54 research outputs found

    Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy

    Get PDF
    Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2(111) dislocations in a randomly-distributed model-BCC Co16.67Fe36.67Ni16.67Ti30 alloy. Core structure variations along an individual dislocation line are found for a/2(111) screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Temperature effect on irradiation damage in equiatomic multi-component alloys

    Get PDF
    Multiprincipally designed concentrated solid solution alloys, such as high entropy alloys (HEA) and equiatomic multi-component alloys (EAMC-alloys) have shown much promise for use as structural components in future nuclear energy production concepts. The irradiation tolerance in these novel alloys has been shown to be superior to that in more conventional metals used in current nuclear reactors. However, studies involving irradiation of HEAs and EAMC-alloys have usually been performed at room temperature. Hence, in this study the irradiation damage is investigated computationally in two different Ni-based EAMC-alloys and pure Ni at four different temperatures, ranging from 138 K to 800 K. The irradiation damage was studied by analyzing point defects, defect cluster sizes and dislocation networks in the materials. Dislocation loop mobility calculations were performed to help understanding the formation of different dislocation networks in the irradiated materials. Utilizing the knowledge of the depth distribution of damage, and using simulations of Rutherford backscattering in channeling conditions (RBS/c), we can relate our results to experimental data. The main findings are that the alloys have superior irradiation tolerance at all temperatures as compared to pure Ni, and that the damage is reduced in all materials with an increase in temperature.Peer reviewe

    Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys

    Full text link
    In traditional body-centered cubic (bcc) metals, the core properties of screw dislocations play a critical role in plastic deformation at low temperatures. Recently, much attention has been focused on refractory high-entropy alloys (RHEAs), which also possess bcc crystal structures. However, unlike face-centered cubic high-entropy alloys (HEAs), there have been far fewer investigations on bcc HEAs, specifically on the possible effects of chemical short-range order (SRO) in these multiple principal element alloys on dislocation mobility. Here, using density functional theory, we investigate the distribution of dislocation core properties in MoNbTaW RHEAs alloys, and how they are influenced by SRO. The average values of the core energies in the RHEA are found to be larger than those in the corresponding pure constituent bcc metals, and are relatively insensitive to the degree of SRO. However, the presence of SRO is shown to have a large effect on narrowing the distribution of dislocation core energies and decreasing the spatial heterogeneity of dislocation core energies in the RHEA. It is argued that the consequences for the mechanical behavior of HEAs is a change in the energy landscape of the dislocations which would likely heterogeneously inhibit their motion

    BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys

    Get PDF
    Al0.7CoCrFeNi high entropy alloy (HEA) with a microstructure comprising strain free face-centered cubic (FCC) grains and strongly deformed sub-structured body centered cubic (BCC) grains was subjected to correlative nanoindentation testing, orientation imaging microscopy and local residual stress analysis. Depending on the geometry of BCC-FCC interface, certain boundaries indicated appearance of additional yield excursions apart from the typically observed elastic to plastic displacement burst. The role of interfacial strengthening mechanisms is quantified for small scale deformation across BCC-FCC interphase boundaries. An overall interfacial strengthening of the order of 4GPa was estimated for BCC-FCC interfaces in HEAs. The influence of image forces due to the presence of a BCC-FCC interface is quantified and correlated to the observed local stress and hardness gradients in both the BCC and FCC grains

    Design using randomness: a new dimension for metallurgy

    Full text link
    High entropy alloys add a new dimension, atomic-scale randomness and the associated scale-dependent composition fluctuations, to the traditional metallurgical axes of time-temperature-composition-microstructure. Alloy performance is controlled by the energies and motion of defects (dislocations, grain boundaries, vacancies, cracks, ...). Randomness at the atomic scale can introduce new length and energy scales that can control defect behavior, and hence control alloy properties. The axis of atomic-scale randomness combined with the huge compositional space in multicomponent alloys thus enables, in tandem with still-valid traditional principles, a new broader alloy design strategy that may help achieve the multi-performance requirements of many engineering applications.Comment: 7 pages, 4 figure

    The emergence of small-scale self-affine surface roughness from deformation

    Get PDF
    Most natural and man-made surfaces appear to be rough on many length scales. There is presently no unifying theory of the origin of roughness or the self-affine nature of surface topography. One likely contributor to the formation of roughness is deformation, which underlies many processes that shape surfaces such as machining, fracture, and wear. Using molecular dynamics, we simulate the biaxial compression of single-crystal Au, the high-entropy alloy Ni36.67Co30Fe16.67Ti16.67, and amorphous Cu50Zr50 and show that even surfaces of homogeneous materials develop a self-affine structure. By characterizing subsurface deformation, we connect the self-affinity of the surface to the spatial correlation of deformation events occurring within the bulk and present scaling relations for the evolution of roughness with strain. These results open routes toward interpreting and engineering roughness profiles

    High-Entropy Alloys for Advanced Nuclear Applications

    Get PDF
    The expanded compositional freedom afforded by high-entropy alloys (HEAs) represents a unique opportunity for the design of alloys for advanced nuclear applications, in particular for applications where current engineering alloys fall short. This review assesses the work done to date in the field of HEAs for nuclear applications, provides critical insight into the conclusions drawn, and highlights possibilities and challenges for future study. It is found that our understanding of the irradiation responses of HEAs remains in its infancy, and much work is needed in order for our knowledge of any single HEA system to match our understanding of conventional alloys such as austenitic steels. A number of studies have suggested that HEAs possess ‘special’ irradiation damage resistance, although some of the proposed mechanisms, such as those based on sluggish diffusion and lattice distortion, remain somewhat unconvincing (certainly in terms of being universally applicable to all HEAs). Nevertheless, there may be some mechanisms and effects that are uniquely different in HEAs when compared to more conventional alloys, such as the effect that their poor thermal conductivities have on the displacement cascade. Furthermore, the opportunity to tune the compositions of HEAs over a large range to optimise particular irradiation responses could be very powerful, even if the design process remains challenging
    • 

    corecore