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a b s t r a c t

This paper proposes a novel methodology for recovering missing time series data, a crucial task for
subsequent Machine Learning (ML) analyses. The methodology is specifically applied to Significant
Wave Height (SWH) time series in the field of marine engineering. The proposed approach involves two
phases. Firstly, the SWH time series for each buoy is independently reconstructed using three transfer
function models: regression-based, correlation-based, and distance-based. The distance-based transfer
function exhibits the best overall performance. Secondly, Evolutionary Artificial Neural Networks
(EANNs) are utilised for the final recovery of each time series, using as inputs highly correlated buoys
that have been intermediately recovered. The EANNs are evolved considering two metrics, the novel
squared error relevance area, which balances the importance of extreme and around-mean values, and
the well-known mean squared error. The study considers SWH time series data from 15 buoys in two
coastal zones in the United States. The results demonstrate that the distance-based transfer function
is generally the best transfer function, and that EANNs outperform a range of state-of-the-art ML
techniques in 12 out of the 15 buoys, with a number of connections comparable to linear models.
Furthermore, the proposed methodology outperforms the two most popular approaches for time
series reconstruction, BRITS and SAITS, for all buoys except one. Therefore, the proposed methodology
provides a promising approach, which may be applied to time series from other fields, such as wind
or solar energy farms in the field of green energy.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Significant Wave Height (SWH) has attracted a considera-
le worldwide interest because of its key role in marine engi-
eering and resource development [1], shipping and maritime
ransport [2], fishery and aquaculture [3], and wave energy pre-
iction [4], among others.
In this regard, oceanographic buoys, maintained by agencies

f different countries and deployed around oceans and seas, are
sed to measure SWH, as well as other wave-related parameters.
his is the case of the National Data Buoy Center (NDBC) and the
ational Oceanic and Atmospheric Administration (NOAA) [5].
hey use hydrographic stations and ocean buoys equipped with
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special sensors to collect environmental data from coastal regions
of the United States of America (USA). Although there are buoys
located close to the shore, the vast majority are deployed in
remote or inaccessible locations for long time periods [6]. Besides,
extreme weather conditions such as cold, storms or cyclones [7],
as well as unexpected events such as accidents, sensor failures or
technical maintenance [8], cause buoys to be inoperative during
different periods of time. This implies the existence of two sorts of
missing values in the SWH time series [9]: (1) extended periods of
time without collecting data, and (2) intermittent missing values.
Although they can be interpreted by some methods, such as
clustering [10], it is advisable to recover them so that methods
not capable of dealing with missing values can be applied.

As in other areas, for example, in climatology with the amount
of rainfall [11] or the temperature [12,13], the reconstruction
of SWH missing values, in this case, is considered an essential
pre-processing phase, given that SWH analysis and prediction
tasks have a high impact on human and economic activities. For
example, maritime transport management [14], the influence of

oceanographic parameters on fishing [15], or the design, planning
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and maintenance of offshore structures [16]. Moreover, SWH is
very relevant in some climatic processes [17] and in forecast-
ing oceanic cyclones, earthquakes and tsunamis [18]. However,
nowadays, the energy management being harnessed is one of
the most paramount concerns of predicting the SWH, and conse-
quently the prediction of wave features. SWH has become one
of the critical factors in wave energy determination as presented
in a large number of works and research in recent years [19–
23]. Related to this, the exploration of ocean energy resources
has demonstrated a clear potential for sustainable growth, be-
coming a major issue for renewable energies [24]. In fact, there
is an enormous need to develop new methodologies capable of
efficiently exploiting the natural resources available in our envi-
ronment. In this sense, one of the most promising clean energy
sources in recent years is marine energy [25]. Consequently, the
reconstruction of missing SWH time series has emerged as a key
topic in the ocean research field [26].

Despite extensive research, SWH time series reconstruction
emains a challenging problem and a growing area of research
ue to its crucial role in marine engineering and renewable
nergy estimation. In this sense, efforts are addressed to ex-
lore new approaches aimed at overcoming the flaws of the
tate-of-the-art methods.
Therefore, the purpose of this work is to propose a novel

ethodology for recovering missing values in SWH time series
ollected by ocean buoys located at different geographical loca-
ions. Specifically, the methodology is divided into two phases:
1) the missing values are intermediately recovered by applying
ifferent Transfer Function (TF) models and considering the avail-
ble data from neighbouring buoys, and (2) the intermediately
ecovered data is used by Evolutionary Artificial Neural Networks
EANNs) to perform the final reconstruction of the SWH time
eries. One of the main innovations of this novel spatio-temporal
pproach is that it benefits from retrieving information not only
emporally, but also geographically, as it takes into account the
roximity to other buoys. The main contributions of this paper
re:

• TF models perform an intermediate recovery (first phase)
which is subsequently used as input for EANNs to perform
the final reconstruction (second phase).

• This paper proposes a new distance-based TF model that
improves the intermediate recovery for several of the buoys
considered in this study.

• One of the main drawbacks of most state-of-the-art meth-
ods is that they attempt to minimise the average error made
in estimating missing SWH values (i.e. the Mean Squared
Error (MSE)). This results in a much larger error in the high-
est waves, also known as extreme waves. In this way, this
paper proposes the use of a recently developed metric that
pays attention to the extreme values without leaving aside
the around-mean values. This metric is known as Squared
Error-Relevance Area (SERA) [27], and aims to balance the
attention paid to both extreme and around-mean values,
regardless of the quantity of one type or another. Hence, for
the extreme values, models optimised by SERA achieve more
accurate estimations than models optimised by MSE.

• In the second phase, the performance of three EANN archi-
tectures is analysed regarding the type of basis function for
neurons in the hidden layer: sigmoidal unit, product unit, as
well as the combination of both types (hybridisation) with
the idea of taking advantage of both to improve the final
reconstruction of the SWH time series.

• Given the stochastic nature of the proposed EANN tech-
nique, for each SWH time series reconstruction, 30 runs are
performed to analyse the average results obtained, rather
than analysing only the best one as is done in other works
in the literature.
2

• The feasibility and robustness of the proposed methodol-
ogy are assessed considering two coastal zones of the USA,
namely the Northeast Coast and the Gulf of Alaska, with a
total of 15 buoys.

• The results achieved by the EANN technique are compared
against other 7 ML methods that have been specifically
adapted for the problem tackled. Also, a second comparison
is carried out against the 2 state-of-the-art approaches in
the time series imputation field.

• The proposed methodology has been designed in such a way
that it can be applied to related problems, as is the case
of wind and solar energy farms in the green energies field,
or to fog and rainfall detection systems at airports in the
atmospheric area, among others.

The remainder of this paper is organised as follows: Section 2
presents related works in the literature. Section 3 details the
SWH time series employed. Section 4 explains the two-phase
methodology proposed for the recovery of missing SWH time
series values. Section 5 describes the experimental design, shows
the results obtained and provides a detailed discussion comparing
the methodology with other state-of-the-art algorithms. Finally,
Section 6 concludes the paper and includes future work.

2. Related works

In recent decades, many approaches have been published in
the literature aiming to recover missing SWH time series data.
On the one hand, traditional and statistically-based methods were
often used for this purpose. For example, traditional proposals
using random sampling [28] or Monte Carlo methods [29] were
initially presented to recover SWH time series. Regarding statisti-
cal techniques, in [30], the authors proposed a method based on
the AutoRegressive Moving Average (ARMA) model with a prior
transformation of the input data to reconstruct a SWH time series
collected at the Portuguese coast. Similarly, a methodology using
an ARMA model based on non-stationary modelling of long-term
SWH time series was presented in [31], in which missing values
were recovered at the level of the uncorrelated residuals.

On the other hand, there has been a growing trend in the
use of Machine Learning (ML) approaches for the reconstruc-
tion of SWH time series. There is a myriad of ML techniques
capable of achieving excellent results, such as Gaussian Process
Regression (GPR) [32], Support Vector Machine (SVM) [33] or
Extreme Learning Machine (ELM) [34], among others. However,
Artificial Neural Network (ANN) models [35] as for being the most
widely used technique to address SWH missing values recovery.
In [36], an ANN model was proposed for the spatio-temporal
analysis of SWH time series collected by a network of buoys,
aiming to determine the best way to recover the gaps in SWH
time series. For this, the performance of ANNs was compared
with observed data collected by stations located at the Ionian and
Adriatic Seas, showing the reliability of this model. Silva-Ramírez
et al. in [37], proposed two imputation approaches: a single
imputation technique based on a Multilayer Perceptron (MLP)
model trained by means of different learning rules and a multiple
imputation technique based on combining MLP with k-Nearest
Neighbours (kNN). In [38], the authors demonstrated that the
proposed Elman-type recurrent ANN models, trained with both
steepest descent with impulse and conjugate gradients methods,
outperformed the MLP model. In [39], the feasibility of three
different ANN architectures for wave data supplementation was
assessed using measurements collected near the Tasmanian coast.
Moreover, in recent years, the emergence of SWH reconstruc-
tion and prediction works using deep ANNs has exponentially
increased [40]. In this regard, the use of recurrent ANNs and their
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more widespread type, Long-Short Term Memory (LSTM) [41],
has been satisfactorily applied in this field: in [42], the authors
presented a framework using LSTM models for the reconstruction
of coastal sea levels time series in Korea, in [43], bathymetric
data was used to improve the performance of LSTM models in the
West Coast of the USA, and Pirhooshyaran and Snyder [44], also
through LSTM, demonstrated that for a large number of target
features, deeper structures are able to improve the performance
of other ML techniques.

Therefore, ANNs have proven to be effective and accurate
hen tackling the problem addressed in this work. However, they
how some constraints, such as the determination of the most
uitable architecture (number of neurons in hidden layer and
onnections) for the problem being solved or local minima issues
uring the training phase. In this sense, Evolutionary Computa-
ion (EC) is an excellent technique to optimise the architecture
f ANNs and enhance their performance. EC comprises a set of
ptimisation algorithms which apply biologically inspired mech-
nisms, including reproduction, mutation, natural selection and
urvival of the fittest, among others [45]. Some of these algo-
ithms are Genetic Algorithm (GA), Particle Swarm Optimisation
PSO), Coral Reefs Optimisation (CRO) and Evolutionary Algorithm
EA), to name a few [46].

For instance, in [47], the authors proposed a hybrid ELM
ombined with a GA for tuning the parameters to solve the
econstruction of SWH time series at the Caribbean Sea and
est Atlantic. A similar hybrid ELM approach, also trained by a
A, was analysed to find the best subset of features [24], such
ethodology was proposed to estimate the SWH and energy flux
t the Western Coast of the USA. In [48], PSO was employed to
rain ANNs for SWH time series estimation at New Mangalore
ort in India. In [49], a standard Back-Propagation (BP) ANN was
mproved using a Mind EA to predict ocean wave heights at the
ohai Sea and the Yellow Sea, showing that the novel approach
as more suitable when compared to its BP and GA version. A
ethodology combining ANNs optimised by means of an EA with

inear models was presented in [26] for recovering missing values
n SWH time series. Recently, in [50], the authors developed a
ovel approach to simultaneously predict short-term SWH and
nergy flux at the South West Coast of the USA and at the Gulf
f Alaska, using Multi-Task ANNs trained by an EA. Hence, the
ombination of ANNs and EC has demonstrated its great relevance
nd high performance in tackling SWH reconstruction and related
roblems in this field of application, which has been gaining
omentum in recent years.

. Data description

The data used in this study has been obtained from the
DBC [51]. Specifically, NDBC records meteorological and oceano-
raphic measurements regarding the marine environment using
uoys deployed along coastal regions of the USA. One of the
easurements collected by the sensors installed in the buoys is

he Significant Wave Height (SWH), which is the object under
tudy in this work. In addition to the SWH, the sensors also record
ther environmental observations, such as wind speed and air
emperature.

This work considers the SWH time series of 15 buoys located
t two relevant coastal zones of the USA. The following Sections
escribe this data.

.1. Significant wave height

As aforementioned, when sensors are inoperative, none of
hese measurements can be collected. Even though the recon-

truction of missing values in any of these measurements is of

3

great interest, the reason behind choosing the SWH is its enor-
mous impact on highly relevant areas, such as marine engineering
or renewable energy production. At this point, it is important to
note how SWH is defined. On the one hand, if SWH is defined
in the temporal domain, H1/3 is noted and defined as the mean
height of the highest third of the wave heights, measured from
the time series of the free surface by the upward or downward
crossover. On the other hand, if the definition is in the frequency
domain, Hm0 is noted and defined from the frequency spectrum.
owever, in deep water, both measurements are less than 5%
ifferent, and they are usually confused with the generic term Hs.
or this reason, although definitions of wave height are formally
xpressed, it is recommended to use the generic term Hs or

simply SWH, which is defined as the mean in metres between the
trough and the crest of the highest third of all wave heights dur-
ing a 20-minute sampling period [52]. Specifically, this sampling
period is the one used by the processor on board of the buoys to
obtain the SWH time series considered in this study [53].

3.2. Zones subject to research

Two different coastal zones of the USA have been selected for
this work: the Gulf of Alaska and the Northeast Coast, where
6 and 9 buoys have been considered, respectively. Fig. 1 shows
the location of each of these 15 buoys: the Figure in the middle
shows the geographical location of both coastal zones in the
USA, whereas the upper and the lower Figures show the specific
location of the buoys at the Gulf of Alaska and at the Northeast
Coast, respectively.

These two zones of the USA have been considered given the
entirely different environmental characteristics they present. As
can be seen in Fig. 1, the Gulf of Alaska is located at the West
Coast of the USA, whereas the Northeast Coast is located, as its
name suggests, at the East Coast. Moreover, the Gulf of Alaska is
closer to the North Pole, whereas the Northeast Coast is closer
to the Equator. Table 1 presents the geographical location and
water depth of each buoy. From this Table 1, it is interesting to
remark the differences in water depth between both zones: the
water depth in the Northeast Coast is, in general, very low, the
deepest being at 185 m (buoy 44027), in comparison with the
Gulf of Alaska, where the minimum water depth is 192 m (buoy
46076) and for the half of the buoys is higher than 3500 m.

3.3. SWH time series

For each buoy, its corresponding SWH time series has been
recorded 4 times daily (i.e. 6 h resolution) from year 2013 to
2018, resulting in a total of 8764 values per time series. Ta-
ble 2 summarises the number of training, testing and missing
values for each SWH time series. These values have been obtained
separately for each buoy in the following way: first of all, the
missing values have been identified, then, the remaining ones
(i.e. the non-missing values) have been randomly divided into the
training and testing sets (80% and 20% of the non-missing values,
respectively) with the constraint that the 20% of the testing values
must be consecutively selected from the time series, that is, not
having any gap. Thus, the first sequence having a 20% of the non-
missing values consecutively defines the testing set. Because of
the randomness and the availability of a 20% consecutive non-
missing values, the time instants for training and testing may vary
from one buoy to the others.

To better understand the procedure described and the differ-
ent sets, Fig. 2 shows two SWH time series corresponding to
the 46061 and the 44005 buoys of the Gulf of Alaska and the
Northeast Coast, respectively. Values in green colour belong to the

training set, whereas those coloured in red belong to the testing
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Table 1
Geographical location and water depth of the buoys.

