we focus on the percentile 95% and the BIC
criterion, given that M and λ is higher with this percentile. For
instance, in buoy 46001, the BIC value for the GPD is 622.72,
a 69.8% lower than the value for the Gamma distribution, and a
73.5% lower than the value for the Weibull distribution. These
results differ from those obtained by [16] for the SIMAR-44
time series, where GPD gives poor results with respect to these
criteria when compared to Gamma; but it is important to men-
tion that we use a 3-parameter GPD instead of a 2-parameter
one.

Finally, the return values and the confidence intervals for
each dataset considering the different thresholds are summa-
rized in Table 4. We have considered return periods of T ∈
{1, 2, 5, 10, 20, 50, 100} years. If we compare the obtained re-
turn values and the confidence intervals with respect to the ones
obtained by Mazas and Hamm [16], for SIMAR-44 time series,
we can see that the results are not the same due to the differ-
ences in the thresholds, and because they consider 44 years in-
stead of 42, as the first and the last year are used although they
are not complete. We agree with the authors in that work in the
sense that choosing the right threshold is not always a straight-
forward issue. For example, if we consider the percentile 97.5%
of the theoretical mixed distribution, the return values and the
confidence intervals are quite similar to the ones obtained by
Mazas (with the slight differences commented above). With re-
spect to the values obtained for the rest of the buoys, up to our
knowledge, there are not other reference values. These esti-
mations are approximate, given the reduced length of the time
series (six years for buoy 46001 and five for the other buoys). If
we compare them with the extreme values that appear in Table
1, we can see that, for the buoys 46075, 41043, 41046, the con-
fidence intervals for the 95% percentile tend to contain these
values more frequently, for the buoys 41047, 41048, 41049 and
SIMAR-44, the confidence intervals are more adjusted, and, for
the buoys 46001 and 41044, there are no confidence intervals
that contain them.

6. Conclusions

This paper proposes a novel methodology for wave height
time series modelling based on the assumption that, given a
time series where the high waves are less common than lower
ones, its distribution can be modelled as a mixture of a normal
distribution with a uniform distribution. The methodology is
based on the method of moments, and we use it to establish
the threshold for the distribution estimation of the values over a
peak methodology (POT). The automatic determination of this
threshold is an important task, given that the alternative is to use
a trial and error method which, as several authors agree, can be
problematic and quite subjective. The whole approach is tested
on nine real-world time series collected from the Gulf of Alaska
(46001 and 46075), from Puerto Rico (41043, 41044, 41046,
41047, 41048 and 41049), and from Spain (SIMAR-44). For
SIMAR-44, we compare our return periods with those obtained
by Mazas and Hamm. The return periods obtained for the rest
buoys can be considered as an initial approximation given the
reduced length of the time series.

The experimentation is divided into two stages: the first one
analysed the estimation of the distribution in the nine time se-
ries, showing that the estimated theoretical distribution fits the
empirical one. These results are corroborated by a Kolmogorov-
Smirnov test where Z < Q(1 − α) in all databases. For the sec-
ond experiment, we use the percentiles 95%, 97.5% and 99%
of the estimated theoretical distribution as possible thresholds
for the POT distribution estimation. Results show that the best-
fitted distribution for the POT is the Generalized Pareto Distri-
bution in all cases, showing their return periods and confidence
intervals.

A future line of work could approach the segmentation of
the time series based on the percentiles of the obtained dis-
tribution and perform a posterior prediction of the segments
obtained. We also plan to extend this work using time series
from different fields and more advanced methods for forecast-
ing, such as artificial neural networks.
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Appendix A. Demonstration of proposition I

The three equations can be obtained using integration by
parts, but it is easier to derive the functions Υk(x) to check the
result. For the definition of the functions, for each value of k,
we have:

Υ
′
k(x) =

∂Υk(x)
∂x

= −2xkφ(x). (A.1)
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Id µ̂ σ̂ δ̂ γ̂ Z Q(1 − α)
46001 2.652597 2.082763 1.708683 0.296738 0.081194 0.192065
46075 2.724890 2.522156 1.799095 0.189406 0.080575 0.192065
41043 1.762838 0.956801 0.743943 0.224906 0.086916 0.192065
41044 1.836434 1.449356 0.795858 0.077810 0.107365 0.192065
41046 1.705895 1.236797 0.793447 0.170138 0.099714 0.192065
41047 1.633332 1.853012 0.893645 0.113544 0.110250 0.192065
41048 1.849044 2.435167 1.158171 0.109262 0.119285 0.192065
41049 1.777286 2.023050 0.998251 0.091232 0.132657 0.192065

SIMAR-44 1.093372 1.580551 0.748225 0.125561 0.142356 0.192065

Table 2: Parameter estimation and Kolmogorov-Smirnov test results.

