18,388 research outputs found

    Complex Terrain

    Get PDF
    This edited volume, composed by military professionals in the Gray Scholars Program at Marine Corps University, describes the changing character of urban operations. The pattern of human settlement and interaction is changing and the future is urban. Because the majority of the world’s population lives within cities, the future of strategic competition and conflict reside there as well. The density and connectivity of urban environments create a new type of complex terrain. Interests change from neighborhood to neighborhood, often intersecting global, political, and economic networks. Each city block sees shifting allegiances that often seem unclear from the outside. The cityscape compresses time and space while increasing uncertainty and complicating the conduct of military operations

    Surface energy fluxes in complex terrain

    Get PDF
    The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented

    Multiregional Satellite Precipitation Products Evaluation over Complex Terrain

    Get PDF
    An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP). SBR products are categorized into those that include gauge adjustment versus unadjusted. Results show that performance of SBR is highly dependent on the rainfall variability. Many SBR products usually underestimate wet season and overestimate dry season precipitation. The performance of gauge adjustment to the SBR products varies by region and depends greatly on the representativeness of the rain gauge network

    Women, sport and the media: A complex terrain

    Get PDF
    In this chapter I examine coverage of women’s sport, exposing the ways in which the sports media can simultaneously challenge and reinforce dominant assumptions that sport is primarily a male domain. I first summarize the extensive research that shows how the ‘everyday’ sporting activities of female athletes are trivialised and ignored by mediasport, before turning to a discussion of the times and places when female athletes visibly enter into public consciousness. Finally, I present examples from two case studies; one which disrupts and one which supports traditional ways of understanding gender

    Daily minimum and maximum temperature simulation over complex terrain

    Full text link
    Spatiotemporal simulation of minimum and maximum temperature is a fundamental requirement for climate impact studies and hydrological or agricultural models. Particularly over regions with variable orography, these simulations are difficult to produce due to terrain driven nonstationarity. We develop a bivariate stochastic model for the spatiotemporal field of minimum and maximum temperature. The proposed framework splits the bivariate field into two components of "local climate" and "weather." The local climate component is a linear model with spatially varying process coefficients capturing the annual cycle and yielding local climate estimates at all locations, not only those within the observation network. The weather component spatially correlates the bivariate simulations, whose matrix-valued covariance function we estimate using a nonparametric kernel smoother that retains nonnegative definiteness and allows for substantial nonstationarity across the simulation domain. The statistical model is augmented with a spatially varying nugget effect to allow for locally varying small scale variability. Our model is applied to a daily temperature data set covering the complex terrain of Colorado, USA, and successfully accommodates substantial temporally varying nonstationarity in both the direct-covariance and cross-covariance functions.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS602 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Complex Terrain and Wind Lidars

    Get PDF

    Feasibility study for estimating the offshore shear layer from on shore measurements

    Get PDF
    This paper presents an open source computational fluid dynamics (CFD) study of air flow over a complex terrain. The open source C++ toolbox OpenFOAM has been used for the CFD analysis and the terrain considered is a scale model of Berlengas Island, which lies close to the Portuguese coast. In order to validate the CFD model, experimental work has been carried out in an open-section wind tunnel using hot-wire anemometry to measure the wind profiles above the island. In the majority of cases, the OpenFOAM CFD solutions show very good agreement with the experimental wind profile data, confirming that open source CFD solutions are possible for environmental flows over complex terrain. Such an analysis demonstrates the feasibility of estimating offshore boundary layer effects from onshore measurements

    Measurements and modelling in complex terrain

    Get PDF

    Modelling Canopy Flows over Complex Terrain

    Get PDF
    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO22 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required
    • 

    corecore