Buoy Geographical location Water depth (m)
(latitude N, longitude W)

Gulf of Alaska

46001 (56.232N, 147.949W) 4054
46061 (60.238N, 146.833W) 222
46076 (59.471N, 148.009W) 192
46078 (55.556N, 152.582W) 5380
46082 (59.681N, 143.372W) 300
46085 (55.883N, 142.882W) 3721

Buoy Geographical location Water depth (m)(latitude N, longitude W)

Northeast Coast

44005 (43.201N, 69.127W) 177
44008 (40.498N, 69.251W) 69
44011 (41.093N, 66.562W) 91
44013 (42.346N, 70.651W) 65
44020 (41.493N, 70.279W) 14
44025 (40.251N, 73.164W) 36
44027 (44.283N, 67.300W) 185
44065 (40.369N, 73.703W) 25
44066 (39.618N, 72.644W) 78
Table 2
Description of the SWH time series of each buoy.

Buoy # training values # testing values # missing values

Gulf of Alaska

46001 8764 (100.000%) – –
46061 5374 (61.319%) 1343 (15.324%) 2047 (23.357%)
46076 6086 (69.443%) 1522 (17.366%) 1156 (13.190%)
46078 5138 (58.626%) 1284 (14.651%) 2342 (26.723%)
46082 4258 (48.585%) 1065 (12.152%) 3441 (39.263%)
46085 5148 (58.740%) 1287 (14.685%) 2329 (26.575%)

Buoy # training values # testing values # missing values

Northeast Coast

44005 4429 (50.536%) 1107 (12.631%) 3228 (36.832%)
44008 3850 (43.930%) 962 (10.977%) 3952 (45.094%)
44011 3328 (37.974%) 832 (9.493%) 4604 (52.533%)
44013 8764 (100.000%) – –
44020 6862 (78.298%) 1716 (19.580%) 186 (2.122%)
44025 5827 (66.488%) 1457 (16.625%) 1480 (16.887%)
44027 5940 (67.777%) 1485 (16.944%) 1339 (15.278%)
44065 5798 (66.157%) 1450 (16.545%) 1516 (17.298%)
44066 5755 (65.666%) 1439 (16.419%) 1570 (17.914%)
set. Moreover, gaps indicate the presence of missing values as
intuitive. As aforementioned, missing values can be found in two
different ways: (1) intermittent periods of time, and (2) long
consecutive ones. An example of the first type is shown in the
buoy 46061, wherein the time period from Jan-2013 to Apr-2014
of the SWH time series, a high amount of the missing values is
intermingled with data. On the other hand, the second behaviour
is shown for the buoy 44005, where the whole time period
from Jan-2013 to Mar-2014 of the SWH time series is missing.
It can also be observed, as mentioned above, that the testing set
(coloured in red) vary from one buoy to the others, and they do
not contain gaps.

As can be seen in Table 2, the percentage of missing values
aries from 2.122% (buoy 44020) to 52.533% (buoy 44011), mean-
ng that recovering the first buoy should be easier than recovering
he second one. In this regard, it is important to specify that the
oncept of complexity is not only associated with the amount of
issing data existing in the time series but also with its dynamics.
esides, it is worthy of mention that for the proposed regression-
ased TF, at least one buoy without missing values is required
er zone since it is considered the starting point from which the
issing values of neighbouring buoys are recovered. In this sense,
uoys 46001 and 44013 belonging to the Gulf of Alaska and the
ortheast Coast, respectively, are complete, as can be observed in
able 2.
Therefore, the proposed approach aims to recover both sorts

f missing values in order to provide an accurate reconstruction
f the missing data so that SWH time series can be used in
4

subsequent tasks, such as prediction, classification or clustering,
among others.

4. Methodology

The proposed methodology is divided into two phases. First,
an intermediate reconstruction of the missing values in the SWH
time series is performed by applying different Transfer Function
(TF) models. These TFs consider available data from neighbouring
buoys and select the one achieving the lowest error. For read-
ability purposes, this first phase will be named as intermediate
recovery. After that, in the second phase, known as final recov-
ery, Evolutionary Artificial Neural Network (EANN) models are
employed to perform the final and definitive reconstruction. For
this, the rest of the intermediately recovered buoys are used as
input. It is worth mentioning that the first phase allows the use of
any ML technique, such as EANNs, which cannot be applied when
missing data across time series do not coincide in time, i.e., the
missing data is found at different time/points of the time series.
Fig. 3 summarises the procedure described above. The following
Sections detail both phases, including specific flowcharts per
phase.

4.1. Phase 1: intermediate recovery

This first phase carries out an intermediate recovery of the
SWH time series, which is performed using only data available
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Fig. 1. Geographical location of the two zones under study (middle) and specific
buoys location at the Gulf of Alaska (upper) and at the Northeast Coast (lower).

in the neighbouring buoys. For this, three completely indepen-
dent TF models have been adapted and developed: regression-
based, correlation-based and distance-based models. These TFs
have the advantage that they do not require training, unlike
ML techniques, which cannot be applied at this point, as the
available information is not equivalent for all buoys. Neverthe-
less, TF models can be straightforwardly applied to the data
available in the neighbouring buoys. It is important to mention
that the regression-based TF is applied in a time series-wise
manner, i.e. one regression model is built using two SWH time
series. For this TF, at least one complete SWH time series has
5

to be available. On the other hand, correlation and distance-
based TFs are point-wisely applied. In other words, the informa-
tion available is considered for each time instant. Hence, even
though a complete SWH time series is not needed, it is required
to have information from at least one buoy for each time in-
stant. The three TF models, namely regression, correlation and
distance-based TFs, are detailed in the following Sections. Fig. 4
graphically summarises the main steps of this first phase.

4.1.1. Regression-based model
This method assumes that a complete time series already

exists among all those available in the buoy grid, i.e. the buoys
belonging to the same coastal zone. In an iterative process, for
each incomplete time series, its correlation with respect to those
with available data is computed. It is worthy of mention that only
buoys with available values at same time instants as the buoy
being recovered are considered for computing the correlation,
and that, at least, one correlation value is expected, since it is
assumed that one buoy is complete. The time series with a corre-
lation above a threshold α are the input variables of a regression
model for the time series of the buoy to be recovered at that time.
Thus, at each iteration, those SWH time series whose correlation
with respect to the complete buoys is above such threshold are
intermediately reconstructed. It is important to mention that
when a time series is reconstructed, it is considered complete
for the next iteration and can be used for recovering the time
series of other buoys (if the correlation is above the α threshold).
Furthermore, in each iteration, the α threshold is increased to
compensate for the error incurred in the reconstruction process.
The regression model is defined as follows:

Yt = β0 +

k∑
i=1

βiXit , t = 1, . . . ,N, (1)

where Yt is the value to be recovered at time instant t , βi is the
coefficient for the ith SWH time series considered as a predictor
variable (Xi), k is the number of correlated buoys (those whose
correlation is above the α threshold), and N is the length of the
SWH time series. In this work, the least-squares method has been
used to solve the regression problem so that:

βi =
−A1,i+1

A1,1
, i = 1, . . . , k, (2)

where Ai,j is the adjoint (i, j) of the variances and covariances
matrix Σ . And therefore:

β0 = Ȳ −

k∑
i=1

βiX̄i, (3)

being Ȳ and X̄i, the average value of Y and Xi, respectively.

4.1.2. Correlation-based model
This method is based on recovering the missing values of the

time series of each buoy by weighting the similarity with respect
to the time series of the neighbouring buoys (remaining buoys of
the same coastal zone). In this case, as the information is retrieved
point-wisely, instead of needing to have a buoy with complete
data, having information from at least one of the neighbouring
buoys for the time stamp being reconstructed is sufficient. Thus,
this aspect is easier to be fulfilled as having one buoy with
complete data may be difficult to find in some areas. Specifically,
missing values at time instant t to be recovered are weighted
by a factor λ that measures the importance contributed by the

same time instant t available at the neighbouring buoys. In this
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Fig. 2. SWH time series of the buoys 46061 and 44005 of the Gulf of Alaska and the Northeast Coast, respectively.
way, the time instant t of a SWH time series Y is reconstructed
as follows:

Yt =

k∑
i=1

λi
Ȳ Xit

X̄i
, (4)

being k the number of SWH time series with data available at time
instant t , Ȳ and X̄i are the mean values of Y and Xi, respectively,
Xit is the value of Xi at time instant t , and λi is a multiplicative
factor allowing a greater weight to buoys with higher correlation,
and it is expressed as follows:

λi =
ρYXi∑k
j=1 ρYXj

, i = 1, . . . , k, (5)

eing ρYXi the Pearson correlation coefficient between Y and Xi.
Hence, values of correlated buoys are paid more attention.

Even though correlation plays an essential role in both TFs,
it is important to differentiate how it is employed in each one.
The regression-based TF indirectly uses the correlation to decide
which buoys are considered input for the regression model. On
the other hand, the correlation-based TF directly weights the
neighbouring buoys’ values using the correlation between them.
Moreover, note that this method is much faster than the previous
one, as all missing values for a given buoy can be recovered
simultaneously.

4.1.3. Distance-based model
Similar to the previous correlation-based TF, this model re-

covers each buoy time series by weighting the time series of
the neighbouring buoys as defined in Eq. (4). However, instead
of the correlation, the multiplicative factor λ is computed by
considering the distance between buoys. Hence, the main goal
of this technique is to measure the similarity according to the
geographical position of the buoys, i.e. it is supposed that close
buoys should have similar behaviour.

To calculate the distance between buoys, the Haversine equa-
tion (also known as the great circle distance) [54] has been
considered. It is defined as follows:

d(p0, p1) = arccos(sin(lat0) · sin(lat1)
· cos(lon0 − lon1) + cos(lat0) (6)
· cos(lat )),
1

6

where p0 is the geographical location of the buoy being recovered,
p1 is the location of the neighbouring buoy with available data at
the time instant being processed, and lat and lon are the latitude
and longitude of the buoys, respectively.

This distance is inverted and normalised as follows, in such a
way that the greater the distance, the smaller the weight that the
neighbouring buoy should have:

λi =
d(p0, pi)∑k
j=1 d(p0, pj)

, i = 1, . . . , k, (7)

being λi the weight for the ith buoy with available data for recov-
ering a given missing value, and k is the number of neighbouring
buoys with available data. In this case, for the computation of the
multiplicative factor λ, no data from the neighbouring time series
has been considered but their geographical positions (latitude and
longitude of the buoys).

At this point, it is important to analyse the relationship be-
tween correlation and distance. It is assumed that when one
feature increases, the other decreases and vice-versa. However,
this assumption is not always true. Highly correlated buoys are
supposed to be geographically close to each other. Neverthe-
less, it may happen that buoys located at the coast but very far
away, one from the other, could share some similarity in their
dynamics as their geographical accidents may be similar. On the
opposite, closer buoys are supposed to be highly correlated. But
this assumption may not always be met either. There could be
a geographical accident or a vast change in the orography of the
ocean happening in the middle of two close buoys causing very
different wave conditions in each of them, and, as a consequence,
the data collected by each buoy is unrelated.

4.2. Phase 2: final recovery

In this second phase, the final and definitive reconstruction
of each SWH time series is carried out. For this, the intermediate
reconstructions of SWH time series of the remaining buoys in the
zone are used as input for a model. At this point, it is possible
to apply complex ML techniques. These techniques could not be
previously applied as they require a training step, which, in turn,
could not be accomplished given that for the training time in-
stants of a given SWH time series, missing values could be found

in other buoys. However, once the intermediate reconstruction is



D. Guijo-Rubio, A.M. Durán-Rosal, A.M. Gómez-Orellana et al. Applied Soft Computing 146 (2023) 110647

c
t
t
i
i
i

Fig. 3. Simplified flowchart of the complete methodology, where the intermediate recovery is performed in the first phase, using Transfer Functions, and the final
recovery is carried out using Evolutionary Artificial Neural Network (EANN) models in the second phase.
performed, there are no missing values in the input SWH time
series, hence, the training stage of these ML techniques can be
carried out.

Furthermore, from all the buoys of a zone, only those highly-
orrelated SWH time series are used as inputs, i.e. those SWH
ime series with a correlation above the threshold α. Note that
his threshold is the initial one and is not recomputed to avoid
ntroducing bias from the intermediate recovery. In addition, as
t was aforementioned, the testing set of each buoy remains
nvariant, and it may be used in the training stage of each of the
7

remaining buoys, but it is not used in the buoy being recovered.

Moreover, it is important to mention that its intermediate recov-

ery is not considered as input for the final reconstruction of the

SWH time series for a specific buoy. To proceed with, EANNs are

proposed for this second phase to obtain more accurate estima-

tions as they have been previously applied, achieving outstanding

results. This procedure is summarised in Fig. 5.



D. Guijo-Rubio, A.M. Durán-Rosal, A.M. Gómez-Orellana et al. Applied Soft Computing 146 (2023) 110647
Fig. 4. Flowchart of the first phase in which buoys are individually recovered using one of the three TFs proposed. Once this phase finishes, the buoy is intermediately
recovered. The term ‘‘intermediately’’ indicates that this reconstruction is not definitive and it is only used for recovering other buoys in the zone and not itself.
Fig. 5. Flowchart of the second phase in which the final recovery of the buoy is carried out by means of the highly-correlated buoys of the zone. Once this phase
finishes, the recovery of the buoy is considered definitive.
4.2.1. Artificial neural networks
Artificial Neural Networks (ANNs) are models which try to

mimic the problem-solving behaviour of the human brain. Be-
cause of their powerful characteristics and properties, they are
8

used in many real-world problems, being present in several appli-
cations of different areas of science. One of the simplest and most
widely used models is Feed-Forward ANNs (FNNs) with a hidden
layer composed of several nodes. An FFN is a generalisation of a
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Fig. 6. Flowchart of the Evolutionary Algorithm applied for SWH time series reconstruction.
egression model where the basis functions are non-linear:

(x, θ) = β0 +

D∑
d=1

βdBd(x,wd), (8)

where D is the number of hidden neurons, wd represents the
eights of the connections between the input layer and the
idden neuron d, Bd(x,wd) is the basis function of neuron d,
hich applies a non-linear transformation to the input space x (a
ector containing the highly-correlated time series with respect
o the one that is being finally recovered, i.e. those with a corre-
ation above the threshold α), βd is the weight of the connection
etween the d-hidden neuron and the output layer, β0 represents
he bias, and finally, the function to be optimised is denoted as
(x, θ), where θ = (β,w).
Regarding the type of neurons in the hidden layer Bd(x,wd),

igmoid Units (SUs), Product Units (PUs) and a combination of
oth of them (PU+SU) have been chosen in this work.
On the one hand, SUs basis functions [55] present an additive

rojection model. This family of units can approximate any given
unction with enough accuracy provided that the number of hid-
en neurons is selected appropriately. SU is one of the most used
ctivation functions, and it has achieved excellent performance
n a wide variety of problems. A SU is defined as:

d(x,wd) =
1

1 + e−(w0,d+
∑k

i=1 wi,dxi)
, (9)

here wi,d is the weight of the connection between the input i
nd the hidden neuron d, and w0,d is the bias.
On the other hand, PUs [56] are used for cases where there is

strong interaction between the inputs, and the decision regions
re not separable into hyperplanes. PU based neural networks can
orm higher-order combinations of inputs, with the advantages of
igher information capacity and smaller network architectures.
Us have been shown to work effectively on both classification
nd regression problems. A PU is formally defined as follows:

d(x,wd) =

k∏
i=1

xwi,d
i . (10)

In addition to develop ANNs using each type of basis function,
his work also proposes a hybridisation in which the hidden layer
9

is made up of neurons of both types, PUs and SUs (known as
PU+SU), trying to benefit from the advantages of both.