Percentile 95% Percentile 97.5% Percentile 99%
Id M λ BIC AIC M λ BIC AIC M λ BIC AIC

GPD 662.72 653.33 786.42 774.61 313.09 303.98
46001 Gamma 806 134.33 2193.33 2183.95 379 63.17 1002.74 994.87 154 25.67 389.46 383.38

Weibull 2497.93 2488.54 1146.18 1138.30 441.27 435.20
GPD 1894.56 1880.56 818.69 807.23 290.39 281.88

46075 Gamma 786 157.20 2381.82 2372.49 337 67.40 1025.61 1017.97 126 25.20 389.93 384.26
Weibull 2719.86 2710.53 1188.91 1181.27 458.29 452.62

GPD 302.62 288.63 79.40 68.20 49.64 41.98
41043 Gamma 784 156.80 820.51 811.18 298 59.60 375.38 367.92 94 18.80 158.16 153.06

Weibull 1307.63 1298.30 574.64 567.17 207.79 202.69
GPD 346.78 332.89 320.77 307.14 50.51 42.41

41044 Gamma 758 151.60 1018.04 1008.78 694 138.80 947.71 938.63 110 22.00 249.05 243.65
Weibull 1638.67 1629.41 1521.01 1511.93 328.35 322.95

GPD 606.02 592.50 238.24 227.33 62.41 54.84
41046 Gamma 669 167.25 1040.63 1031.62 280 70.00 449.81 442.54 92 23.00 173.41 168.36

Weibull 1399.50 1390.49 628.37 621.10 235.26 230.21
GPD 1064.67 1051.34 580.17 568.91 185.58 177.85

41047 Gamma 629 157.25 1503.31 1494.42 316 79.00 775.16 767.65 97 24.25 253.51 248.36
Weibull 1749.18 1740.29 910.31 902.80 295.82 290.67

GPD 1776.19 1762.11 971.75 959.69 301.70 293.34
41048 Gamma 806 161.20 2320.91 2311.53 412 82.40 1231.09 1223.04 120 24.00 368.35 362.77

Weibull 2626.43 2617.05 1392.24 1384.20 421.23 415.66
GPD 1227.71 1213.61 895.71 882.74 226.25 218.09

41049 Gamma 811 162.20 1870.43 1861.03 558 111.60 1337.14 1328.49 112 22.40 324.23 318.80
Weibull 2277.40 2268.00 1624.41 1615.76 378.43 372.99

GPD 16998.99 16976.38 8345.27 8325.29 2867.27 2850.61
SIMAR-44 Gamma 13847 329.69 28375.75 28360.68 5768 137.33 12646.92 12633.60 1908 45.43 4089.08 4077.97

Weibull 33396.55 33381.48 14701.35 14688.03 4842.63 4831.52

Table 3: BIC and AIC criterion for the estimated distributions of the POT method.

Taking into account that ∂φ(x)
∂x = −xφ(x), and ∂Φ(x)

∂x = φ(x):

∂2φ(x)
∂x

= −2xφ(x) = Υ
′
1(x), (A.2)

∂(2(1 − Φ(x) + xφ(x)))
∂x

= 2(−φ(x) + φ(x) − x2φ(x)) =

= −2x2φ(x) = Υ
′
2(x), (A.3)

∂(2(2 + x2)φ(x))
∂(x)

= 2(2xφ(x) − (2 + x2)xφ(x)) =

= −2x3φ(x) = Υ
′
3(x). (A.4)

Therefore, the left and right sides of the previous equations dif-
fer in, at most, a constant. To verify that they are the same, we
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Percentile 95% Percentile 97.5% Percentile 99%
Id T HsT Confidence Interval HsT Confidence Interval HsT Confidence Interval

100 23.50 18.25 - 32.75 20.65 15.17 - 32.21 28.71 18.17 - 62.30
50 21.46 17.00 - 29.06 18.95 14.46 - 28.29 25.09 16.99 - 50.77
20 18.97 15.47 - 24.49 16.87 13.31 - 23.42 21.01 15.12 - 37.18

46001 10 17.22 14.34 - 21.59 15.40 12.56 - 20.75 18.38 13.84 - 29.61
5 15.60 13.18 - 19.17 14.03 11.70 - 18.04 16.09 12.60 - 24.10
2 13.61 11.89 - 16.11 12.35 10.66 - 15.08 13.51 11.28 - 18.14
1 12.22 10.88 - 14.15 11.18 9.93 - 13.15 11.84 10.32 - 14.79

100 16.24 12.99 - 21.77 16.69 12.48 - 25.15 12.59 9.79 - 21.29
50 15.39 12.49 - 19.95 15.78 12.11 - 22.95 12.22 9.67 - 19.40
20 14.28 11.85 - 18.21 14.59 11.59 - 20.30 11.70 9.48 - 17.23

46075 10 13.44 11.34 - 16.68 13.70 11.15 - 18.38 11.27 9.40 - 15.90
5 12.60 10.78 - 15.27 12.81 10.69 - 16.51 10.82 9.19 - 14.24
2 11.49 10.06 - 13.58 11.64 10.00 - 14.26 10.18 8.94 - 12.58
1 10.64 9.49 - 12.23 10.77 9.50 - 12.82 10.18 8.94 - 12.58

100 6.47 5.38 - 8.34 4.68 4.04 - 5.93 4.58 3.99 - 6.48
50 6.20 5.26 - 7.81 4.61 4.02 - 5.72 4.54 3.97 - 6.23
20 5.85 5.02 - 7.10 4.50 3.97 - 5.46 4.48 3.96 - 5.90

41043 10 5.57 4.84 - 6.63 4.41 3.94 - 5.23 4.42 3.94 - 5.59
5 5.29 4.66 - 6.21 4.30 3.89 - 5.03 4.35 3.93 - 5.33
2 4.93 4.43 - 5.62 4.15 3.81 - 4.69 4.23 3.88 - 4.96
1 4.64 4.24 - 5.21 4.02 3.73 - 4.46 4.13 3.84 - 4.66

100 5.10 4.42 - 6.19 5.06 4.40 - 6.15 4.03 3.78 - 4.65
50 4.99 4.36 - 5.96 4.95 4.32 - 5.94 4.02 3.78 - 4.61
20 4.83 4.28 - 5.66 4.80 4.26 - 5.67 4.01 3.78 - 4.54

41044 10 4.70 4.21 - 5.45 4.68 4.18 - 5.43 4.00 3.78 - 4.49
5 4.56 4.12 - 5.19 4.55 4.11 - 5.21 3.98 3.77 - 4.42
2 4.36 4.00 - 4.87 4.35 3.99 - 4.89 3.95 3.76 - 4.30
1 4.20 3.89 - 4.62 4.19 3.88 - 4.62 3.91 3.75 - 4.21

100 7.53 6.01 - 10.21 6.50 5.13 - 9.55 4.87 4.26 - 6.83
50 7.20 5.86 - 9.49 6.29 5.07 - 8.94 4.83 4.25 - 6.60
20 6.75 5.62 - 8.63 6.00 4.96 - 8.11 4.77 4.24 - 6.22

41046 10 6.41 5.43 - 7.99 5.77 4.83 - 7.49 4.72 4.22 - 5.98
5 6.06 5.21 - 7.35 5.53 4.72 - 6.96 4.65 4.20 - 5.70
2 5.60 4.92 - 6.59 5.19 4.55 - 6.27 4.55 4.17 - 5.31
1 5.24 4.68 - 6.04 4.92 4.41 - 5.76 4.45 4.14 - 5.05

100 7.83 6.25 - 10.50 10.37 7.58 - 16.37 9.35 6.55 - 19.55
50 7.57 6.14 - 9.99 9.85 7.41 - 15.03 8.98 6.45 - 17.26
20 7.19 5.95 - 9.22 9.15 7.06 - 13.36 8.47 6.34 - 14.93

41047 10 6.89 5.78 - 8.63 8.61 6.82 - 11.91 8.06 6.21 - 13.08
5 6.58 5.58 - 8.03 8.06 6.54 - 10.81 7.63 6.09 - 11.60
2 6.13 5.32 - 7.33 7.33 6.15 - 9.27 7.04 5.85 - 9.66
1 5.78 5.09 - 6.76 6.77 5.81 - 8.32 6.57 5.65 - 8.38