4.2.2. Evolutionary artificial neural networks
Back Propagation (BP) algorithm is the most widespread one

to train ANNs. Nonetheless, this algorithm only optimises the
connection weights given a predefined neural network structure.
In addition, it is challenging to define the most suitable structure
for each problem in advance. Besides, BP can converge to local
optima due to the convoluted error surface associated with ANNs.
Therefore, in this work, an Evolutionary Algorithm (EA) is used
to train both the structure and the connection weights of ANNs,
giving rise to Evolutionary ANNs (EANNs). The goal of EANNs is to
perform a balanced search of the error surface (i.e. exploration vs
exploitation) to avoid local minima and find good performance
solutions. For this purpose, mutation operators are used aiming
to increase the diversity and exploitation of EANNs during their
evolution. Given that the EA is not gradient-based, parameters
such as learning rate and momentum are not used. Instead,
the control parameters of the mutation operators regulate the
strength when altering the synaptic weights and the structure of
the EANNs. Since crossover operator has been proven to lead to
potential drawbacks in evolving EANNs [57], it is not considered
in the EA.

Specifically, the EA used in this work evolves the ANNs pro-
posed in Section 4.2.1 by applying the evolutionary process,
which is graphically summarised in Fig. 6. As can be seen, the
EA starts creating an initial random population of EANNs. In this
way, the structure of each EANN in the population is randomly
created, that is, its number of hidden neurons, the number of
connections linking each hidden neuron to both input layer and
output layer, and the synaptic weight of each connection are
randomly initialised according to the values of the parameters
shown in Table 3.

After that, the evolutionary process is performed on EANNs,
generation after generation, until the stopping criterion is
reached. The performance of EANNs is evaluated in each gen-
eration of the evolutionary process by calculating their fitness
(Eq. (11)), which is used to sort the population (the higher fitness,
the better). Once EANNs are sorted, the worst 10% of the popu-
lation is replaced by a copy of the best 10% of EANNs, and then

each EANN in the population is individually evolved. Specifically,
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Table 3
Most important parameters values considered of the EA for MSE and SERA.
Parameter PU SU PU+SU

Maximum number of generations.a 1200/2100 3800/1800 1600/2100
Population size of ANNs. 1000 1000 1000
Minimum number of hidden neurons. 1 1 1
Maximum number of hidden neurons.a 4/6 6/6 5/6
Synaptic weights for connections between input and hidden layer. [−5, 5] [−10, 10] [−10, 10]
Synaptic weights for connections between hidden and output layer. [−10, 10] [−10, 10] [−10, 10]
Number of hidden neurons to add or remove. [1, 2] [1, 2] [1, 2]
Percentage of hidden layer connections to add or remove. 30% 30% 30%
Percentage of output layer connections to add or remove. 5% 5% 5%

aOptimising by MSE/SERA.
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the best 10% of the population is parametrically mutated (altering
the synaptic weights), whereas the remaining 90% is structurally
mutated (adding or removing hidden neurons and connections).
It is noteworthy that the mentioned selection of the best 10% of
EANNs that replace the worst 10% of the population encourages
elitism in the EA since after that replacement, the worst 90% of
EANNs contain the best 10% of EANNs and, as a consequence, the
best 10% of EANNs are independently evolved in both ways: para-
metrically and structurally. Parametric and structural mutations
will be later described.

Thus, each EANN in the population is optimised by maximising
its fitness (i.e. improving its performance) during the evolutionary
process. Finally, after reaching the stopping criterion, the EA stops
and returns the best EANN according to the fitness.

Given that the goal of the EA is to maximise the fitness of
each EANN in the population throughout the evolution, the fitness
function used by the EA is expressed as follows:

F (x, θ) =
1

1 + Φ(x, θ)
, (11)

here Φ is the metric used to compute the error achieved by
he EANN. Specifically, to optimise the fitness of the EANNs two
etrics are considered, the Mean Squared Error (MSE) and the
quared Error-Relevance Area (SERA), which are described in
ection 4.2.3.
Therefore, taking into account that the fitness of each EANN

s computed as a decreasing transformation of its error (as ex-
ressed in Eq. (11)), the best fitness EANN returned by the EA cor-
esponds to the SWH reconstructed time series with the lowest
stimation error.
As mentioned above, the purpose of the mutation operators

s to increase the diversity and exploitation of the population.
o this end, each EANN is individually mutated and the strength
f each mutation during its evolution depends on its associated
emperature, defined by:

(x, θ) = 1 − F (x, θ), 0 ≤ T (x, θ) < 1. (12)

On the one hand, the parametric mutation involves altering
he synaptic weights of the EANNs (not the structure), and it is
erformed on the best 10% of the population. It is carried out
y adding Gaussian noise of zero mean and decreasing variance
hroughout the evolution depending on the temperature of each
ANN so that the EA moves from exploring solutions to exploiting
hem. In that way, the synaptic weights of the connections from
he input layer to the hidden layer are modified as follows [58]:

i,d(t + 1) = wi,d(t) + ξ1(t), i = 1, . . . , k, d = 1, . . . ,D, (13)

here ξ1(t) ∈ N(0, α1(t) · T (x, θ)) corresponds to a number
andomly generated according to a normal distribution of one
imension, whose mean and variance are equal to 0 and α1(t) ·

(x, θ), respectively. The goal is that the strength of the mutations
essens as the EANNs increase their fitness, but also managed by
n adaptive parameter α (t) that will be later described.
1

10
The synaptic weights of the connections from the hidden layer
o the output layer are modified as follows [58,59]:

d(t + 1) = βd(t) + ξ2(t), d = 1, . . . ,D, (14)

eing ξ2(t) ∈ N(0, α2(t) ·T (x, θ)) similar to ξ1(t) but, for this case,
different control parameter is considered for the variance α2(t).
After applying the parametric mutation, the EANN fitness is

ecalculated, and then the mutation is rejected or accepted ac-
ording to a simulated annealing process [60]. Specifically, being
F , the difference of the EANN fitness before and after the mu-

ation, the mutation is accepted if ∆F ≥ 0. On the contrary, if
he new fitness is worse than the original, the mutation would
e accepted with a probability exp(∆F/T (x, θ)).
The two aforementioned adaptive parameters α1(t) and α2(t)

ontrol the strength of parametric mutations during the evolution
f EANNs. To proceed with, both parameters are updated during
volution to avoid local minima and accelerate convergence when
earch conditions are suitable. The update of α1(t) and α2(t) is
xpressed as follows [56]:

k(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + λ)·αk(t)

if F (x, θg ) > F (x, θg−1) ∀g ∈ {t, t − 1, . . . , t − ρ}

(1 − λ)·αk(t)
if F (x, θg ) = F (x, θg−1) ∀g ∈ {t, t − 1, . . . , t − ρ}

αk(t) otherwise

,

(15)

here k ∈ {1, 2}, F (x, θg ) is the best EANN fitness in generation
, and λ and ρ are parameters to control the update. Their values
re set to α1(0) = 0.5, α2(0) = 1, λ = 0.1, and ρ = 10.

The use of Eq. (15) is justified as follows: a successful generation
means that the current best EANN is better than one of the
previous generation. When this occurs ρ times, the best EANNs
are most likely to be found in the search space being explored.
Consequently, the strength of the mutation is increased with the
aim of finding EANNs closer to the optimal one. Conversely, the
mutation strength decreases when the best EANN is the same
during ρ generations. Otherwise, the strength of the mutation
remains the same.

On the other hand, the structural mutation involves altering
the structure of the EANNs (adding or removing both hidden
neurons and the connections that link them to the input layer
and output layer), and it is performed on the remaining 90% of
the population. In that way, the EA explores a diverse range of
structures (expands the area of the search space) and keeps a
diverse population.

Five different structural mutations are used by the EA: Add
neuron, Delete neuron, Add connection, Delete connection and
Neuron fusion, which are sequentially performed on each EANN
with probability T (x, θ). In case no structural mutation is per-
ormed due to probability, one of them is randomly selected and
hen performed. After that, the fitness of the EANN is recalculated.
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The connection structural mutations are performed as fol-
ows [58,59]:

• Add connection. Two neurons from adjacent layers are ran-
domly selected, and then both neurons are connected with a
random synaptic weight. This mutation is firstly performed
to add a connection between two neurons of input and
hidden layers, and then another connection is added to link
two neurons of hidden and output layers.

• Delete connection. This mutation is also applied to all adja-
cent layers, randomly selecting one neuron belonging to the
mutated layer and another neuron from the previous layer.

The number of connections used for both mutations is ob-
ained as ∆min + u · T (x, θ) · [∆max − ∆min], being u a number
andomly generated between 0 and 1, ∆min = 1 is the mini-
um number of connections to add or delete, and ∆max is the
aximum number of connections to mutate, which is calculated
y multiplying a user-defined percentage by the total number of
onnections of the layer being mutated.
Finally, the neuron structural mutations are performed as fol-

ows [60]:

• Neuron addition. One or more hidden neurons are added.
Two neurons are randomly selected, one from the input
layer and one from the output layer. Then, both neurons and
the new one added in the hidden layer are connected with
random synaptic weights. Specifically, the synaptic weights
for the connections from the input layer to the hidden layer
are selected in the range [−I, I], whereas for the connections
from the hidden layer to the output layer, the range [−O,O]

is used. Both ranges values are user-defined.
• Neuron deletion. One or more hidden neurons are randomly

selected and removed along with their connections.
• Neuron fusion. Two neurons, a and b, are randomly cho-

sen and fused into one neuron c , keeping their common
connections and whose synaptic weights are recalculated as
follows [60]:

βc = βa + βb, wi,c =
wi,a + wi,b

2
. (16)

Non-common connections between neurons a and b are in-
herited by c with a probability of 0.5, keeping their original
values.

The number of neurons used for these mutations is obtained
as ∆min + u · T (x, θ) · [∆max − ∆min], where ∆min and ∆max are
user-defined and represent the minimum and maximum number
of neurons to be mutated, respectively.

Finally, if the mutated EANN is not valid, all applied mutations
are discarded, and another structural or parametric mutation is
randomly chosen and performed on the original EANN, avoiding
the use of repair mechanisms.

4.2.3. Metrics
For regression problems, one of the most commonly used

metrics is the Mean Squared Error (MSE), which is computed as
follows:

MSE(x, θ) =
1
T

T∑
t=1

(Yt − Ŷt )2, (17)

here T is the number of time instants, Yt is the observed SWH
alue at t time instant, and Ŷt is the recovered SWH value by the
odel (Ŷt = y(x, θ)).
Although it is true that this metric is well-known, it has a

evere drawback: as it computes a mean value of the errors,
11
ery high or extreme values of time series tend to be underes-
imated. However, note that these very high or extreme values
re the most important ones in this type of time series, as not
orrectly predicting themmay entail for example, not anticipating
eaquakes, among other situations. Therefore, the recovery of
hese values is of enormous interest for the marine engineer-
ng. In this sense, and given that not all values of the target
ariable are equally important, this work proposes using the
etric Squared Error-Relevance Area (SERA) [27] to overcome

his drawback.
The following calculations are considered to obtain this metric.

irstly, it is important to mention that the interval proposed
y [61] frames the mean values. Values outside this interval are
onsidered outliers. In our case, these are the extreme SWHs.
pecifically, the interval for determining the outlier cut-off values
s [Q1 − 1.5IQR, Q3 + 1.5IQR], where Q1 and Q3 are the first and
hird quartiles of the SWH time series Y , and IQR = Q3 − Q1 is
he interquartile range. Note that, in this work, the interest is in
he right part of the interval, that is, to focus on extreme values
igher than Q3+1.5IQR. To make this interval less proned to bias,
n [62], the medcouple metric (MC) [63] was included as a robust
lternative to the classical skewness coefficient:

C = medYi≤Q2≤Yjh(Yi, Yj), (18)

here Q2 is the median of the SWH time series Y , and for all
i ̸= Yj, h is computed as:

(Yi, Yj) =
(Yj − Q2) − (Q2 − Yi)

Yj − Yi
. (19)

After that, to determine the cut-off values for the outliers,
n [62], the authors proposed an interval, where a threshold γ

s obtained, defined as:

=

{
Q3 + 1.5e3MC IQR if MC ≥ 0
Q3 + 1.5e4MC IQR if MC < 0 . (20)

According to [62], these exponential functions allow the box-
lot to be more adjusted to the skewness. In the context of
mbalanced regression tasks, they present two main contribu-
ions: (1) the metric is non-parametric, and (2) the method is
etter suited to avoid missing real cases of extreme values.
Then, a relevance value rt is assigned to each value Yt , accord-

ng to the following rules:

t =

⎧⎨⎩
0 if Yt ≤ MC
1 if Yt ≥ γ

Yt−Q2
γ−Q2

if Q2 ≤ Yt ≤ γ
. (21)

Considering the subset S formed by the cases for which the
elevance value rt assigned to the target value Yt is above or equal
o a cut-off s, the Squared Error-Relevance (SER) of a model with
espect to this cut-off s is formulated as:

ERs(x, θ) =

∑
t∈S

(Ŷt − Yt )2. (22)

Finally, SERA represents the area below the SERs:

ERA(x, θ) =

∫ 1

0
SERs(x, θ)ds =

∫ 1

0

∑
t∈S

(Ŷt − Yt )2ds. (23)

Note that the smaller is the area under this curve, the better
he model is.

According to the study carried out in [27], using the Mean
quared Error (MSE) to compare two models can be problematic.
f one model performs better around the mean and the other is
etter at extreme values, the MSE may not show any difference
etween them. The reason behind this behaviour is that MSE
o not appropriate reflect the difficulty in correctly estimating
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an extreme value in comparison to predicting a common value
around mean. This happens because the MSE considers all values
equally important, even though predicting an extreme value is
considerably more difficult. On the other hand, if we only focus
on extreme values, we ignore the performance around the mean.
To address this issue, SERA was introduced as a solution. SERA
orders values according to their relevance. A higher relevance
is given to extreme values than to more common values. For
this, we use a threshold value s. The SERs metric is then used
o calculate the error only for values whose relevance is above
. Combining SERs and MSE is the suggested solution by SERA to
void neglecting the impact of model performance on any of the
etrics. The errors of the around-mean cases have fewer impact
iven their higher frequency. On the contrary, the errors made
hen estimating extreme values are given more importance and
re counted more times along the cut-off values of relevance in
he global sum defined in the integral.

Moreover, the SERA metric demonstrates a notable advantage
n handling severe model biasing, as it replaces the conventional
kewness coefficient with the medcouple, thereby enhancing its
bility to detect and account for extreme values (outliers). Fur-
hermore, SERA exhibits all the essential attributes necessary for
n appropriate metric in the context of imbalanced regression
roblems: (1) it primarily focuses on reducing prediction errors
ssociated with extreme target values; (2) it mitigates the risk of
verfitting by giving equal importance on predictions for common
alues; (3) it enables the computation of asymmetric errors,
.e. errors of similar magnitude have different impact according
o their relevance; and (4) SERA facilitates model discrimination
nd comparison. Therefore, given its inherent properties, the
ERA metric is regarded as a suitable and effective method for
valuating imbalanced regression problems [27].

.3. Complexity of the proposed methodology

In order to determine the complexity of the proposed method
method, we must consider the complexities of the two phases
iscussed earlier.
Let us denote as Ophase1, the complexity of the first phase. This

irst phase sequentially applies three transfer function models.
onsidering N as the number of time series involved in the
ethod: the linear regression-based model is an O(N2) algorithm

hanks to advanced matrix inversion algorithms; the complexity
f the correlation-based model is O(N2) since for each time series

the correlation with all the other time series should be calculated;
and the distance-based model requires to compute the distance
between each pair of time series so the complexity is O(N2). Thus,
pplying the properties of Big O notation, Ophase1(N2

+ N2
+ N2)

≃ Ophase1(N2).
The computational cost of the second phase, related to the

evolutionary algorithm, is Ophase2(gPc), where g is the number
of generations, P is the population size, and c is the size of
the individual. This order of complexity is obtained since each
generation of the evolutionary algorithm involves evaluating and
ranking the population and updating it for the next generation,
through structural and parametric mutations.

In the worst case, assuming that n = max(N, g, P, c), the
complexity Omethod(n2

+ n3) ≃ Omethod(n3). Therefore, it can be
concluded that the methodology is of cubic order.

5. Experimental settings and results

This Section describes the experimental settings used in both
phases of the proposed methodology. Besides, the results ob-

tained for both coastal areas and a detailed discussion comparing

12
the methodology with other state-of-the-art algorithms are also
presented.

5.1. Experimental settings

As mentioned in Section 4, the proposed methodology is di-
vided into two phases. The first performs an intermediate re-
covery of each SWH time series, serving as input for the final
recovery of other buoys in the zone.

On the one hand, for the first phase, three different TFs are
proposed, which have been optimised by MSE. Regarding the
regression-based TF, the initial correlation threshold α is de-
termined using a 10-fold cross-validation over the training sets
and using the following grid {0.65, 0.70, 0.75}, which, in turn,
is selected because these values are close to the mean of the
correlations between the training sets of the buoys (Tables 5
and 6). Note that in each step of the regression-based TF, this
threshold α is increased by 0.05 to reduce the error entailed in the
reconstruction process. In this sense, the initial values α = 0.70
and α = 0.65 are chosen for the Gulf of Alaska and the Northeast
Coast zones, respectively. The other two TFs (correlation-based
and distance-based) do not need any parameter to be cross-
validated, just the correlations and distances between the buoys
belonging to the same coastal zone, which are precomputed and
shown in Tables 5 and 6.

As it was mentioned at the end of Section 4.1, it may be
assumed that when correlation increases, distance decreases and
vice-versa. Looking at Tables 5 and 6, it can be observed that for
the buoy 44025, the highest correlation (0.938) is found with the
buoy 44065, which is also the closest (47.549 km). In addition, the
second highest correlation (0.905) is found with the buoy 44066,
which is also the second closest buoy (83.186 km). Thus, the
general assumption is met in some cases. However, some cases
deny this assumption in two ways. (1) The higher the correlation,
the lower the distance: in this case, highly correlated buoys are
supposed to be geographically close to each other. However,
looking at the three buoys located at the coast of the Gulf of
Alaska (46076, 46061, 46082, Table 5), it can be seen that the
buoy 46076, which is geographically located at the left side of
the coast, has a higher correlation with the buoy in the opposite
extreme (buoy 46082, correlation of 0.833), than with respect to
the buoy 46061, which is geographically located at the middle of
both (0.825). The same behaviour is replicated with buoys 44020,
44013, and 44066 of the Northeast Coast (Table 6). The same
correlation is obtained for the pairs 44020 − 44013 (0.704) and
44020− 44066 (0.703), whereas the distance between the buoys
of the first pair (99.718 km) is almost three times the distance
between the buoys of the second pair (288.749 km). (2) The
higher the distance, the lower the correlation: this is the opposed
situation, which is also generally assumed. This idea may not be
deduced either as distance does not take into account the geo-
graphical features that may exist or the orography of the coast.
For instance, focusing on the buoy 44005 of the Northeast Coast, it
can be seen that its closest buoy is the 44013 (156.558 km away).
However, that buoy is not the most correlated (0.782, in fact, is
the third). The same behaviour could be found for some of the
remaining buoys.

On the other hand, for the second phase, the EA used to opti-
mise the ANN models has been applied using each optimisation
metric (MSE and SERA) independently. More specifically, Table 3
shows the most important parameters considered and their range
of values according to the basis functions used.

Since the EA is stochastic, 30 runs for each metric (MSE and
SERA), have been carried out, using different seeds, to recover
each SWH time series. It is worthy of mention that the number
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Table 4
Considered range of values for tuning the parameters of the state-of-the-art techniques.
Technique Parameter description Range of values

Ridge Regularisation {10−3, 10−2, . . . , 103
}

Lasso Regularisation {10−3, 10−2, . . . , 103
}

ElasticNet Regularisation {10−3, 10−2, . . . , 103
}

Ratio of the L1 penalisation weight [0.10, 0.50, 0.70, 0.90, 0.95, 0.99, 1.00]

SVR Kernel width {10−3, 10−2, . . . , 103
}

MLP

Number of hidden neurons [10, 25, 50, 100]
Regularisation {10−3, 10−2, . . . , 103

}

Initial learning rate [0.00001, 0.0001, 0.001]
Number of iterations [1000, 1500]

RandomForest

Number of trees in the forest [10, 50, 100, 150]
Maximum depth of the trees [3, 4, 5, 6]
Maximum depth of the trees: when all leaves are pure or

[2, 3, 4, 5]
contain less than samples than the minimum
of generations required for the evolutionary process depends on
the time series being recovered.

Furthermore, in the second phase, with the aim of establishing
fair and robust comparison of the EANN models, 7 state-of-the-
rt techniques have been run: LinearRegression [64], Ridge [65],
asso [66], ElasticNet [67], Support Vector Machines (SVR) [68],
ultilayer Perceptron (MLP) [69] and RandomForest [70]. Their
arameters values have been selected using a 10-fold cross-
alidation over the training sets. The best configuration for each
echnique is chosen according to the metric being optimised
i.e. lowest MSE or SERA). More specifically, Table 4 shows the
ost important parameters considered and their values. Both
LP and RandomForest techniques are stochastic, and thus, they
ave been run 30 times using different seeds as the EANN models.
herefore, their results are expressed as their mean and Standard
eviation (SD): MeanSD.
Finally, The performances of the TFs in the first phase and

he ML techniques in the second phase are evaluated considering
hree metrics in addition to the two used to optimise the models
i.e. MSE and SERA, both to be minimised). These three new
etrics are the standard coefficient of determination (R2), the
aximum Standard Error (MaxSE) and the Mean Relative Error

MRE). The first one, R2, is a measure of goodness of fit between
and 1 that indicates how well a model predicts an outcome. The
econd one, MaxSE, indicates the biggest error performed by the
odel, hence, the lower error, the better. It is useful to know the
agnitude of the errors made by the models. It is computed as

ollows:

axSE(x, θ) = max(Yt − Ŷt )2, t ∈ {1, 2, . . . , T }, (24)

here T is the number of time instants, Yt is the observed SWH
alue at t time instant and Ŷt is the recovered SWH value by the
odel (Ŷt = y(x, θ)).
Finally, MRE indicates the ratio of the absolute error with

espect to the magnitude of the measurement being taken. MRE
s calculated as follows:

RE(x, θ) =

∑T
t=1 |Yt − Ŷt |∑T

t=1 |Yt |
. (25)

These last two metrics, MaxSE and MRE, allow the comparison
f the results obtained for different buoys. Even though SWH
s always measured using the same unit, the magnitudes from
ne buoy to others differ depending on the atmospheric and
eographical conditions where they are located.

.2. Results

As the proposed methodology is divided into two different
hases, the results obtained using the test sets are presented
13
separately for each phase. Concretely, the results achieved by the
three TF models proposed for the first phase are shown in Table 7.
As can be seen, the results are divided according to the zone
under study, i.e. the first part of the Table 7 shows the results for
the Gulf of Alaska, whereas the results for the Northeast Coast
are shown below. In addition to MSE, which has been used to
optimise the models, the performance of each model in terms of
SERA, R2, MaxSE, and MRE is also shown for comparison purposes,
all of them to be minimised but R2. Regarding the Gulf of Alaska,
even though the correlation-based TF achieves good results (the
number of second-best results can denote it), the distance-based
TF manages to improve these results. For this zone, the regression
technique is selected for 3 out of 5 buoys, whereas the distance
one is selected for the remaining 2 buoys. In the case of the
Northeast Coast, all these TF models can achieve competitive
results for all the performance measures. Focusing on MSE, the
regression-based TF is chosen 1 time, the correlation-based TF is
chosen 3 times, and the distance-based is selected 4 times. Ulti-
mately, for all the buoys of this work, the regression-based, the
correlation-based and the distance-based TFs are chosen a total of
4, 3, and 6 times, respectively. This demonstrates that weighting
by distance between buoys, which is one of the contributions of
this study, is better than weighting by their similarity. Note that,
as mentioned in Section 4.1, distance and correlation (similarity)
may not be related in such a way that the greater distance, the
lowest correlation or vice-versa. Not assuming this fact has led to
achieving better results in 6 buoys. Moreover, it is important to
mention that MRE supports the results achieved by MSE so that
the selected TF for each buoy would be the same but for one case
(44008). Therefore, the results achieved in terms of MSE and MRE
are consistent.

Therefore, the intermediate recovery of each of the analysed
buoys has been selected according to the TF, achieving the best
result in terms of MSE. For instance, for the buoy 44005 of the
Northeast Coast, the distance-based TF achieves the best result
(0.2242), improving the performance, in terms of MSE, of the
remaining TFs (0.3945 and 0.2431 for the regression-based and
the correlation-based TFs, respectively). As aforementioned, these
intermediate reconstructions are not definitive and are only used
for the final reconstruction of the other buoys belonging to the
same coastal zone but not for themselves.

In this way, Table 8 shows the results obtained by the tech-
niques applied in the second phase when optimised by MSE,
whereas Table 9 contains the results when SERA optimises the
techniques. Note that the results are expressed as their mean and
Standard Deviation (SD): MeanSD for the stochastic techniques.
The first part of each table shows the results for the Gulf of Alaska,
whereas the results for the Northeast Coast are shown below.
Our approach consists in the EANN models, which are named
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Table 5
Correlation and distance matrices for the buoys of the Gulf of Alaska.

Buoy 46001 46061 46076 46078 46082 46085

Correlation matrix

46001 1 0.674 0.719 0.804 0.682 0.833
46061 0.674 1 0.825 0.591 0.872 0.666
46076 0.719 0.825 1 0.625 0.833 0.679
46078 0.804 0.591 0.625 1 0.515 0.626
46082 0.682 0.872 0.833 0.515 1 0.749
46085 0.833 0.666 0.679 0.626 0.749 1

Buoy 46001 46061 46076 46078 46082 46085

Distance matrix

46001 0 450.195 360.178 298.422 468.802 316.905
46061 450.195 0 107.636 621.154 202.341 536.914
46076 360.178 107.636 0 513.643 262.091 501.788
46078 298.422 621.154 513.643 0 713.890 608.097
46082 468.802 202.341 262.091 713.890 0 423.313
46085 316.905 536.914 501.788 608.097 423.313 0

Distance values are expressed in kms.
Table 6
Correlation and distance matrices for the buoys of the Northeast Coast.

Buoy 44005 44008 44011 44013 44020 44025 44027 44065 44066

Correlation matrix

44005 1 0.811 0.766 0.782 0.679 0.631 0.840 0.534 0.719
44008 0.811 1 0.829 0.745 0.726 0.726 0.694 0.618 0.824
44011 0.766 0.829 1 0.626 0.574 0.509 0.652 0.404 0.614
44013 0.782 0.745 0.626 1 0.704 0.626 0.480 0.616 0.693
44020 0.679 0.726 0.574 0.704 1 0.674 0.488 0.620 0.703
44025 0.631 0.726 0.509 0.626 0.674 1 0.496 0.938 0.905
44027 0.840 0.694 0.652 0.480 0.488 0.496 1 0.379 0.555
44065 0.534 0.618 0.404 0.616 0.620 0.938 0.379 1 0.826
44066 0.719 0.824 0.614 0.693 0.703 0.905 0.555 0.826 1

Buoy 44005 44008 44011 44013 44020 44025 44027 44065 44066

Distance matrix (km)

44005 0 300.735 315.658 156.558 212.204 468.762 189.772 492.931 494.625
44008 300.735 0 235.818 236.321 140.299 332.583 450.303 377.037 304.874
44011 315.658 235.818 0 366.812 313.683 564.459 359.799 606.895 540.689
44013 156.558 236.321 366.812 0 99.718 313.560 346.205 336.430 346.389
44020 212.204 140.299 313.683 99.718 0 279.113 393.829 313.592 288.749
44025 468.762 332.583 564.459 313.560 279.113 0 658.341 47.549 83.186
44027 189.772 450.303 359.799 346.205 393.829 658.341 0 682.634 681.140
44065 492.931 377.037 606.895 336.430 313.592 47.549 682.634 0 122.930
44066 494.625 304.874 540.689 346.389 288.749 83.186 681.140 122.930 0

Distance values are expressed in kms.
according to the basis functions used in the hidden layer: PU for
Product Units, SU for Sigmoid Units, and PU+SU for hybrid EANNs
with Product Units and Sigmoid Units. As an example, the buoy
46085 of the Gulf of Alaska uses the buoys 46001 and 46082 as
inputs for its final recovery, given that the correlations between
the buoy to be finally recovered (46085) and these two buoys
(0.833 and 0.749, respectively, as can be checked from Table 5)
are the only ones that are above 0.70, which is the threshold α

for this zone.
On the one hand, analysing the results obtained when opti-

mising the models by MSE (Table 8), it can be observed that in
the Gulf of Alaska, EANNs models obtained the best results in 4
out of 5 buoys (2 using SU and 3 using PU+SU, note that SU and
PU+SU share one best result), whereas the remaining best result
is achieved by both LinearRegression and Ridge (buoy 46078).
Regarding the Northeast Coast, EANN models are able to achieve
the best MSE results in 5 out of 8 buoys (1 using PU, 3 using
SU and 2 using PU+SU, note that SU and PU+SU share one best
result), whereas the remaining 3 best results are achieved by
RandomForest (buoy 44011), SVR (buoy 44027) and regression
techniques (the best result for the buoy 44066 is achieved by
both LinearRegression and Ridge). Note that EANN models can
also obtain the second-best results in 2 out of those 3 buoys.
The results achieved in this second phase are better than those
obtained in the first one for all the 13 buoys (5 for the Gulf of
Alaska and 8 for the Northeast Coast).
14
Moreover, when models are optimised by MSE, EANN models
obtained not only the best SERA results in both areas (5 for PU,
1 for SU and 7 for PU+SU) but also the second best results. These
results in terms of SERA are very interesting since this metric
involves recovering not only the simpler parts where the SWH
time series takes values around the mean but also the more
complex parts where the SWH time series takes extreme values.
In this sense, it can be said that EANNs using PUs in the hidden
layer can capture both behaviours of the SWH time series on the
simplest buoys (i.e. buoys with a reduced percentage of missing
values or buoys with few extreme values), and when buoys are
considered to be more difficult to retrieve (i.e. buoys with a high
percentage of missing values or buoys with a lot of extreme
values), PUs combined with SUs, i.e. hybrid PU+SU models, are
able to achieve the best results on most buoys. In terms of R2,
the results are in line with those obtained by MSE. Interestingly,
most of the buoys reach R2 values around 0.8 and some buoys
above 0.9, except for two buoys of the Northeast Coast (44011
and 44027), for which values of 0.5265 and 0.3574, respectively,
have been reached. The reason behind these poor values obtained
by buoys 44011 and 44027 is that the correlation with which the
input buoys are selected is very close to the correlation threshold
chosen for this zone, α = 0.65, and only 3 and 1 buoys are used
in the final recovery, respectively, as can be checked in Table 6.
Analysing the MaxSE results, it can also be observed that the
highest values of SE (Squared Errors) are obtained for the same
two buoys at the Northeast Coast (44011 and 44027) and for
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Table 7
Results achieved by the three TF models proposed for the first phase of the approach, optimising models by MSE.