100 10.09 8.17 - 13.15 12.93 9.78 - 19.31 16.06 10.43 - 34.91
50 9.73 8.01 - 12.51 12.28 9.42 - 17.50 14.98 10.20 - 30.03
20 9.22 7.72 - 11.53 11.41 8.99 - 15.61 13.59 9.74 - 24.07

41048 10 8.81 7.47 - 10.83 10.75 8.69 - 14.30 12.56 9.37 - 20.67
5 8.39 7.22 - 10.09 10.07 8.30 - 12.97 11.54 8.89 - 17.51
2 7.79 6.81 - 9.15 9.15 7.73 - 11.32 10.24 8.35 - 14.23
1 7.31 6.48 - 8.41 8.44 7.34 - 10.10 9.28 7.85 - 11.99

100 6.69 5.64 - 8.32 7.14 5.92 - 9.35 7.63 5.98 - 12.71
50 6.53 5.57 - 8.02 6.96 5.84 - 8.89 7.48 5.93 - 11.75
20 6.30 5.45 - 7.59 6.70 5.69 - 8.31 7.25 5.88 - 10.73

41049 10 6.11 5.35 - 7.27 6.48 5.57 - 7.88 7.05 5.83 - 9.94
5 5.91 5.22 - 6.87 6.25 5.46 - 7.49 6.82 5.75 - 9.14
2 5.61 5.02 - 6.41 5.91 5.24 - 6.88 6.48 5.61 - 8.19
1 5.36 4.85 - 6.03 5.63 5.06 - 6.44 6.18 5.49 - 7.43

100 4.49 4.31 - 4.70 6.84 6.37 - 7.41 10.68 9.39 - 12.36
50 4.43 4.25 - 4.63 6.64 6.20 - 7.16 10.03 8.96 - 11.51
20 4.34 4.18 - 4.52 6.35 5.97 - 6.79 9.19 8.31 - 10.32

SIMAR-44 10 4.26 4.11 - 4.42 6.12 5.78 - 6.51 8.56 7.84 - 9.50
5 4.17 4.03 - 4.32 5.87 5.57 - 6.20 7.94 7.36 - 8.69
2 4.02 3.90 - 4.16 5.51 5.26 - 5.78 7.14 6.70 - 7.69
1 3.90 3.79 - 4.02 5.22 5.01 - 5.44 6.54 6.20 - 6.94

Table 4: Return values and confidence intervals for the GPD distribution considering T = (1, 2, 5, 10, 20, 50, 100) and the percentiles 95%, 97.5%, and 99%.
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check the value x = 0:

Υ1(0) = 2
∫ ∞

0
uφ(u)du =

√
2
π
, (A.5)

Υ2(0) = 2
∫ ∞

0
u2φ(u)du = 1, (A.6)

Υ3(0) = 2
∫ ∞

0
u3φ(u)du = 2

√
2
π
, (A.7)

which match with the right sides of Eqs. 18, 19 and 20:

Υ1(0) = 2φ(0) =

√
2
π
, (A.8)

Υ2(0) = 2(1 − Φ(0)) = 1, (A.9)

Υ3(0) = 2(2)φ(0) = 2

√
2
π
. (A.10)

Substituting these results in Eq. 17 we have:

U1,1 = σΥ1

( x
σ

)
= 2σφ

( x
σ

)
, (A.11)

U2,1 = σ2Υ2

( x
σ

)
= 2σ2

(
1 − Φ

( x
σ

)
+

x
σ
φ
( x
σ

))
, (A.12)

U3,1 = σ3Υ3

( x
σ

)
= 2σ3

(
2 +

( x
σ

)2
)
φ
( x
σ

)
. (A.13)

These functions will be the base to estimate the parameters
of the distribution of variable X, except in the case of µ, as
we will comment later. The estimates will be made with the
corresponding Uk sample estimates, defined in Section 3.3.