Metric Buoy TF Model

Regression Correlation Distance

Gulf of Alaska

MSE (↓)

46061 0.1674 0.2385 0.1833
46076 0.5994 0.2852 0.1925
46078 0.4452 0.6282 0.5735
46082 0.8910 0.4649 0.4026
46085 0.5579 0.6426 0.5989

SERA (↓)

46061 11502.2972 18638.2711 14393.3618
46076 56501.5219 21347.8961 15012.6605
46078 29039.6746 41748.0934 37639.7270
46082 51038.8417 20229.0578 17466.1147
46085 33107.1304 39644.6752 36518.7132

R2 (↑)

46061 0.8465 0.7956 0.8424
46076 0.5537 0.7947 0.8612
46078 0.7194 0.6332 0.5990
46082 0.4470 0.6963 0.7415
46085 0.7366 0.7229 0.7374

MaxSE (↓)

46061 6.4872 9.4614 8.0193
46076 25.1624 14.9769 10.8107
46078 15.6620 22.3124 20.8965
46082 22.5341 8.4985 7.1036
46085 12.9483 9.8247 9.3184

MRE (↓)

46061 0.1746 0.2080 0.1790
46076 0.2929 0.2089 0.1694
46078 0.2034 0.2372 0.2262
46082 0.2719 0.2020 0.1870
46085 0.1841 0.1977 0.1913

Metric Buoy TF Model

Regression Correlation Distance

Northeast Coast

MSE (↓)

44005 0.3945 0.2431 0.2242
44008 0.3519 0.2043 0.2070
44011 1.1363 1.0015 1.0434
44020 0.0531 0.0443 0.0452
44025 0.1677 0.1360 0.0491
44027 0.4869 0.5077 0.5223
44065 0.1063 0.1283 0.0682
44066 0.5848 0.2280 0.1608

SERA (↓)

44005 25798.3631 14717.2076 13460.3862
44008 13360.9987 9464.4901 9901.0025
44011 49114.9313 33628.0406 34449.8383
44020 4749.2202 3390.8779 3347.2782
44025 11325.0573 10216.2087 3296.0708
44027 46884.9705 38049.4116 40616.0840
44065 8469.1762 9389.1561 4629.3282
44066 52845.5524 18803.2937 13335.5235

R2 (↑)

44005 0.5541 0.7494 0.7692
44008 0.5290 0.7216 0.7205
44011 0.3318 0.4563 0.4460
44020 0.4984 0.5867 0.5904
44025 0.7106 0.7568 0.9140
44027 0.2871 0.3299 0.3199
44065 0.6445 0.6232 0.7890
44066 0.3772 0.7580 0.8384

MaxSE (↓)

44005 11.2392 6.4114 6.0429
44008 5.9840 3.8672 4.0236
44011 21.2563 15.5661 16.0240
44020 3.9678 4.4735 4.5082
44025 3.9641 6.0605 1.1741
44027 21.6919 16.2316 17.5281
44065 2.7312 2.6608 1.3428
44066 15.4801 10.3903 10.0580

MRE (↓)

44005 0.2940 0.2230 0.2167
44008 0.3212 0.2225 0.2217
44011 0.3293 0.3110 0.3167
44020 0.3293 0.2944 0.2949
44025 0.2388 0.1957 0.1225
44027 0.4052 0.4273 0.4293
44065 0.2218 0.2465 0.1823
44066 0.3397 0.2051 0.1725

The best results are highlighted in bold, whereas the second best are in italics.
15
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Table 8
Results achieved on the second phase of the approach, optimising models by MSE. The results of the stochastic models are expressed as their mean and Standard Deviation (SD): MeanSD .

Metric Buoy LinearRegression Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Gulf of Alaska

MSE (↓)

46061 0.1581 0.1566 0.1580 0.1566 0.1811 0.15600.0026 0.16120.0025 0.15280.0015 0.15350.0032 0.14990.0014
46076 0.1745 0.1744 0.1743 0.1743 0.1736 0.17030.0019 0.17560.0029 0.16970.0006 0.16880.0016 0.16880.0022
46078 0.4452 0.4452 0.4455 0.4455 0.4532 0.44570.0006 0.45240.0008 0.44600.0005 0.44780.0025 0.44660.0007
46082 0.3655 0.3655 0.3651 0.3651 0.3766 0.35870.0057 0.35560.0011 0.35470.0028 0.35410.0023 0.34800.0025
46085 0.4428 0.4428 0.4424 0.4424 0.4382 0.43700.0015 0.44860.0018 0.43510.0013 0.43420.0019 0.43770.0032

SERA (↓)

46061 10664.4483 11148.2822 10759.1228 10849.2567 14727.6876 10767.3642328.3058 11461.6720246.4244 6564.069973.6302 6807.1688175.8786 6538.4622100.7926
46076 15717.2647 15716.4361 15803.4999 15802.4383 15367.2084 15115.2904273.2186 15804.6627335.0880 8518.964744.5683 8435.2063128.3628 8398.3464185.7868
46078 29039.6746 29039.8674 29170.9211 29170.9211 29754.7437 28867.6146387.1405 29010.515976.1822 18394.7586104.3305 18470.6403233.2760 18455.222789.3421
46082 17881.0046 17881.0725 17940.9341 17940.9341 18892.7873 17130.3207463.0613 16835.688493.4771 10278.7888194.9226 9867.1941206.0941 9739.1154152.4571
46085 26258.4783 26258.6329 26383.4965 26383.4965 27051.5767 25662.5181288.7405 25422.8782166.1083 15217.439795.4788 14935.6931114.5193 15231.3725298.5966

R2 (↑)

46061 0.8498 0.8514 0.8496 0.8508 0.8282 0.85170.0025 0.84740.0030 0.85560.0013 0.85480.0027 0.85880.0013
46076 0.8709 0.8710 0.8709 0.8709 0.8717 0.87450.0008 0.86970.0021 0.87460.0003 0.87560.0011 0.87570.0016
46078 0.7194 0.7194 0.7194 0.7194 0.7167 0.71940.0002 0.71470.0005 0.71880.0003 0.71770.0016 0.71840.0004
46082 0.7691 0.7691 0.7691 0.7691 0.7668 0.77250.0037 0.77300.0007 0.77590.0015 0.77600.0015 0.77900.0013
46085 0.7910 0.7910 0.7911 0.7911 0.7947 0.79360.0007 0.78810.0008 0.79450.0006 0.79500.0008 0.79340.0015

MaxSE (↓)

46061 5.7438 6.2272 5.8374 5.9886 8.8995 5.86120.1636 4.87590.1885 5.53290.0753 5.18990.1370 5.30580.1358
46076 11.3678 11.3822 11.4993 11.5069 10.6332 11.30260.1766 10.21670.4996 11.13800.1235 11.06490.3006 10.93490.3733
46078 15.6620 15.6622 15.8154 15.8154 16.9998 15.82070.2826 16.32590.2980 16.42470.1945 16.67030.6856 16.51270.1759
46082 7.1700 7.1699 7.1677 7.1677 7.5273 7.11350.1143 7.31820.1269 7.23560.1366 7.15690.1879 7.01880.1963
46085 8.7660 8.7660 8.8144 8.8144 8.9335 8.55970.1109 8.74150.1381 8.60430.0433 8.77440.2632 8.61000.1298

MRE (↓)

46061 0.1665 0.1655 0.1663 0.1655 0.1676 0.16510.0016 0.16670.0013 0.16310.0008 0.16210.0017 0.15990.0007
46076 0.1506 0.1506 0.1502 0.1502 0.1504 0.14980.0009 0.15270.0012 0.14930.0005 0.14910.0007 0.14930.0008
46078 0.2034 0.2034 0.2038 0.2038 0.2014 0.20350.0009 0.20560.0003 0.20240.0003 0.20340.0012 0.20290.0003
46082 0.1756 0.1756 0.1755 0.1755 0.1783 0.17460.0012 0.17550.0003 0.17390.0006 0.17390.0006 0.17280.0007
46085 0.1651 0.1651 0.1651 0.1651 0.1629 0.16440.0004 0.16830.0004 0.16370.0003 0.16410.0005 0.16400.0005

Metric Buoy LinearRegression Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Northeast Coast

MSE (↓)

44005 0.1044 0.1045 0.1037 0.1039 0.1044 0.10330.0019 0.11540.0009 0.10530.0044 0.10310.0034 0.11170.0110
44008 0.1623 0.1585 0.1566 0.1562 0.1537 0.15330.0026 0.15630.0012 0.15140.0041 0.15630.0086 0.15410.0058
44011 0.8833 0.8833 0.8802 0.8802 0.8904 0.83410.0096 0.82200.0036 0.84650.0056 0.84330.0232 0.83800.0292
44020 0.0418 0.0415 0.0425 0.0416 0.0416 0.04140.0006 0.04650.0002 0.08040.0907 0.04120.0007 0.04190.0008
44025 0.0339 0.0339 0.0342 0.0342 0.0330 0.03340.0005 0.03680.0002 0.07090.1759 0.03320.0005 0.03300.0005
44027 0.4629 0.4628 0.4612 0.4610 0.4520 0.45630.0023 0.45390.0009 0.45600.0007 0.45570.0012 0.45360.0021
44065 0.0338 0.0338 0.0368 0.0368 0.0347 0.03530.0005 0.03370.0002 0.03330.0002 0.03300.0008 0.03300.0007
44066 0.1136 0.1136 0.1193 0.1193 0.1152 0.11520.0012 0.13140.0010 0.11580.0024 0.11790.0030 0.11860.0032

SERA (↓)

44005 5605.9115 5612.7849 5633.8913 5650.9320 5975.1325 5560.0195136.8825 6342.411781.3010 3613.8875271.4587 3744.3062229.8895 3907.2206574.5327
44008 7742.7134 7626.2445 7592.6547 7558.5572 8323.8136 7503.0712196.5287 8369.140689.0931 4846.1251137.6652 5271.7589206.6653 4835.3828231.8689
44011 28065.6455 28065.1765 28144.1929 28144.1929 29571.0343 25436.1695540.9184 24971.7589129.6492 16669.7033473.6500 16868.48071423.8097 17009.16881311.5456
44020 3208.3297 3234.5864 3326.8788 3228.6959 2918.8629 3127.118091.6059 3230.245423.7052 1259.9140132.9363 1796.735542.3087 1840.430569.4784
44025 2075.4542 2075.4723 2095.8021 2095.8021 1992.2001 2010.236462.1105 2243.593123.5579 1261.1829257.3111 1172.645970.9526 1116.386446.8647
44027 42511.8428 42479.6281 42085.3125 42048.5222 40747.8902 40089.7654886.2117 38872.1555170.8272 25648.5797106.1290 25569.0626187.8732 25436.7969239.5733
44065 2388.9036 2389.0303 2643.2509 2643.2509 2520.1190 2522.078049.2890 2382.563319.3104 1537.446318.9930 1519.252159.6646 1506.110050.6394
44066 8626.3934 8626.7148 9398.2295 9398.2295 9126.3871 8947.9964361.1221 9907.7310113.4463 6118.0188301.4930 6296.0088273.4421 6252.8932235.3900

R2 (↑)

44005 0.8825 0.8824 0.8828 0.8826 0.8886 0.88480.0018 0.87030.0010 0.88260.0041 0.88540.0040 0.87670.0106
44008 0.7572 0.7628 0.7656 0.7661 0.7724 0.77500.0025 0.77220.0016 0.77540.0055 0.77160.0125 0.77270.0077
44011 0.5028 0.5028 0.5024 0.5024 0.4967 0.52240.0032 0.52650.0014 0.51420.0038 0.51830.0134 0.51590.0142
44020 0.6036 0.6066 0.5969 0.6056 0.6165 0.60860.0051 0.57210.0020 0.87880.1111 0.61050.0061 0.60480.0074
44025 0.9400 0.9400 0.9398 0.9398 0.9419 0.94110.0005 0.93510.0003 0.91190.1159 0.94130.0009 0.94190.0009
44027 0.3440 0.3440 0.3442 0.3442 0.3574 0.35380.0012 0.35600.0009 0.35570.0006 0.35540.0009 0.35690.0011
44065 0.8863 0.8863 0.8758 0.8758 0.8830 0.88140.0018 0.88670.0005 0.88810.0007 0.88900.0028 0.88910.0023
44066 0.8801 0.8801 0.8771 0.8771 0.8792 0.87900.0012 0.86130.0010 0.87880.0014 0.87640.0030 0.87610.0036

MaxSE (↓)

44005 3.6107 3.5943 3.4342 3.4161 3.7062 3.58880.2252 3.32240.1877 4.50621.5749 3.83400.7367 4.50981.2862
44008 3.9266 3.9518 3.8959 3.9378 4.1340 3.73910.0956 4.77460.6225 4.23223.3110 3.92890.2078 4.43853.8965
44011 13.3153 13.3151 13.3727 13.3727 14.1031 13.53830.2246 13.94680.3843 12.83970.1075 14.52543.4158 13.76033.4804
44020 4.2815 4.2657 4.2636 4.2723 4.2845 4.28800.0622 4.40730.0321 67.8355132.0093 4.32120.0786 4.33010.0906
44025 0.7949 0.7949 0.6894 0.6894 0.6081 0.62730.0881 1.31140.1624 53.7501256.3741 0.64090.2221 0.67740.4113
44027 19.9385 19.9290 19.8339 19.8283 19.6555 19.24610.2190 18.52650.1299 19.35490.0728 19.13770.1745 19.20030.1412
44065 1.0504 1.0503 0.8769 0.8769 1.0618 0.96430.0291 0.95840.0471 1.09010.0285 1.12010.1149 1.14510.0900
44066 7.1190 7.1209 9.2519 9.2519 9.1340 7.58390.6516 11.85990.7373 6.96230.7734 7.79211.4113 7.69591.3778

MRE (↓)

44005 0.1491 0.1491 0.1484 0.1485 0.1468 0.14780.0013 0.15700.0006 0.14750.0027 0.14670.0020 0.15150.0060
44008 0.1942 0.1915 0.1892 0.1897 0.1835 0.18580.0030 0.18400.0006 0.18140.0013 0.18520.0070 0.18560.0039
44011 0.2878 0.2878 0.2876 0.2876 0.2889 0.28120.0019 0.28020.0006 0.28270.0010 0.28140.0030 0.28130.0032
44020 0.2909 0.2909 0.2943 0.2909 0.2872 0.29020.0028 0.30330.0009 0.29220.0030 0.28970.0031 0.29150.0031
44025 0.1027 0.1027 0.1043 0.1043 0.1013 0.10170.0011 0.10680.0002 0.10530.0037 0.10110.0007 0.10110.0007
44027 0.3888 0.3889 0.3896 0.3896 0.3843 0.38880.0011 0.38970.0004 0.38940.0007 0.38830.0010 0.38840.0021
44065 0.1264 0.1264 0.1320 0.1320 0.1275 0.12920.0011 0.12550.0002 0.12550.0004 0.12500.0015 0.12510.0012
44066 0.1471 0.1471 0.1498 0.1498 0.1465 0.14710.0017 0.15740.0005 0.14850.0012 0.14920.0019 0.14960.0015

The best result is highlighted in bold; the second one best result is shown in italics.
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Table 9
Results achieved on the second phase of the approach, optimising models by SERA. The results of the stochastic models are expressed as their mean and Standard Deviation (SD): MeanSD .

Metric Buoy LinearRegression Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Gulf of Alaska

MSE (↓)

46061 0.1581 0.1576 0.1580 0.1566 0.1811 0.15790.0029 0.16320.0009 0.19550.0047 0.18860.0063 0.18450.0089
46076 0.1745 0.1745 0.1743 0.1743 0.1725 0.17030.0021 0.18070.0067 0.19180.0065 0.19540.0070 0.20000.0087
46078 0.4452 0.4452 0.4455 0.4455 0.4532 0.44550.0004 0.45330.0024 0.95060.0102 0.94420.0071 0.93920.0136
46082 0.3655 0.3655 0.3651 0.3651 0.3766 0.35940.0059 0.35610.0016 0.46380.0100 0.47830.0192 0.48240.0235
46085 0.4428 0.4428 0.4424 0.4424 0.4382 0.43700.0013 0.44660.0031 0.67290.0143 0.69010.0135 0.70390.0298

SERA (↓)

46061 10664.4483 10689.0179 10759.1228 10849.2567 14727.6876 10753.1888240.4077 11630.7253139.5485 6528.130068.8213 6549.704093.1419 6362.0409188.1432
46076 15717.2647 15717.2553 15803.4999 15803.4999 14817.1561 15110.9463282.0997 16125.3902546.3187 7435.9183102.6282 7293.764869.0909 7252.7616125.3626
46078 29039.6746 29039.8674 29170.9211 29170.9211 29754.7437 28737.8139350.7998 29058.4763198.3715 13675.323117.7498 13705.445529.6155 13687.157124.8219
46082 17881.0046 17881.0725 17940.9341 17940.9341 18892.7873 17130.4101390.5689 16873.6626135.6294 7594.481117.5420 7790.6611113.7059 7668.2098104.0323
46085 26258.4783 26258.6329 26383.4965 26383.4965 27051.5767 25610.0824314.6427 25189.5615219.8686 11765.262682.1648 11881.4101154.1414 11875.6736144.0537

R2 (↑)

46061 0.8498 0.8501 0.8496 0.8508 0.8282 0.84980.0028 0.84480.0008 0.84520.0018 0.84990.0027 0.85150.0054
46076 0.8709 0.8709 0.8709 0.8709 0.8743 0.87470.0006 0.86620.0047 0.86960.0031 0.87180.0031 0.87270.0057
46078 0.7194 0.7194 0.7194 0.7194 0.7167 0.71930.0002 0.71410.0015 0.68790.0042 0.68200.0018 0.68660.0082
46082 0.7691 0.7691 0.7691 0.7691 0.7668 0.77220.0037 0.77270.0010 0.77040.0036 0.76390.0082 0.76650.0071
46085 0.7910 0.7910 0.7911 0.7911 0.7947 0.79360.0006 0.78910.0014 0.78830.0032 0.78270.0042 0.78540.0072

MaxSE (↓)

46061 5.7438 5.7927 5.8374 5.9886 8.8995 5.78660.1065 5.01860.1632 5.06350.4525 4.47010.2551 4.54720.3304
46076 11.3678 11.3679 11.4993 11.4993 9.2493 11.28290.1603 10.24510.5267 9.49820.1847 8.96850.1928 8.87310.3735
46078 15.6620 15.6622 15.8154 15.8154 16.9998 15.79400.2193 16.29400.4009 12.76600.0811 12.87620.2287 12.84890.1391
46082 7.1700 7.1699 7.1677 7.1677 7.5273 7.11110.0905 7.34530.1566 5.60950.1156 5.70740.4792 5.40340.3683
46085 8.7660 8.7660 8.8144 8.8144 8.9335 8.54070.1291 8.93370.1988 6.44330.9217 6.83000.1869 6.62280.2882

MRE (↓)

46061 0.1665 0.1662 0.1663 0.1655 0.1676 0.16620.0018 0.16780.0004 0.19500.0062 0.18980.0076 0.18880.0078
46076 0.1506 0.1506 0.1502 0.1502 0.1507 0.14970.0011 0.15510.0031 0.16730.0048 0.17410.0076 0.18030.0093
46078 0.2034 0.2034 0.2038 0.2038 0.2014 0.20270.0009 0.20580.0006 0.34950.0030 0.34340.0018 0.34400.0044
46082 0.1756 0.1756 0.1755 0.1755 0.1783 0.17470.0013 0.17570.0005 0.21960.0030 0.22160.0067 0.22580.0099
46085 0.1651 0.1651 0.1651 0.1651 0.1629 0.16440.0005 0.16760.0005 0.22640.0040 0.22790.0041 0.23320.0078

Metric Buoy LinearRegression Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Northeast Coast

MSE (↓)

44005 0.1044 0.1049 0.1037 0.1050 0.1044 0.10390.0022 0.11550.0010 0.11880.0086 0.12090.0081 0.11990.0098
44008 0.1623 0.1585 0.1566 0.1566 0.1537 0.15270.0026 0.15650.0016 0.78862.6638 0.33780.0872 0.32150.0768
44011 0.8833 0.8833 0.8802 0.8802 0.8904 0.83670.0093 0.82220.0078 1.45330.0365 1.52410.0886 1.50101.5010
44020 0.0418 0.0417 0.0425 0.0416 0.0398 0.04150.0007 0.04660.0004 0.07580.0082 0.07290.0038 0.07440.0047
44025 0.0339 0.0339 0.0342 0.0342 0.0330 0.03360.0005 0.03680.0002 0.04680.0121 0.04380.0027 0.04380.0025
44027 0.4629 0.4629 0.4612 0.4612 0.4557 0.45590.0018 0.45640.0016 0.56850.0077 0.56430.0099 0.56590.0136
44065 0.0338 0.0338 0.0368 0.0368 0.0347 0.03540.0005 0.03380.0003 0.04340.0015 0.04330.0019 0.04240.0027
44066 0.1136 0.1136 0.1193 0.1193 0.1152 0.11530.0014 0.13130.0019 0.16480.0079 0.18590.0191 0.17230.0131

SERA (↓)

44005 5605.9115 5681.2963 5633.8913 5738.1196 5975.1325 5601.8064152.2240 6343.887185.8261 3482.6442218.9006 3560.3486244.3136 3528.1412370.5786
44008 7742.7134 7626.2445 7592.6547 7592.6547 8323.8136 7531.9970215.9654 8374.2398130.8725 5267.86542523.6104 5275.3799485.7511 5113.9226500.1604
44011 28065.6455 28065.1765 28144.1929 28144.1929 29571.0343 25565.6633498.9032 25634.7770459.4333 11394.5672130.4803 13000.56432028.2205 11752.977011752.9770
44020 3208.3297 3207.3917 3326.8788 3228.6959 2800.7833 3100.555585.3141 3239.647936.0648 1313.756438.3863 1326.604627.1161 1319.358135.3638
44025 2075.4542 2075.4723 2095.8021 2095.8021 1992.2001 2012.863467.9121 2245.717230.9393 1124.181929.6539 1127.352747.4385 1099.340642.0522
44027 42511.8428 42511.5180 42085.3125 42085.3125 39802.5155 40033.4009770.9741 38834.4376178.8641 18035.672577.6232 17908.8358299.8570 17739.7083350.6746
44065 2388.9036 2389.0303 2643.2509 2643.2509 2520.1190 2530.494152.3965 2386.981928.3249 1431.968324.4679 1408.644723.6190 1417.711227.6952
44066 8626.3934 8626.7148 9398.2295 9398.2295 9126.3871 8929.5531369.3166 9947.5424155.4176 5616.5070220.0157 5680.5942242.2960 5584.9080267.1034

R2 (↑)

44005 0.8825 0.8818 0.8828 0.8814 0.8886 0.88400.0024 0.87030.0011 0.87320.0110 0.87210.0074 0.87330.0091
44008 0.7572 0.7628 0.7656 0.7656 0.7724 0.77490.0030 0.77190.0019 0.69660.1342 0.70990.0544 0.72440.0539
44011 0.5028 0.5028 0.5024 0.5024 0.4967 0.52170.0035 0.52400.0041 0.52640.0075 0.47090.0314 0.51450.5144
44020 0.6036 0.6043 0.5969 0.6056 0.6268 0.60860.0036 0.57120.0029 0.58470.0444 0.60160.0091 0.59680.0122
44025 0.9400 0.9400 0.9398 0.9398 0.9419 0.94090.0006 0.93500.0004 0.93180.0184 0.93690.0020 0.93870.0035
44027 0.3440 0.3440 0.3442 0.3442 0.3552 0.35460.0006 0.35400.0014 0.35650.0025 0.35890.0029 0.35980.0027
44065 0.8863 0.8863 0.8758 0.8758 0.8830 0.88100.0018 0.88650.0009 0.88700.0023 0.88680.0025 0.88690.0024
44066 0.8801 0.8801 0.8771 0.8771 0.8792 0.87910.0014 0.86160.0025 0.85930.0114 0.86410.0126 0.86590.0089

MaxSE (↓)

44005 3.6107 3.4636 3.4342 3.3339 3.7062 3.60120.2357 3.33050.1777 4.39511.0163 4.51830.9597 4.80001.6630
44008 3.9266 3.9518 3.8959 3.8959 4.1340 3.79870.1053 4.91870.9795 489.12722564.7203 5.71183.9921 7.19857.8524
44011 13.3153 13.3151 13.3727 13.3727 14.1031 13.54080.1968 13.66700.2713 17.11461.1567 17.65007.4322 18.346618.3466
44020 4.2815 4.2818 4.2636 4.2723 4.3005 4.34770.0571 4.39590.0419 6.92249.3477 3.73890.1769 3.73660.2224
44025 0.7949 0.7949 0.6894 0.6894 0.6081 0.63040.0920 1.30830.1730 4.635516.0142 0.58400.0962 0.63790.3755
44027 19.9385 19.9384 19.8339 19.8339 18.5037 19.25120.2130 18.46040.2434 15.22010.0638 14.99120.3099 14.85230.3427
44065 1.0504 1.0503 0.8769 0.8769 1.0618 0.96240.0274 0.97440.0686 1.36450.0543 1.47170.0557 1.48550.0546
44066 7.1190 7.1209 9.2519 9.2519 9.1340 7.89440.7870 11.87221.0696 6.35330.7791 7.09041.2825 6.96072.2956

MRE (↓)

44005 0.1491 0.1493 0.1484 0.1491 0.1468 0.14830.0016 0.15700.0007 0.16790.0055 0.17030.0077 0.16990.0087
44008 0.1942 0.1915 0.1892 0.1892 0.1835 0.18500.0028 0.18120.0009 0.28830.0289 0.32210.0553 0.31170.0371
44011 0.2878 0.2878 0.2876 0.2876 0.2889 0.28180.0018 0.27960.0011 0.40540.0061 0.41530.0114 0.41400.0209
44020 0.2909 0.2907 0.2943 0.2909 0.2837 0.28960.0026 0.30360.0012 0.43060.0144 0.42500.0173 0.43020.0215
44025 0.1027 0.1027 0.1043 0.1043 0.1013 0.10210.0012 0.10690.0003 0.12540.0069 0.12510.0068 0.12610.0064
44027 0.3888 0.3888 0.3896 0.3896 0.3875 0.38840.0012 0.39050.0006 0.47610.0068 0.47210.0114 0.47440.0147
44065 0.1264 0.1264 0.1320 0.1320 0.1275 0.12940.0010 0.12560.0005 0.15140.0048 0.15060.0072 0.14760.0096
44066 0.1471 0.1471 0.1498 0.1498 0.1465 0.14730.0020 0.15720.0013 0.19810.0073 0.21910.0149 0.20720.0133

The best result is highlighted in bold; the second one best result is shown in italics.
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Fig. 7. Comparison of observed (red) vs. predicted (blue) values and scatter plot corresponding to the best PU+SU model optimised by MSE, for the test set of the
buoy 46061 of the Gulf of Alaska.
Fig. 8. Comparison of observed (red) vs. predicted (blue) values and scatter plot corresponding to the best PU model optimised by SERA, for the test set of the buoy
46061 of the Gulf of Alaska.
one buoy in the Gulf of Alaska (46078), which, as with the two
previous ones, this particular buoy only uses 1 buoy as input. Note
that these three buoys have particular weather conditions, being
significantly different from the rest of the buoys of the zone. Fur-
thermore, the MRE results reflect that the reconstructions differ
from the ground truth by a 10.11% for the buoy achieving the best
results (44025) and by a 38.43% for the most challenging buoy to
be recovered (44027). Bear in mind that EANNs have been run 30
times (as well as MLP and RandomForest). Since these are average
percentages, the best model can reduce this error considerably.
Finally, indicate that 9 out of 13 buoys only differ, at maximum,
from the ground truth, by a 20%, which demonstrates that the
proposed methodology achieves a very good performance when
optimised by MSE.

On the other hand, optimisation using SERA is also of great
nterest, even more than the optimisation using MSE. In this
ense, SERA does not only focus on the overall behaviour of the
WH time series as MSE does (i.e. the same attention is paid
o both around-mean and extreme values, although the latter
re of more interest than the mean values), but pays special
18
attention to these extreme values. Thus, Table 9 shows the results
obtained in the second phase when the techniques are optimised
by SERA. As can be checked, the best results in terms of SERA are
always obtained by EANNs for all the buoys under study. More
specifically, PU models obtained the best results for 6 buoys, SU
models for 1 buoy, and PU+SU models in the remaining 6 buoys.
These excellent results underline the importance of using EANN
models with PUs in the hidden layer, either alone (for easier
buoys) or combined with SUs (for more complex buoys). It is
noteworthy that EANN models not only obtain the best results
in terms of SERA but also the second best ones, as happened
when MSE was used as the optimisation metric. Therefore, these
results demonstrate that the proposed EANNs also achieved an
excellent performance when optimised by SERA, contrary to the
other techniques applied.

Regarding the remaining performance measures, in the case
of MSE and MRE, all the best results are achieved by the state-of-
the-art techniques. This behaviour means that these techniques
can only recover values around the mean instead of paying special
attention to the extreme values. Something similar happens in the
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Fig. 9. Scatter plots of the best PU+SU models optimised by MSE (red) vs. by SERA (blue) for the extreme values of the test set of the buoy 46061 (upper) and
46076 (bottom) of the Gulf of Alaska (more than 5 m and 6 m, respectively).
case of R2 since state-of-the-art techniques achieve most of the
est results. In terms of MaxSE, EANNs achieve the best results
or half of the buoys at the Northeast Coast and all the buoys at
he Gulf of Alaska.