Appendix B. Demonstration of proposition II

Firstly, we rewrite uk in the form:

uk(x) =
1
n

n∑

i=1

|xi − µ|kI{|xi − µ| ≥ x}, (B.1)

where I is the indicator function. Considering the previous ex-
pression, we check the condition of an unbiased estimator:

E(uk(x)) =
1
n

n∑

i=1

E(|xi − µ|kI{|t − µ| ≥ x}) =

= E(|t − µ|kI{|t − µ| ≥ x} =

=

∫

|t−µ|≥x
|t − µ|kg(t)dt = Uk(x). (B.2)

Appendix C. Demonstration of proposition III

Considering again Eq. B.1 for the variance of uk(x) we
have:

V(uk(x)) =

=
1
n2

n∑

i=1

V(|xi − µ|kI{|t − µ| ≥ x}) =
1
n

V(|t − µ|kI{|t − µ| ≥ x}) =

=
1
n

(
E(|t − µ|2kI{|t − µ| ≥ x}) − E2(|t − µ|kI{|t − µ| ≥ x})

)
=

=
1
n

(U2k(x) − U2
k (x))

n→∞→ 0, (C.1)

taking into account that I2{.} = I{.}.

Appendix C.1. Parameter estimation of the mixed distribution
of X

The estimates are based on the uk(0) values, for k = 1, 2, 3,
which estimate the corresponding population parameters.

Appendix C.1.1. Estimation of µ
Given that the mean value of both distributions (uniform

and normal) is the same, this value is not affected by the mix-
ture. Therefore, the natural estimator is

µ̂ = x̄ =
1
n

n∑

i=1

xi. (C.2)
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Figure 2: Graphical representation of the time series recorded for every buoy.
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Figure 3: Estimated theoretical distribution versus empirical distribution in all wave height time series considered.

14



6.2. Distribution-based discretisation and ordinal classification applied to wave height
prediction 99

6.2. Distribution-based discretisation and ordinal classification

applied to wave height prediction

The last work presented in this Thesis is related to the ordinal classification of seg-

ments with the aim to predict subsequences in a time series. To do so, the discretisation of

the values of the time series is made as preprocessing of the time series. In many works,

this discretisation is made according to the criterion of an expert, but, in this work, we

propose to use the best-fitted distribution according to the time series. For this, we propose

a methodology based on two phases.

In the first phase, we analyse the best-fitted distribution over the values of the time

series. For that, we consider the GEV distribution, the normal distribution, the Weibull

distribution and the Logistic distribution. Using training data, we apply an MLE method to

adjust the parameters of the four distributions. Then, the best-fitted distribution is selected

base on two objectives criteria, BIC and AIC. When the best distribution is adjusted, the

corresponding 25 %, 50 % and 75 % are selected to be the thresholds (Q1, Q2 and Q3) to

discretise the output variable in training and test sets.

In the second stage, we label the output in four categories: yt ∈ C1, C2, C3, C4,

where C1 (yt ≤ Q1) represents LOW wave height, C2 (yt ∈ (Q1, Q2]) represents AVERAGE

wave height, C3 (yt ∈ (Q2, Q3]) represents BIG wave height, and, finally, C4 (yt > Q3)

represents HUGE wave height. The new dataset is defined as D = (X,Y) = {(xt, yt)}nt=1,

where yt is the target discretised category and xt is a set of inputs based on the previous

events, xt = {xt−1, yt−1,xt−2, yt−2, . . . ,xt−m, yt−m}. As can be seen, there exists a natural

order between the labels so that we can transform the prediction problem into an ordinal

classification one. In this paper, we use the following ordinal classifiers: proportional odds

models, kernel discriminant learning for ordinal regression and three variants of SVMs,

specifically designed for ordinal classification.

The proposed method is tested in two real-world datasets showing that the best-

fitted distribution is the GEV one. After that, the best classifier was the Reduction applied

to SVM (REDSVM) which achieved the best performance in both.
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You cannot discover new oceans unless you have
the courage to lose sight of the shore.

André Gide

7
Discussion and conclusions

The final chapter of this Thesis includes the main conclusions resulting from the

previous research. Also, opened research lines are outlined for future works.

7.1. Conclusions

This Thesis presents research performed on TSDM problems. As stated in the Mo-

tivation chapter, the Thesis has been organised in four main work lines: preprocessing,

time series segmentation, prediction and distribution-based learning. In this section, we

summarise the contributions grouped by these topics.

7.1.1. Preprocessing

The Thesis contribution begins with Chapter 3, which includes a novel technique

for the reconstruction of missing values in SWH time series collected from buoys pla-

ced in Alaska. State-of-the-art methodologies include ANN models, but up to the author’s

knowledge, there are no previous works where the basis functions of these ANNs are PUs.

Moreover, the structure and connections of the PUNNs are optimised using an evolutionary

strategy (EPUNN).

Specifically, the work produced within this topic is focused on the reconstruction
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of wide gaps of missing information in different parts of the Gulf of Alaska. We use cos-

tal buoys (id numbers 46061, 46076 and 46082) and offshore buoys (46001, 46078 and

46085). The work proposes a two-stage methodology. Firstly, the method calculates the

correlation between complete parts of different time series. Then, those time series which

are complete and for which the relation with the incomplete ones is higher than a prede-

fined threshold, are used as independent variables for the reconstruction of the gaps with

linear models, as the same way than the use of transfer functions and neighbour techni-

ques. Once the first stage is completed, each time series is reconstructed again used ANN

models optimised with an EA.

The results confirm that the proposed two-stage methodology outperforms previous

linear models. Furthermore, EPUNN models result in the best basis functions, showing that

they can reconstruct the missing part of the time series using a simple model with a hidden

layer and two or three hidden neurons. These model can be rewritten as linear models of

logarithmic functions. The main drawback of the method is that, for wave height over six

metres, it can produce a slight underestimation of wave height.

According to the objectives established in the Chapter 2, Chapter 3 satisfies objecti-

ves 1, 2 and part of objective 8.

7.1.2. Segmentation

Time series segmentation is the main topic solved in Chapter 4. As we stated in that

Chapter, the segmentation is an operation which consists in cutting the time series into se-

veral cut points with the aim of satisfying different objectives. The two main points of view

include segmentation for discovering useful patterns in the time series and segmentation

for the simplification of the time series by reducing the number of points.

Concerning the first objective, firstly, we propose a GA for the detection and design

of early warning signals of TPs in paleoclimate data. Specifically, we use data from the

GISP2 and the NGRIP δ18O time series with a 20-year resolution. The main objective of

this work is to determine the nature of TPs called DO events with a GA in combination

with a clustering technique. The method is able to find common characteristics that occur

before a DO event, allowing us to construct an early warning signal corresponding to an

increase in autocorrelation, variance and mean square error.

In the second proposal, the GA is hybridised with a proper likelihood-based seg-

mentation assuming that points in the time series follow a beta distribution, designed

explicitly for correctly representing extreme values. In this way, we use SWH time series

where extreme values are present. The methodology can segment and group in a cluster

those events which correspond with the extreme values, and the likelihood-based segmen-

tation improves the quality of the clustering. Also, in this work, an empirical validation is
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made to determine which is the best way to apply the LS in the GA, which turns to be the

application of the LS to the best 20 % of the individuals in the last generation.

Financial time series are very important in TSDM. We also propose an HA similar

to the previous one, but the likelihood-based segmentation assumes that time series are

normally distributed. It does not make sense to consider extreme distributions in the seg-

mentation of stock market data because there are no extreme values within them. The

methodology is tested in European stock market indexes, specifically over closing prices,

with the aim of determining common phases between them. The HA improves the results

of the standard GA, and also, the analysis of the segmentation produced and the socio-

economic phases and events of the literature is made. The segmentation produces five

groups of segments: the first one corresponds with the broadening phases, the second is

related to Wedges, the third one represents crashes in time series (Downtrend patterns),

cluster 4 presents the lowest autocorrelation, and cluster 5 is associated with increasing

periods (Uptrend). Concluding, this algorithm without prior information of the financial

time series analysed, is able to automatically determine common phases in the time series

related to the financial patterns defined in [10].

Concerning the segmentation for the reduction of the number of points of the time

series, in this Thesis, the main contributions are organised in two international journals

and three national/international conferences. The two main contributions propose two

new bioinspired algorithms. In the first one, an SCRO is proposed with the aim to guide the

search without the necessity of establishing any configuration parameter of the algorithm.

In this way, the algorithm dynamically adapts the parameters according to the statistics of

centralisation and dispersion of the fitness distribution. Furthermore, a new hybridisation

procedure is made combining Bottom-Up and Top-Down algorithms. For the experimental

validation, several time series collected from different sources and scopes, are used, and

the results agree that the SCRO methodology significantly outperforms the rest of the

state-of-the-art algorithms. When compared to standard CRO, SCRO gets better results,

but they are not statistically significant. However, our method does not need to specify

any parameter as we stated before.