In addition, in order to graphically analyse the performance
chieved by EANN models when they are optimised either by
SE or SERA, the buoy 46061 from the Gulf of Alaska has been
elected to represent observed vs predicted values. The choice of
his buoy is twofold: (1) it has a considerable amount of missing
ata, almost a quarter of the period of time considered (23.357%,
quivalent to 1 year and 5 months approximately), and (2) the
ange of SWH values is wider than for other buoys, between 0.2 m
o 6.9 m, thus, it is easier to show the differences between models
ptimised using MSE and SERA. In this sense, Fig. 7 shows the
WH time series reconstruction performed by the best PU+SU
odel optimised by MSE. As can be seen, the predictions are
enerally good, with no major deviations when SWH values are
lose to the mean. Nevertheless, in the case of values higher
19
than 4m, the predictions are not that accurate due to those SWH
values could be considered extreme values. Also, focusing on the
scatter plot, it can be observed that predicted values between 0m
and 2.5 m are concentrated around the regression line. However,
predicted values higher than 2.5 m are more dispersed. The main
reason for this behaviour is that MSE focuses on values around the
average, hence, ignoring extreme values. On the other hand, Fig. 8
shows the SWH time series reconstruction performed by the best
PU+SU model optimised by SERA. Contrary to the previous case,
where MSE optimised the model, SWH values lower than 2.5 m
are not accurately predicted. Nevertheless, values over 2.5 m are
more accurately predicted. This behaviour is also represented
in the scatter plot, where values over 2.5 m are closer to the
regression line than in Fig. 7.

Moreover, to shed light on the differences in terms of extreme
values between the models optimised by MSE and SERA, Fig. 9
shows the scatter plot of the predictions as well as the regression
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Fig. 10. Recovered SWH time series for the buoys 46082 and 44065 of the Gulf of Alaska and the Northeast Coast, respectively, using MSE as optimisation metric.
ines for two buoys: 46061 (upper) and 46076 (bottom). Specif-
cally, 17 and 15 extreme values of the testing set have been
ncluded for buoys 46061 and 46076, i.e. those SWH higher than
m and 6m, respectively. These amounts represent the 1.25% and
he 0.99% of the values belonging to the testing set. Concerning
he buoy 46061, the best predictions but one are obtained by
he model optimised by SERA, reducing the error performed by
7.959% on average, i.e. the predictions performed by models
ptimised by SERA are a 7.959% on average closer to the regres-
ion line. In the case of the buoy 46076, the same behaviour is
chieved. The best performance over extreme values is obtained
y the model optimised by SERA (for 14 out of the 15 values), re-
ucing the error by a 31.873% on average. Summarising, some of
he extreme values cannot be estimated as desired. Nevertheless,
hen SERA optimises the models, a better estimation is achieved

or the extreme values.
Furthermore, in order to illustrate the SWH time series after

he final recovery, Figs. 10 and 11 show two examples of SWH
ime series each, where the reconstruction has been performed by
he best PU+SU model optimised by MSE and SERA, respectively.
oncretely, Fig. 10 shows the reconstructed SWH time series of
he buoys 46082 and 44065 of the Gulf of Alaska and the North-
ast Coast, respectively. As can be checked, the SWH time series
eeps its general behaviour after recovering the missing values,
ven when they represent a huge portion of the time series, as
s the case of the buoy 46082, with more than a 39% of missing
alues. Note that for the buoy 46082, 19 months are lost in a
ow (from Mar-2016 to Sep-2017). Nevertheless, the proposed
pproach is able to recover this gap with high performance. On
he other hand, Fig. 11 shows the final reconstructions of the
uoys 46061 and 44025 of the Gulf of Alaska and the Northeast
oast, respectively. In this case, it is worthy of mention that in
ddition to recovering large data gaps, this approach is also good
t retrieving intermittent gaps, i.e. missing data is interspersed
ith training data, as is the case of the buoy 46061 during the
ear 2013. In general, it can be said that PU+SU models are an
xcellent approach for recovering missing data, either using MSE
r SERA as optimisation metrics, given that they are able to catch
he behaviour of the SWH time series (maintaining seasonality
nd trend among other features of the time series).
Finally, in order to give an insight into the complexity of the

odels obtained, an analysis in terms of the number of connec-
ions is carried out. In this sense, Table 10 shows the mean and
20
standard deviation (MeanSD) of the number of connections of the
different models applied in the second phase and for each of the
buoys of both coastal zones. As can be seen, linear techniques are
the ones that require the lowest number of connections, given
their simplicity. Among the four linear techniques, LinearReg,
Ridge, Lasso and ElasticNet, the last two stand out, given that,
for all the buoys either optimised by MSE or by SERA, they have
the lowest number of connections, except for the buoy 44008 of
the Northeast Coast when optimised by MSE. On the other hand,
leaving aside the linear techniques, it can be checked that EANNs
using PU, SU or PU+SU basis functions have the lowest number
of connections compared to the remaining non-linear techniques,
standing out the EANNs with PUs in the hidden layer for being the
simplest models.

5.3. Comparison against time series imputation techniques

In order to demonstrate that the proposed approach is able
to achieve excellent results, an extra comparison has been in-
cluded against two state-of-the-art approaches in the time series
imputation field: (1) Bidirectional Recurrent Imputation for Time
Series (BRITS, [71]) and (2) Self-Attention-based Imputation for
Time Series (SAITS, [72]). The reason behind their inclusion is that
they are the state-of-the-art in their respective category, i.e. BRITS
is the best approach based on Recurrent Neural Networks (RNN),
whereas SAITS is the technique based on Self-Attention blocks
achieving the best results:

• Bidirectional Recurrent Imputation for Time Series (BRITS,
[71]) consists in an RNN approach for missing value im-
putation in time series data. BRITS imputes the missing
values following a bidirectional recurrent dynamical system.
The main advantages of this algorithm are: (1) it can man-
age multiple correlated missing values in time series, (2)
it can generalise to time series with nonlinear dynamics
underlying, and (3) it provides a data-driven imputation
procedure.
BRITS has been compared against other RNN-based ap-
proaches, such as GRU-D [73] and M-RNN [74], outperform-
ing both of them significantly.

• Self-Attention-based Imputation for Time Series (SAITS,
[72]) is the most recent approach not only based on Self-
Attention mechanism but also tackling the imputation task
for time series. Specifically, SAITS is composed of two
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Fig. 11. Recovered SWH time series for the buoys 46061 and 44025 of the Gulf of Alaska and the Northeast Coast, respectively, using SERA as optimisation metric.
Table 10
Comparison between the models of the second phase of the approach optimised by MSE and SERA, respectively, in terms of the number of connections and for each
of the buoys of both coastal zones. The number of connections of the stochastic models is expressed as their mean and Standard Deviation (SD): MeanSD .

Optimised by MSE

Buoy LinearReg Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Gulf of Alaska

46061 3.00 3.00 3.00 3.00 9584.00 171.67117.92 3727.272164.70 6.971.19 11.900.84 11.230.63
46076 4.00 4.00 4.00 4.00 16302.00 294.03107.12 10440.276689.49 8.301.70 12.431.19 12.671.12
46078 2.00 2.00 2.00 2.00 8618.00 117.9378.54 3234.331588.14 3.330.76 9.301.51 8.870.57
46082 4.00 4.00 4.00 4.00 13390.00 191.40128.11 14519.474596.94 5.401.16 12.231.19 12.130.82
46085 3.00 3.00 3.00 3.00 12734.00 161.6399.76 8753.003294.16 6.800.89 11.571.14 10.831.37

Buoy LinearReg Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Northeast Coast

44005 7.00 7.00 6.00 6.00 19056.00 507.33152.76 552305.87154594.84 6.771.89 27.332.66 10.932.33
44008 8.00 8.00 7.00 7.00 21338.00 471.00228.66 14346.274712.38 5.571.43 15.031.90 13.872.50
44011 4.00 4.00 4.00 4.00 9966.00 283.93112.25 3823.071613.78 8.631.22 19.601.61 10.571.57
44020 6.00 6.00 6.00 6.00 20714.00 430.67198.63 787511.80231822.80 10.671.58 16.971.83 14.831.97
44025 5.00 5.00 5.00 5.00 13037.00 392.37125.99 16776.403626.31 7.301.70 24.371.87 16.571.59
44027 4.00 4.00 3.00 3.00 18118.00 217.70112.93 2982.131643.72 7.371.71 10.970.93 16.602.76
44065 3.00 3.00 2.00 2.00 8150.00 268.9764.61 13205.005112.76 6.331.32 11.470.78 10.600.62
44066 7.00 7.00 3.00 3.00 25797.00 506.00153.24 579712.13130831.45 8.631.90 13.901.88 11.772.93

Optimised by SERA

Buoy LinearReg Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Gulf of Alaska

46061 3.00 3.00 3.00 3.00 9584.00 144.73107.39 2840.731634.31 10.230.73 14.870.63 10.230.90
46076 4.00 4.00 4.00 4.00 15826.00 302.47102.20 3455.073659.82 12.300.92 16.071.36 11.171.37
46078 2.00 2.00 2.00 2.00 8618.00 150.3065.53 2605.131844.75 9.070.37 13.000.00 8.930.37
46082 4.00 4.00 4.00 4.00 13390.00 160.93131.68 11782.875760.34 11.501.04 16.671.03 11.731.11
46085 3.00 3.00 3.00 3.00 12734.00 213.00100.75 12930.536304.35 10.670.61 15.130.68 9.701.02

Buoy LinearReg Ridge Lasso ElasticNet SVR MLP RandomForest PU SU PU+SU

Northeast Coast

44005 7.00 7.00 6.00 6.00 19056.00 424.37173.87 544945.80174651.31 15.902.16 20.302.09 19.431.98
44008 8.00 8.00 7.00 7.00 21338.00 305.07210.07 11580.405634.77 16.072.13 21.802.12 19.902.70
44011 4.00 4.00 4.00 4.00 9966.00 234.67110.18 7974.603031.03 11.401.04 16.731.08 14.1314.13
44020 6.00 6.00 6.00 6.00 21506.00 389.93191.63 767708.27277009.53 13.831.46 19.831.66 27.401.75
44025 5.00 5.00 5.00 5.00 13037.00 358.30141.38 13471.404825.87 12.271.20 17.771.38 16.031.83
44027 4.00 4.00 3.00 3.00 18022.00 255.00115.80 8512.805726.23 16.331.15 23.831.15 15.131.43
44065 3.00 3.00 2.00 2.00 8150.00 261.4374.78 10708.876271.59 10.430.68 14.830.70 13.630.61
44066 7.00 7.00 3.00 3.00 25797.00 449.43166.98 482345.47302117.27 15.831.60 20.901.77 19.072.23

The lowest number of connections is highlighted in bold; the second one lowest is shown in italics.
diagonally-masked self-attention blocks and a weighted
combination of both learned representations.
SAITS has been compared against a range of approaches, in-
cluding BRITS, M-RNN and GP-VAE [75]. SAITS outperforms
all these techniques on three well-known datasets of the
community.

In addition to these two approaches to sanity check, a com-
arison against a well-known naïve approach, which consists in
ecovering all values with the training mean value, has been
arried out.
These approaches have been compared against the EANNs,

.e. after carrying out the intermediate reconstruction. Note that
hese three approaches have been run exactly under the same
onditions as EANNs and the rest of ML approaches, namely SVR,
inearRegression, MLP, and so on, i.e. the same inputs and the
ame number of training patterns, which, in turn, depend on the
onsidered buoy. The BRITS and SAITS approaches have also been
21
run 30 times in order to provide a fair comparison against our
approach. Concerning the experimental settings, both approaches
have been run using default values.

Therefore, Table 11 shows the results achieved by our ap-
proach when optimised by MSE and SERA, respectively, as well
as the results achieved by the naïve mean approach and the two
state-of-the-art approaches. Note that the results for the EANNs
are the same as those of Tables 8 and 9, repeated to enhance
the readability. The rest of the ML approaches have not been
included, as it was demonstrated that EANNs outperformed them.

As can be observed in Table 11, EANNs optimised by MSE are
the best in terms of MSE (12 out of 13 buoys). On the other hand,
EANNs evolved by SERA are the best in terms of SERA (11 out of
13). Hence, the results achieved by BRITS and SAITS are not better
than those obtained by our approach.
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Table 11
Results achieved by our approach when optimised by MSE and SERA in comparison against the naïve mean approach and the two state-of-the-art approaches BRITS
and SAITS. The results of the stochastic models are expressed as their mean and Standard Deviation (SD): MeanSD .

Metric Buoy Optimised by MSE Optimised by SERA Mean BRITS SAITS
PU SU PU+SU PU SU PU+SU

Gulf of Alaska

MSE (↓)

46061 0.15280.0015 0.15350.0032 0.14990.0014 0.19550.0047 0.18860.0063 0.18450.0089 1.1286 0.25950.0034 0.41230.0937
46076 0.16970.0006 0.16880.0016 0.16880.0022 0.19180.0065 0.19540.0070 0.20000.0087 1.3739 0.35970.0093 1.67650.6726
46078 0.44600.0005 0.44780.0025 0.44660.0007 0.95060.0102 0.94420.0071 0.93920.0136 1.6032 1.14890.6015 4.06310.9709
46082 0.35470.0028 0.35410.0023 0.34800.0025 0.46380.0100 0.47830.0192 0.48240.0235 1.5914 0.55250.1961 0.95470.2951
46085 0.43510.0013 0.43420.0019 0.43770.0032 0.67290.0143 0.69010.0135 0.70390.0298 2.2818 0.67790.1614 1.68770.5051

SERA (↓)

46061 6564.069973.6302 6807.1688175.8786 6538.4622100.7926 6528.130068.8213 6549.704093.1419 6362.0409188.1432 108670.1584 21496.1178663.877 35728.39097867.882
46076 8518.964744.5683 8435.2063128.3628 8398.3464185.7868 7435.9183102.6282 7293.764869.0909 7252.7616125.3626 119914.2962 35365.47421458.6353 190805.67868279.1333
46078 18394.7586104.3305 18470.6403233.2760 18455.222789.3421 13675.323117.7498 13705.445529.6155 13687.157124.8219 118435.5287 55901.17225037.2841 347702.330970787.8264
46082 10278.7888194.9226 9867.1941206.0941 9739.1154152.4571 7594.481117.5420 7790.6611113.7059 7668.2098104.0323 102057.5456 25856.67139435.9262 58727.211218388.7018
46085 15217.439795.4788 14935.6931114.5193 15231.3725298.5966 11765.262682.1648 11881.4101154.1414 11875.6736144.0537 179228.8871 38097.251811644.4851 128592.746835288.4399

R2 (↑)

46061 0.85560.0013 0.85480.0027 0.85880.0013 0.84520.0018 0.84990.0027 0.85150.0054 0.0000 0.75550.0024 0.73950.0114
46076 0.87460.0003 0.87560.0011 0.87570.0016 0.86960.0031 0.87180.0031 0.87270.0057 0.0000 0.74460.0015 0.25870.2030
46078 0.71880.0003 0.71770.0016 0.71840.0004 0.68790.0042 0.68200.0018 0.68660.0082 0.0000 0.55830.0201 0.17380.1352
46082 0.77590.0015 0.77600.0015 0.77900.0013 0.77040.0036 0.76390.0082 0.76650.0071 0.0000 0.72650.0059 0.71980.0232
46085 0.79450.0006 0.79500.0008 0.79340.0015 0.78830.0032 0.78270.0042 0.78540.0072 0.0000 0.74730.0076 0.67820.0369