The second idea is a modification of the BBePSO MH, that is, our proposal is a new

DBBePSO that automatically adapts the cognitive and social components in the evolutio-

nary process. In this way, the social component is higher at the beginning of the evolution,

and the cognitive one is higher at the end. It causes a decrease of the error approximation,

improving the results from the rest of state-of-the-art algorithms, and when compared to

an optimal algorithm (Salotti) [78], our methodology finds solutions close to the optimal

with a lower computational cost.

Finally, the optimisation of the two previous objectives is tackled using a new MOEA,
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assuming that both objectives are conflicting. To represent both objectives, we consider

the optimisation of the clustering quality of the segments and the error of approximation.

Firstly, the most conflicting quality clustering index (when compared to mean squared

error) is selected from a set of 9 possibilities, using four Pareto front evaluation metrics.

In this way, the quality clustering index is decided to be the Silhouette index. Then, the

methodology is compared against other state-of-the-art mono-objective algorithms given

that there are no alternative multiobjective algorithms for time series segmentation. The

results confirm that the objectives are in conflict, and our algorithm can show a good trade-

off of the solutions. Also, when optimising clustering quality, we show that the number of

segments is lower than when the optimisation is focused on the approximation error.

Summarising, Chapter 4 (time series segmentation proposals) is based on eight

international journal papers and eight national/international conference papers. In this

Chapter, we achieve the objectives 3, 4, 5, and part of objective 8.

7.1.3. Prediction

Prediction in time series has been barely studied in the literature and, in general,

from a statistical point of view. The prediction in the literature is frequently tackled using

real values. In this Thesis, we propose several ways to make predictions using higher levels

of representation instead of the real values of the time series.

Firstly, we propose a novel methodology divided into two stages. For the first one, a

GA in combination with a likelihood-based segmentation assuming a beta distribution is

developed with the objective of detecting extreme values in SWH time series. Then, once

the segmentation is done, the cluster which contains higher values in relation with other

waves close in time is labelled as extreme event. The algorithm is able to create a database

for the second stage. The second stage corresponds with the prediction of the extreme

events previously detected. Each pattern of the database is made up of five characteristics

of the three previous segments and the output represents whether the next segment is an

extreme one or not (binary label). To achieve this prediction, and given the imbalanced

nature of the dataset, we use an MOEA for training ANNs, with the aim to optimise the

global accuracy and the accuracy of the worst classify class (minimum sensitivity). The

method is tested using two time series collected in the Gulf of Alaska. Methodology shows

a great performance when compared to other state-of-the-art machine learning algorithms

(LR, simple LR, SVM, C4.5 DT, and Random Forest) and their cost-sensitive version (that

is, the version of the algorithm which takes into account the imbalanced nature of the

problem). To conclude with this work, the algorithm is validated with the AUC and MS

metrics, which are better when evaluating imbalanced datasets.

The second prediction methodology has been applied to the field of fog formation
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in a real-world problem extracted from the Valladolid airport. Given that aviation is one

of the most affected phenomena by weather conditions, fog formation has a significant

impact for operation procedures in the airport due to the low visibility produced when it

is present. In airports, the decisions about low visibility are taken by the operators, and

our goal is to automatically predict the occurrence of this weather condition with a 6-

hour resolution. For that, we use different variables collected from sensors situated in the

runway of the airport. To solve this problem, we use an MOEA for training ANNs with the

aim to construct a model, compound by physical variables, with efficiently predicts the

majority and the minority class in the dataset (normal or fog periods, respectively). The

methodology is compared against other state-of-the-art algorithms, including a persistence

model whose binary decision consists in the rule Yt = Yt−1. This algorithm can provide

a high performance due to the consecutive constant values in the dataset, but it cannot

support the decision in the airport because it does not take into account the variability

and the nature of fog. For the experiments, our methodology outperforms the rest of

methods. Moreover, we obtain a simple model which can be physically analysed from the

point of view of the radiation fog formation mechanism. In this way, the model shows

that an increment of the wind speed causes an increase of no fog events, and that the

direction is slightly correlated with fog and also the velocity, but both variables do not

have much importance in the model. When the temperature increases, the fog formation

probability decreases, which is obvious. Finally, an increment of the air humidity results in

an increase of fog probability, and an increment of the pressure decreases the probability

of fog formation.

From the previous comments, we confirm that the achieved goals in the publications

of Chapter 5 are objective 6 and part of objective 8.

7.1.4. Statistical-distribution based learning

In Chapter 6, we explore the idea of fitting the statistical distribution of the time

series for guiding posterior operations. That is, taking into account the best-fitted distri-

bution for a given time series improve the performance of subsequent tasks.

In this Chapter, we first present a new theoretical way to determine the statistical

distribution of wave height time series. In literature, authors usually fit the distribution

of the values over a given threshold (POT approaches). The main problem is that the th-

reshold needs to be specified, and the distribution of the whole time series is not used

nor fitted. We propose not only the theory to determine the statistical distribution of the

values situated over a threshold but also the distribution of the complete time series. The

methodology is based on the idea that a wave height time series is sampled from a mi-

xed distribution including normally distributed extreme values and uniformly distributed
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values close to the mean of the time series. The use of the method of the moments for

the determination of the four parameters related to this kind of distribution is suitable

for this problem, which is shown by a Kolmogorov-Smirnov test of critical differences bet-

ween real and theoretical distributions. The methodology, which is tested in different time

series collected from Puerto Rico, Alaska and Spain (Gibraltar), is then used to theoreti-

cally define the threshold for the posterior POT analysis. Results confirm that the proposed

methodology works well when defining the threshold, and the best statistical distribution

over the values of this threshold is the GPD, which agrees with results of literature, but in

a theoretical way.

The second methodology consists of an estimation of the best-fitted distribution se-

lected from a set of distributions in time series. The selection of the best-fitted distribution

is made using two criteria objectives, which are BIC and AIC. Both criteria agree that the

best-fitted distribution is the GEV. Then, the percentiles of the estimated theoretical dis-

tribution are used for discretising the values of the time series, and this discretisation is

used for inducing a classification problem. It can be seen that the resulting problem should

be solved by an ordinal classification task, given that it comes from a discretisation made

by consecutive percentile values. Results agree that the best predictor (classifier) is the

REDSVM, which achieved the best performance in the two tested datasets.

This Chapter satisfies objective 7 and part of objective 8.

7.2. Generic discussion and future work

In the present Thesis, we have proposed several works concerning TSDM. A total

of 12 international journal papers and 11 national/international conference papers sum-

marise our proposals in: 1) preprocessing of time series for the reconstruction of missing

values; 2) time series segmentation for discovering useful patterns, for reducing the num-

ber of points in the time series and for optimising both objectives at the same time; 3)

prediction in time series using segments obtained obtained in previous segmentation pro-

cedures; and 4) statistical distribution determination for guiding posterior tasks.

One of the contributions is focused on the production of new bioinspired algorithms,

such as DBBePSO, new GAs and HAs, SCRO algorithms and EANNs. Also, the use of ML

techniques in new areas of application is considered during the Thesis. The adjustment

of the statistical distribution of the time series is used as a prerequisite to guide different

operations.

All of these contributions in the different tasks have been applied to different real-

world problems, which are the detection of TPs in paleoclimate data, the analysis of trends

and phases in stock market indexes (financial data), the reconstruction of massive missing
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data values in SWH time series, the detection of the highest wave heights in oceanographic

data, the prediction of segments containing these wave heights in oceanographic data,

predicting fog formation in airports and fitting statistical distribution for establishing the

threshold for POT method in oceanographic data. So, from the previous comments, we

can conclude that all the objectives presented in Chapter 2 have been addressed.

As future work, several promising lines can be introduced. Firstly, the reconstruction

of missing values in time series could be tackled by considering multiobjective algorithms,

where the optimisation will be done taking into account the reconstruction of values from

0 to 6m, but without losing precision in values over 6m. Secondly, a better optimisation

of the segmentation methods for reducing the number of points of a time series could

be introduced in order to minimise the error of approximation until reaching the error

produced for optimal methods (which are much more costly).

The adjustment of the statistical distribution of the complete time series for guiding

different operations is a recent research line, which entails an open challenge for future re-

search lines. For example, the determination of the statistical distribution in other kinds of

time series, such as in financial time series, could refine the likelihood-based segmentation

performed assuming a distribution which has not been fitted.

Finally, based the knowledge and work done during the research stay, another cu-

rrent and future line could be the analysis of time series from the point of view of dy-

namical systems. It implies the study of the main anomaly detection methods in these

systems, which includes one class SVM (OCSVM) and the support vector data descriptor

(SVDD), whose aim is to differentiate normal states from those which are not. Specifically,

the combination of echo state neural networks and the hidden Markov models (HMM) for

the creation of dynamical systems which work in the state space should result in a better

model than the AR HMM of the literature.
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