MaxSE (↓)

46061 5.53290.0753 5.18990.1370 5.30580.1358 5.06350.4525 4.47010.2551 4.54720.3304 29.5771 12.77180.3341 15.24891.1278
46076 11.13800.1235 11.06490.3006 10.93490.3733 9.49820.1847 8.96850.1928 8.87310.3735 41.002 19.69550.7686 37.95849.4604
46078 16.42470.1945 16.67030.6856 16.51270.1759 12.76600.0811 12.87620.2287 12.84890.1391 45.6979 33.11686.1929 75.86746.0879
46082 7.23560.1366 7.15690.1879 7.01880.1963 5.60950.1156 5.70740.4792 5.40340.3683 27.3254 9.27662.2289 15.31633.2001
46085 8.60430.0433 8.77440.2632 8.61000.1298 6.44330.9217 6.83000.1869 6.62280.2882 37.4499 15.15073.2015 34.93175.5485

MRE (↓)

46061 0.16310.0008 0.16210.0017 0.15990.0007 0.19500.0062 0.18980.0076 0.18880.0078 0.4611 0.19730.0030 0.26060.0390
46076 0.14930.0005 0.14910.0007 0.14930.0008 0.16730.0048 0.17410.0076 0.18030.0093 0.5034 0.21000.0064 0.42730.1068
46078 0.20240.0003 0.20340.0012 0.20290.0003 0.34950.0030 0.34340.0018 0.34400.0044 0.4211 0.35060.1167 0.65470.1028
46082 0.17390.0006 0.17390.0006 0.17280.0007 0.21960.0030 0.22160.0067 0.22580.0099 0.3968 0.22550.0474 0.28770.0547
46085 0.16370.0003 0.16410.0005 0.16400.0005 0.22640.0040 0.22790.0041 0.23320.0078 0.3907 0.21180.0376 0.32380.0637

Metric Buoy Optimised by MSE Optimised by SERA Mean BRITS SAITS
PU SU PU+SU PU SU PU+SU

Northeast Coast

MSE (↓)

44005 0.10530.0044 0.10310.0034 0.11170.0110 0.11880.0086 0.12090.0081 0.11990.0098 0.9220 0.29810.0021 0.31930.0180
44008 0.15140.0041 0.15630.0086 0.15410.0058 0.78862.6638 0.33780.0872 0.32150.0768 0.8217 0.21960.0586 0.19650.0193
44011 0.84650.0056 0.84330.0232 0.83800.0292 1.45330.0365 1.52410.0886 1.50101.5010 1.8373 0.65340.1993 0.91910.2380
44020 0.08040.0907 0.04120.0007 0.04190.0008 0.07580.0082 0.07290.0038 0.07440.0047 0.1053 0.06470.0006 0.06330.0059
44025 0.07090.1759 0.03320.0005 0.03300.0005 0.04680.0121 0.04380.0027 0.04380.0025 0.5566 0.13480.0018 0.13410.0063
44027 0.45600.0007 0.45570.0012 0.45360.0021 0.56850.0077 0.56430.0099 0.56590.0136 0.6934 0.53470.1575 0.56970.0889
44065 0.03330.0002 0.03300.0008 0.03300.0007 0.04340.0015 0.04330.0019 0.04240.0027 0.2969 0.12350.0045 0.19250.0456
44066 0.11580.0024 0.11790.0030 0.11860.0032 0.16480.0079 0.18590.0191 0.17230.0131 0.9407 0.29630.0081 0.30630.0195

SERA (↓)

44005 3613.8875271.4587 3744.3062229.8895 3907.2206574.5327 3482.6442218.9006 3560.3486244.3136 3528.1412370.5786 76562.0017 18452.6337298.8819 20063.35111585.0539
44008 4846.1251137.6652 5271.7589206.6653 4835.3828231.8689 5267.86542523.6104 5275.3799485.7511 5113.9226500.1604 25414.3219 10734.37723144.1024 12454.80321499.5253
44011 16669.7033473.6500 16868.48071423.8097 17009.16881311.5456 11394.5672130.4803 13000.56432028.2205 11752.977011752.9770 105814.0418 19382.00143813.4157 45427.761212944.6109
44020 1259.9140132.9363 1796.735542.3087 1840.430569.4784 1313.756438.3863 1326.604627.1161 1319.358135.3638 11152.3129 5456.1263181.0929 6267.90951135.2531
44025 1261.1829257.3111 1172.645970.9526 1116.386446.8647 1124.181929.6539 1127.352747.4385 1099.340642.0522 52985.298 11131.7309250.2592 11246.6733656.0384
44027 25648.5797106.1290 25569.0626187.8732 25436.7969239.5733 18035.672577.6232 17908.8358299.8570 17739.7083350.6746 59447.9833 40590.423817504.0232 60558.076810596.6004
44065 1537.446318.9930 1519.252159.6646 1506.110050.6394 1431.968324.4679 1408.644723.6190 1417.711227.6952 29501.1561 9866.6322611.0786 19196.67933995.2856
44066 6118.0188301.4930 6296.0088273.4421 6252.8932235.3900 5616.5070220.0157 5680.5942242.2960 5584.9080267.1034 93020.5637 26960.55761914.169 30026.96922852.8357

R2 (↑)

44005 0.88260.0041 0.88540.0040 0.87670.0106 0.87320.0110 0.87210.0074 0.87330.0091 0.0000 0.67280.0007 0.66220.0138
44008 0.77540.0055 0.77160.0125 0.77270.0077 0.69660.1342 0.70990.0544 0.72440.0539 0.0000 0.72740.0046 0.72420.0151
44011 0.51420.0038 0.51830.0134 0.51590.0142 0.52640.0075 0.47090.0314 0.51450.5144 0.0000 0.68930.0074 0.67840.0217
44020 0.87880.1111 0.61050.0061 0.60480.0074 0.58470.0444 0.60160.0091 0.59680.0122 0.0000 0.42000.0007 0.45640.0198
44025 0.91190.1159 0.94130.0009 0.94190.0009 0.93180.0184 0.93690.0020 0.93870.0035 0.0000 0.76680.0008 0.76900.0073
44027 0.35570.0006 0.35540.0009 0.35690.0011 0.35650.0025 0.35890.0029 0.35980.0027 0.0000 0.38880.0088 0.37110.0164
44065 0.88810.0007 0.88900.0028 0.88910.0023 0.88700.0023 0.88680.0025 0.88690.0024 0.0000 0.61400.0053 0.63160.0106
44066 0.87880.0014 0.87640.0030 0.87610.0036 0.85930.0114 0.86410.0126 0.86590.0089 0.0000 0.69330.0026 0.70160.0153

MaxSE (↓)

44005 4.50621.5749 3.83400.7367 4.50981.2862 4.39511.0163 4.51830.9597 4.80001.6630 31.6402 16.61180.2639 18.8541.6851
44008 4.23223.3110 3.92890.2078 4.43853.8965 489.12722564.7203 5.71183.9921 7.19857.8524 9.2131 5.66181.0389 6.20850.3300
44011 12.83970.1075 14.52543.4158 13.76033.4804 17.11461.1567 17.65007.4322 18.346618.3466 37.5022 10.61812.0302 15.31561.8099
44020 67.8355132.0093 4.32120.0786 4.33010.0906 6.92249.3477 3.73890.1769 3.73660.2224 3.3333 4.62480.0243 4.62290.1058
44025 53.7501256.3741 0.64090.2221 0.67740.4113 4.635516.0142 0.58400.0962 0.63790.3755 28.0251 8.59250.1543 8.99430.2550
44027 19.35490.0728 19.13770.1745 19.20030.1412 15.22010.0638 14.99120.3099 14.85230.3427 25.5626 12.85622.6673 15.77781.7239
44065 1.09010.0285 1.12010.1149 1.14510.0900 1.36450.0543 1.47170.0557 1.48550.0546 15.8524 6.30210.2637 6.78710.8034
44066 6.96230.7734 7.79211.4113 7.69591.3778 6.35330.7791 7.09041.2825 6.96072.2956 57.0214 33.10091.2021 34.82681.7679

MRE (↓)

44005 0.14750.0027 0.14690.0020 0.15150.0060 0.16790.0055 0.17030.0077 0.16990.0087 0.4271 0.24390.0006 0.25120.0072
44008 0.18410.0013 0.18520.0070 0.18560.0039 0.28830.0289 0.32210.0553 0.31170.0371 0.5376 0.24310.0433 0.20480.0095
44011 0.28270.0010 0.28140.0030 0.28130.0032 0.40540.0061 0.41530.0114 0.41400.0209 0.4082 0.25670.0531 0.28610.0419
44020 0.29220.0030 0.28970.0031 0.29150.0031 0.43060.0144 0.42500.0173 0.43020.0215 0.4709 0.34740.0029 0.33840.0141
44025 0.10530.0037 0.10150.0007 0.10150.0007 0.12540.0069 0.12510.0068 0.12610.0064 0.4251 0.18660.0051 0.18330.0048
44027 0.38940.0007 0.38830.0010 0.38840.0021 0.47610.0068 0.47210.0114 0.47440.0147 0.5332 0.45120.0813 0.41870.0331
44065 0.12550.0004 0.12500.0015 0.12510.0012 0.15140.0048 0.15060.0072 0.14760.0096 0.3729 0.23470.0099 0.29650.0486
44066 0.14850.0012 0.14920.0019 0.14960.0015 0.19810.0073 0.21910.0149 0.20720.0133 0.4373 0.22660.0083 0.21990.0089

The best result is highlighted in bold; the second one best result is shown in italics.
Furthermore, it is worth of mention that our approach is not
nly better in terms of performance but also in terms of com-
lexity. Table 12 compares the number of connections for each
f the buoys of both coastal areas. The number of connections
s expressed as their mean and Standard Deviation (MeanSD).
onetheless, BRITS and SAITS have the same number of connec-
ions regardless of the run. As can be observed, EANN models
ave a maximum of 27.40 connections on average, whereas the
inimum number of connections for BRITS and SAITS models is
96 and 1319960, respectively. In addition, our approach does not
equire the use of a GPU, whereas BRITS or SAITS do, leading to
eavier structures.

. Conclusions

This paper presents a novel technique for the massive recovery
f missing Significant Wave Height (SWH) time series data. The
22
existence of missing data precludes the use of Machine Learn-
ing (ML) techniques for the estimation of future values, as they
require a training set for building the models. Specifically, the
proposed approach includes two phases for recovering missing
data in a set of buoys. The first phase provides an intermediate
recovery of each buoy, which will be used in the second phase
to carry out the final reconstruction of the other buoys belonging
to the same coastal zone but not for themselves. In this sense,
three different Transfer Function (TF) models are presented for
the first phase: regression-based, correlation-based and distance-
based. From these three TFs, the distance-based TF stands out for
achieving the best results, demonstrating that weighting by dis-
tance between the buoys of the same zone is capable of capturing
the complex dynamics of the time series to be intermediately
recovered. Once all buoys have been intermediately recovered,
the final recovery is performed using correlated buoys as input.
ML techniques can be applied for this second phase, as all input
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Table 12
Comparison between the models of the second phase of the approach optimised by MSE and SERA, respectively, in terms of the number of connections and for each
of the buoys of both coastal zones. The number of connections of the stochastic models is expressed as their mean and Standard Deviation (SD): MeanSD .

Buoys Optimised by MSE Optimised by SERA BRITS SAITS
PU SU PU+SU PU SU PU+SU

Gulf of Alaska

46061 6.971.19 11.900.84 11.230.63 10.230.73 14.870.63 10.230.90 284 1321514
46076 8.301.70 12.431.19 12.671.12 12.300.92 16.071.36 11.171.37 388 1323072
46078 3.330.76 9.301.51 8.870.57 9.070.37 13.000.00 8.930.37 196 1319960
46082 5.401.16 12.231.19 12.130.82 11.501.04 16.671.03 11.731.11 388 1323072
46085 6.800.89 11.571.14 10.831.37 10.670.61 15.130.68 9.701.02 284 1321514

Buoys Optimised by MSE Optimised by SERA BRITS SAITS
PU SU PU+SU PU SU PU+SU

Northeast Coast

44005 6.771.89 27.332.66 10.932.33 15.902.16 20.302.09 19.431.98 796 1327770
44008 5.571.43 15.031.90 13.872.50 16.072.13 21.802.12 19.902.70 964 1329344
44011 8.631.22 19.601.61 10.571.57 11.401.04 16.731.08 14.1314.13 388 1323072
44020 10.671.58 16.971.83 14.831.97 13.831.46 19.831.66 27.401.75 644 1326200
44025 7.301.70 24.371.87 16.571.59 12.271.20 17.771.38 16.031.83 508 1324634
44027 7.371.71 10.970.93 16.602.76 16.331.15 23.831.15 15.131.43 388 1323072
44065 6.331.32 11.470.78 10.600.62 10.430.68 14.830.70 13.630.61 284 1321514
44066 8.631.90 13.901.88 11.772.93 15.831.60 20.901.77 19.072.23 796 1327770

The lowest number of connections is highlighted in bold; the second one lowest is shown in italics.
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uoys have available values at the same time instants, either
riginally collected or intermediately recovered. To tackle this
econd phase, Evolutionary Artificial Neural Networks (EANNs)
ave been proposed using Product Units (PUs), Sigmoid Units
SUs) and hybrid networks combining PU with SUs (PU+SUs) as
asis functions for the neurons in the hidden layer. Moreover,
comprehensive comparison of ML techniques has been carried
ut by means of 7 state-of-the-art techniques: Multilayer Percep-
ron, Support Vector Machines or Random Forest, among others.
hese techniques have been trained using two different metrics,
ach promoting a different strategy. On the one hand, the Mean
quared Error (MSE) tends to follow the general trend of the
WH time series. However, extreme values of SWH time series
re underestimated. On the other hand, a novel metric known as
quared Error-Relevance Area (SERA) has also been used, which
ims to balance between common values (around the mean)
nd extreme values (which can even be considered outliers). The
roposed approach has been applied to two coastal areas of the
nited States of America: the Gulf of Alaska and the Northeast
oast, where 6 and 9 buoys have been considered, respectively.
ith respect to the results obtained, EANNs demonstrated their

uperiority over the state-of-the-art techniques, with PU and
U+SU being the top performers. Moreover, the results demon-
trate that both metrics are excellent in achieving the objectives
hey have been designed for. The end user will be able to decide
hich metric is the most appropriate depending on the specific
ituation to be solved.
Ultimately, this proposal can be extended in four directions

s future lines of work. Firstly, the proposed methodology can
e applied to a wide variety of areas where data is collected
y sensors or devices located geographically close. For example,
his approach could be immediately applied to wind or solar
nergy farms in the green energies field or even to fog and rainfall
etection systems at airports in the atmospheric area. Secondly,
he use of exogenous variables to the SWH time series, either
ollected from the buoys themselves or mathematical reanalysis
odels, could improve the results. Thirdly, to carefully study
hether the SERA and MSE metrics are opposing, i.e. optimising
ne implies a decrease in performance in the other metric. If
o, a multi-objective algorithm may be an excellent approach to
nhance the proposed methodology. Finally, we believe that the
ain limitation of the proposed methodology concerns the evalu-
tion of EANNs, as it is the most computationally expensive step.
herefore, we propose to reduce the computational complexity of
ur approach by parallelising such evaluation.
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